AUTHORS: Buchanan DW, Ros T, Nahas R

Brain Sciences, 11(537): , April 2021


Background: Mild traumatic brain injury produces significant changes in neurotransmission including brain oscillations. We investigated potential quantitative electroencephalography biomarkers in 57 patients with post-concussive syndrome and chronic pain following motor vehicle collision, and 54 healthy nearly age- and sex-matched controls.
Methods: Electroencephalography processing was completed in MATLAB, statistical modeling in SPSS, and machine learning modeling in Rapid Miner. Group differences were calculated using current-source density estimation, yielding whole-brain topographical distributions of absolute power, relative power and phase-locking functional connectivity. Groups were compared using independent sample Mann–Whitney U tests. Effect sizes and Pearson correlations were also computed. Machine learning analysis leveraged a post hoc supervised learning support vector non-probabilistic binary linear kernel classification to generate predictive models from the derived EEG signatures.
Results: Patients displayed significantly elevated and slowed power compared to controls: delta (p = 0.000000, r = 0.6) and theta power (p < 0.0001, r = 0.4), and relative delta power (p < 0.00001) and decreased relative alpha power (p < 0.001). Absolute delta and theta power together yielded the strongest machine learning classification accuracy (87.6%). Changes in absolute power were moderately correlated with duration and persistence of symptoms in the slow wave frequency spectrum (<15 Hz).
Conclusions: Distributed increases in slow wave oscillatory power are concurrent with post-concussive syndrome and chronic pain.

Download PDF