AUTHORS: Gambarota G, Mekle R, Mlynarik V, Krueger G

Journal of Magnetic Resonance Imaging, 29(4): 982-6, April 2009


ABSTRACT

Purpose: 

To measure the proton density (PD), the T1 and T2 relaxation time, and magnetization transfer (MT) effects in human median nerve at 3 T and to compare them with the corresponding values in muscle.

Materials and methods: 

Measurements of the T1 and T2 relaxation time were performed with an inversion recovery and a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence, respectively. The MT ratio was measured by acquiring two sets of 3D spoiled gradient-echo images, with and without a Gaussian saturation pulse.

Results: 

The median nerve T1 was 1410 +/- 70 msec. The T2 decay consisted of two components, with average T2 values of 26 +/- 2 msec and 96 +/- 3 msec and normalized amplitudes of 78 +/- 4% and 22 +/- 4%, respectively. The dominant component is likely to reflect myelin water and connective tissue, and the less abundant component originates possibly from intra-axonal water protons. The value of proton density of MRI-visible protons in median nerve was 81 +/- 3% that of muscle. The MT ratio in median nerve (40.3 +/- 2.0%) was smaller than in muscle (45.4 +/- 0.5%).

Conclusion: 

MRI-relevant properties, such as PD, T1 and T2 relaxation time, and MT ratio were measured in human median nerve at 3 T and were in many respects similar to those of muscle.

Download PDF


BibTex


Module: