AUTHORS: Celicanin Z, Manasseh G, Petrusca L, Scheffler K, Auboiroux V, Crowe LA, Hyacinthe J, Natsuaki Y, Santini F, Becker C, Terraz S, Bieri O, Salomir R
Magnetic Resonance in Medicine, 79(5): 2511-2523, May 2018
ABSTRACT
Purpose:
Treatments using high-intensity focused ultrasound (HIFU) in the abdominal region remain challenging as a result of respiratory organ motion. A novel method is described here to achieve 3D motion-compensated ultrasound (US) MR-guided HIFU therapy using simultaneous ultrasound and MRI.
Methods:
A truly hybrid US-MR-guided HIFU method was used to plan and control the treatment. Two-dimensional ultrasound was used in real time to enable tracking of the motion in the coronal plane, whereas an MR pencil-beam navigator was used to detect anterior-posterior motion. Prospective motion compensation of proton resonance frequency shift (PRFS) thermometry and HIFU electronic beam steering were achieved.
Results:
The 3D prospective motion-corrected PRFS temperature maps showed reduced intrascan ghosting artifacts, a high signal-to-noise ratio, and low geometric distortion. The k-space data yielded a consistent temperature-dependent PRFS effect, matching the gold standard thermometry within approximately 1°C. The maximum in-plane temperature elevation ex vivo was improved by a factor of 2. Baseline thermometry acquired in volunteers indicated reduction of residual motion, together with an accuracy/precision of near-harmonic referenceless PRFS thermometry on the order of 0.5/1.0°C.
Conclusions:
Hybrid US-MR-guided HIFU ablation with 3D motion compensation was demonstrated ex vivo together with a stable referenceless PRFS thermometry baseline in healthy volunteer liver acquisitions. Magn Reson Med 79:2511-2523, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Download PDF
BibTex
Module: MRI