AUTHORS: Pellegrin M, Bouzourène K, Aubert JF, Bielmann C, Gruetter R, Rosenblatt‑Velin N, Poitry‑Yamate C, Mazzolai L

Scientific Reports, 10(14048): , August 2020


Exercise training (ET) is recommended for lower extremity artery disease (LEAD) management.
However, there is still little information on the hemodynamic and metabolic adaptations by skeletal muscle with ET. We examined whether hindlimb perfusion/vascularization and muscle energy metabolism are altered differently by three types of aerobic ET. ApoE−/− mice with LEAD were assigned to one of four groups for 4 weeks: sedentary (SED), forced treadmill running (FTR), voluntary wheel running (VWR), or forced swimming (FS). Voluntary exercise capacity was improved and equally as efficient with FTR and VWR, but remained unchanged with FS. Neither ischemic hindlimb perfusion and oxygenation, nor arteriolar density and mRNA expression of arteriogenicrelated genes differed between groups. 18FDG PET imaging revealed no difference in the steady-state levels of phosphorylated 18FDG in ischemic and non-ischemic hindlimb muscle between groups, nor was glycogen content or mRNA and protein expression of glucose metabolism-related genes in ischemic muscle modified. mRNA (but not protein) expression of lipid metabolism-related genes was upregulated across all exercise groups, particularly by non-ischemic muscle. Markers of mitochondrial content (mitochondrial DNA content and citrate synthase activity) as well as  mRNA expression of mitochondrial biogenesis-related genes in muscle were not increased with ET. Contrary to FTR and VWR, swimming was ineffective in improving voluntary exercise  capacity. The underlying hindlimb hemodynamics or muscle energy metabolism are unable to explain the benefits of running exercise.

Download PDF


Module: |