AUTHORS: Guedj C, Vuilleumier P

NeuroImage, 266: 119832, December 2022


Selective attention mechanisms operate across large-scale cortical networks by amplifying behaviorally relevant sensory information while suppressing interference from distractors. Although it is known that fronto-parietal regions convey information about attentional priorities, it is unclear how such cortical communication is orchestrated. Based on its unique connectivity pattern with the cortex, we hypothesized that the pulvinar, a nucleus of the thalamus, may play a key role in coordinating and modulating remote cortical activity during selective attention. By using a visual task that orthogonally manipulated top-down selection and bottom-up competition during functional MRI, we investigated the modulations induced by task-relevant (spatial cue) and task-irrelevant but salient (distractor) stimuli on functional interactions between the pulvinar, occipito-temporal cortex, and frontoparietal areas involved in selective attention. Pulvinar activity and connectivity were distinctively modulated during the co-occurrence of the cue and salient distractor stimuli, as opposed to the presence of one of these factors alone. Causal modelling analysis further indicated that the pulvinar acted by weighting excitatory signals to cortical areas, predominantly in the presence of both the cue and the distractor. These results converge to support a pivotal role of the pulvinar in integrating top-down and bottom-up signals among distributed networks when confronted with conflicting visual stimuli, and thus contributing to shape priority maps for the guidance of attention.


    Download PDF