AUTHORS: Yerly J, Ginami G, Nordio G, Coristine AJ, Coppo S, Monney P, Stuber M
Magnetic Resonance in Medicine, 76(5): 1443-1454, November 2016
ABSTRACT
Purpose:
Electrocardiogram (ECG)-gated cine MRI, paired with isometric handgrip exercise, can be used to accurately, reproducibly, and noninvasively measure coronary endothelial function (CEF). Obtaining a reliable ECG signal at higher field strengths, however, can be challenging due to rapid gradient switching and an increased heart rate under stress. To address these limitations, we present a self-gated cardiac cine MRI framework for CEF measurements that operates without ECG signal.
Methods:
Cross-sectional slices of the right coronary artery (RCA) were acquired using a two-dimensional golden angle radial trajectory. This sampling approach, combined with the k-t sparse SENSE algorithm, allows for the reconstruction of both real-time images for self-gating signal calculations and retrospectively reordered self-gated cine images. CEF measurements were quantitatively compared using both the self-gated and the standard ECG-gated approach.
Results:
Self-gated cine images with high-quality, temporal, and spatial resolution were reconstructed for 18 healthy volunteers. CEF as measured in self-gated images was in good agreement (R2 = 0.60) with that measured by its standard ECG-gated counterpart.
Conclusion:
High spatial and temporal resolution cross-sectional cine images of the RCA can be obtained without ECG signal. The coronary vasomotor response to handgrip exercise compares favorably with that obtained with the standard ECG-gated method.
BibTex
Module: MRI