AUTHORS: Piccini D, Demesmaeker R, Heerfordt J, Yerly J, Di Sopra L, Masci PG, Schwitter J, Van De Ville D, Richiardi J, Kober T, Stuber M

Radiology: Artificial Intelligence, 2(3): e190123, May 2020


ABSTRACT

An artificial intelligence–based algorithm can mimic expert visual image quality assessment and allows for fast and automated image quality grading of three-dimensional whole-heart MR images.

Purpose

To develop and characterize an algorithm that mimics human expert visual assessment to quantitatively determine the quality of three-dimensional (3D) whole-heart MR images.

Materials and Methods

In this study, 3D whole-heart cardiac MRI scans from 424 participants (average age, 57 years ± 18 [standard deviation]; 66.5% men) were used to generate an image quality assessment algorithm. A deep convolutional neural network for image quality assessment (IQ-DCNN) was designed, trained, optimized, and cross-validated on a clinical database of 324 (training set) scans. On a separate test set (100 scans), two hypotheses were tested: (a) that the algorithm can assess image quality in concordance with human expert assessment as assessed by human-machine correlation and intra- and interobserver agreement and (b) that the IQ-DCNN algorithm may be used to monitor a compressed sensing reconstruction process where image quality progressively improves. Weighted κ values, agreement and disagreement counts, and Krippendorff α reliability coefficients were reported.

Results

Regression performance of the IQ-DCNN was within the range of human intra- and interobserver agreement and in very good agreement with the human expert (R2 = 0.78, κ = 0.67). The image quality assessment during compressed sensing reconstruction correlated with the cost function at each iteration and was successfully applied to rank the results in very good agreement with the human expert.

Conclusion

The proposed IQ-DCNN was trained to mimic expert visual image quality assessment of 3D whole-heart MR images. The results from the IQ-DCNN were in good agreement with human expert reading, and the network was capable of automatically comparing different reconstructed volumes.

 


BibTex


Module: |