AUTHORS: Darçot E, Colotti R, Pellegrin M, Wilson A, Siegert S, Bouzourene K, Yerly J, Mazzolai L, Stuber M, van Heeswijk R
Scientific Reports, 9(1): 17488, November 2019
ABSTRACT
Fluorine-19 (19F) magnetic resonance imaging (MRI) of injected perfluorocarbons (PFCs) can be used for the quantification and monitoring of inflammation in diseases such as atherosclerosis. To advance the translation of this technique to the clinical setting, we aimed to 1) demonstrate the feasibility of quantitative 19F MRI in small inflammation foci on a clinical scanner, and 2) to characterize the PFC-incorporating leukocyte populations and plaques. To this end, thirteen atherosclerotic apolipoprotein-E-knockout mice received 2 × 200 µL PFC, and were scanned on a 3 T clinical MR system. 19F MR signal was detected in the aortic arch and its branches in all mice, with a signal-to-noise ratio of 11.1 (interquartile range IQR = 9.5-13.1) and a PFC concentration of 1.15 mM (IQR = 0.79-1.28). Imaging flow cytometry was used on another ten animals and indicated that PFC-labeled leukocytes in the aortic arch and it branches were mainly dendritic cells, macrophages and neutrophils (ratio 9:1:1). Finally, immunohistochemistry analysis confirmed the presence of those cells in the plaques. We thus successfully used 19F MRI for the noninvasive quantification of PFC in atherosclerotic plaque in mice on a clinical scanner, demonstrating the feasibility of detecting very small inflammation foci at 3 T, and advancing the translation of 19F MRI to the human setting.
Download PDF
BibTex
Module: MRI