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Abstract: (1) Background: Mild traumatic brain injury produces significant changes in neurotrans-
mission including brain oscillations. We investigated potential quantitative electroencephalography
biomarkers in 57 patients with post-concussive syndrome and chronic pain following motor vehicle
collision, and 54 healthy nearly age- and sex-matched controls. (2) Methods: Electroencephalography
processing was completed in MATLAB, statistical modeling in SPSS, and machine learning modeling
in Rapid Miner. Group differences were calculated using current-source density estimation, yield-
ing whole-brain topographical distributions of absolute power, relative power and phase-locking
functional connectivity. Groups were compared using independent sample Mann–Whitney U tests.
Effect sizes and Pearson correlations were also computed. Machine learning analysis leveraged
a post hoc supervised learning support vector non-probabilistic binary linear kernel classification
to generate predictive models from the derived EEG signatures. (3) Results: Patients displayed
significantly elevated and slowed power compared to controls: delta (p = 0.000000, r = 0.6) and
theta power (p < 0.0001, r = 0.4), and relative delta power (p < 0.00001) and decreased relative alpha
power (p < 0.001). Absolute delta and theta power together yielded the strongest machine learning
classification accuracy (87.6%). Changes in absolute power were moderately correlated with duration
and persistence of symptoms in the slow wave frequency spectrum (<15 Hz). (4) Conclusions:
Distributed increases in slow wave oscillatory power are concurrent with post-concussive syndrome
and chronic pain.

Keywords: chronic pain; diffuse brain injury; electroencephalography; post-concussive syndrome;
support vector machine; EEG; concussion; motor vehicle collision; car accident

1. Introduction

Traumatic brain injury (TBI) is a common and important cause of morbidity. Reports
indicate over 2.4 million annual United States emergency department visits for TBI in 2013
and 100 thousand in Canada; with slips and falls, followed by motor vehicle accidents
(MVA) being the leading causes [1–3]. The global estimate of TBI is reported to be between
64 million and 74 million annually [4]. Mild TBI (mTBI), sometimes called concussion,
represents about 75% of TBI cases. While most people recover after TBI, it is estimated
that about 5.3 million Americans and over 500 thousand Canadians are living with TBI-
related disabilities, including many that persist after mTBI—also known as Post-Concussive
Syndrome (PCS) [5]. Chronic pain (CP) is an even more prevalent and debilitating condition
with a global estimate of up to 20% of adults suffering worldwide, including approximately
25 million Americans and 6 million Canadians [6–8]. Nampiaparampil [9] conducted a
systemic review of 23 studies involving 4206 patients and found that the comorbidity of
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CP and mTBI approached 75%, but was only 32% in moderate to severe TBI. Incidence
rates of CP following mTBI can be as high as 58% [10]. Recent neuroimaging studies have
attempted to uncover the pathophysiology of these conditions independently [11–19], but
neuroimaging studies in PCS + CP following mTBI are scarce [20,21].

One mechanism of injury in TBI is the rapid change in velocity that generates shear
forces which can create lesions in axonal fibers [22,23], a process that has been termed
diffuse axonal injury [24]. While diffusion tensor imaging (DTI) is an emerging imaging
modality that can identify this characteristic lesion in TBI and PCS [14,16], it is not widely
available. Conventional magnetic resonance imaging (MRI) and computed tomography
(CT) can identify bleeding and other macro lesions that define moderate and severe TBI, but
neither can detect diffuse axonal injury after mTBI [25–27]. Quantitative electroencephalog-
raphy (qEEG) is a relatively less used modality, but its low cost, simplicity, and portability
make it well suited for widespread use in the outpatient and community setting. qEEG has
been used for decades as an objective measure of abnormalities after brain injury including
white matter damage via measurements of electrical changes [15,28–31]. qEEG also has a
long history of use in the evaluation of pain [17–19,32,33]. To that end, qEEG will serve our
goal of establishing a clinically useful and easily measurable electro-neurophysiological
biomarker for concussion and chronic pain. In addition to traditional statistical models,
machine learning approaches of biomarker classification in concussion and pain are also
becoming increasingly useful [34–37]. Here, we present evidence both from traditional
statistical and machine learning models.

1.1. EEG in mTBI/PCS

Brains are constantly fluctuating between states of high (synchronized) and low (desyn-
chronized) local neuronal coupling, which are known to, respectively, generate increases
and decreases in EEG spectral power [38]. The dynamic interplay between changes of spec-
tral power within/between different EEG frequencies has been implicated in many cogni-
tive operations, including those of perception, memory, and attention [39–41]. Patients with
mTBI consistently present symptoms of impaired cognition/attention [20,42–46]. Support-
ing these behavioral abnormalities, a review paper from Duff [47] demonstrated how mTBI
patients express significantly increased magnitude (i.e., power) of slow-wave (delta/theta)
EEG across large-scale networks and decreased alpha/beta power. These findings are
reinforced by EEG and MRI studies showing positive correlations between increased delta
power and white matter lesions plus cognitive dysfunction in PCS [25,28,48,49]. A similar
pattern of increased delta power with decreased alpha power has been shown in athletes
with sleep disturbances following mTBI [42]. The changes in alpha are further suggested
to reflect response inhibition and difficulty with task switching seen in PCS [48,49]. The
EEG evidence is again supported by Korn et al. [25], who found, in the normalized power
spectra, increased delta and decreased alpha in patients with PCS. Via multimodal imag-
ing, Korn [25] also made some other important observations: single-photon emission
computed tomography revealed lesioned blood–brain barrier, and low-resolution brain
electromagnetic tomography showed that the lesion site corresponded with abnormal EEG
rhythms. In contrast, MRI and CT revealed no differences. Finally, Ponomarev et al. [50]
not only observed increases in delta and theta, but also of alpha power in patients with
PCS. Given our sample’s PCS, we hypothesized and anticipated to see increases in low-
frequency EEG; however, it remains unclear how comorbid CP may additionally interact
with this signature.

1.2. EEG in Chronic Pain

A detailed systematic review from Pinheiro et al. [51] covered several changes in
EEG related to chronic pain. Interestingly, many of these changes are similar to that of
PCS. In a sample of neuropathic CP patients vs. controls, Sarnthein et al. [52] report
significant increases in absolute delta, theta, alpha, and beta oscillatory power (2–25 Hz).
Importantly, the authors included another group of CP patients who were not taking
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centrally acting medication and found the same increases in power (2–18 Hz), except
not in the high beta range (18–25 Hz). Sarnthein [52] also found that these elevations of
power and pain attenuated after receiving a therapeutic central lateral thalamotomy. Stern
et al. [53] also reported elevated absolute theta and beta power in neurogenic pain, while
Vuckovic et al. [54] observed elevated relative theta and alpha power, and absolute alpha
power in all brain regions. Additional measures such as decreased peak frequency of theta
and alpha rhythms from Bjork et al. [55] also support this EEG phenotype, as it suggests a
shift of spectral activity from higher to lower frequency bands. This argument is pursued
by Ploner, Sorg and Gross “as slowing of the peak alpha frequency in chronic pain has also
been observed, abnormal amplitudes of theta oscillations might basically represent the
unspecific slowing of EEG activity” [56]. Consistent changes in theta have been interpreted
in the context of the theory of thalamocortical dysrhythmia [57]. This theory proposes
that thalamic theta oscillations influence cortical inhibition, resulting in increased gamma
power associated with positive neurological symptoms such as pain [55]. That said, it is
still unclear to what extent other frequency bands (i.e., beta and gamma) are affected. The
common feature, however, is the elevation of absolute EEG power in patients with pain
versus healthy controls. This is also supported using other neuroimaging modalities such
as magnetoencephalography (MEG). Lim et al.’s [18] use of MEG was consistent, revealing
elevated absolute theta, beta, and gamma power, though concurrently decreased alpha.
Overall, a general trend for CP appears to be increased broadband power.

1.3. Hypotheses for PCS and CP

Overall, it seems PCS most prominently presents with elevated low frequency activity
of the delta and theta bands. CP seems to generally elevate broadband power with alpha
being a frequent exception. As a result, we hypothesized a “combined” effect of increased
slow and fast (i.e., broadband) EEG power. Due to the nature of mTBIs resulting from car
accidents, such as the shear force mechanisms, diffuse axonal injury, and the orientation of
the patient upon collision, it is also likely that the changes in EEG power will be diffuse.
Furthermore, we sought to answer, for the first time, whether changes in EEG power might
be reflected by functional connectivity in this comorbid sample. While there are a few
reports measuring functional connectivity using phase-locking values and other measures
such as MEG for PCS and CP separately, their results are so far inconsistent [11,58,59].

2. Materials and Methods
2.1. Participants

We conducted EEG assessments on fifty-seven patients (mean age 44.6, SD 11.2;
36 females) who were referred to The Seekers Centre, a community-based pain manage-
ment clinic in Ottawa, Canada. Some patient information is summarized below in Table 1.
Inclusion criteria for this study were: patients must have a physician diagnosis of CP and
PCS with onset beginning post-MVA, and patients must have sustained mTBI due to MVA.
Exclusion criteria for this study were: patients with other causes of pain, other causes of
brain injury, or patients with identifiable neurological illnesses. All patients included in
this study were referred to the clinic for Chronic Pain and PCS persisting at least three
months following an mTBI caused by a motor vehicle collision. Similarly, the morbidity
of each patient at the time of their EEG assessment included CP + PCS, and occasionally,
a comorbidity such as PTSD, anxiety, or depression. Fifty-six percent of our patients had
at least one of these comorbidities. However, a statistical analysis following the same
methodology as described below in Section 2.4 revealed that there were no significant
differences in EEG signals between patients with CP + PCS (n = 25) versus those with
CP + PCS + comorbidity (n = 32). In the same way, there were no significant differences
in EEG signals between patients who lost consciousness (n = 30) and those who retained
consciousness (n = 25).
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Table 1. Patients’ MVA and morbidity.

Patient Age Sex Direction of Impact LOC Location in Vehicle Diagnosis

1 38 M Front No Driver CP, PCS, PTSD
2 52 F Rear No Front passenger CP, PCS, anxiety
3 51 M Rear No Driver CP, PCS, depression
4 46 M Side Yes Driver CP, PCS, PTSD
5 60 F Front Yes Driver CP, PCS, PTSD
6 53 F Side No Driver CP, PCS, PTSD
7 43 F Vehicle rollover No Driver CP, PCS
8 42 F Rear No Front passenger CP, PCS, PTSD
9 23 F Side Yes Driver CP, PCS, anxiety
10 44 M Rear No Driver CP, PCS
11 55 F Pedestrian hit by car Yes Pedestrian (hit by car, walking) CP, PCS, PTSD
12 56 F Side No Driver CP, PCS
13 57 F Rear No Front passenger CP, PCS
14 48 F Rear No Driver CP, PCS
15 40 M Rear No Driver CP, PCS, depression, PTSD
16 48 F Rear Yes Driver CP, PCS
17 24 M Rear No Driver CP, PCS
18 52 M Pedestrian hit by car Yes Pedestrian (hit by car, walking) CP, PCS, depression
19 65 M Side Yes Driver CP, PCS
20 54 F Rear No Driver CP, PCS, anxiety
21 32 M Rear Yes Driver CP, PCS

22 24 F Rear ended then hit another
car head on Yes Driver CP, PCS, depression, anxiety

23 21 F Rear No Driver CP, PCS
24 45 M Side No Front passenger CP, PCS, anxiety
25 52 M Rear No Driver CP, PCS
26 40 F Rear Yes Driver CP, PCS, PTSD
27 34 F Rear ended another vehicle Yes Front passenger CP, PCS, anxiety
28 55 F Side Yes Driver CP, PCS
29 58 F Side No Driver CP, PCS, anxiety

30 37 M Side Yes Driver CP, PCS, PTSD, depression,
anxiety

31 45 F on bus Yes Front passenger CP, PCS
32 23 F Front Yes Driver CP, PCS
33 43 F Rear No Driver CP, PCS
34 40 M Side Yes Front passenger CP, PCS, depression
35 45 F Rear Yes Driver CP, PCS
36 48 M Front No Driver CP, PCS
37 52 M Front No Front passenger CP, PCS, PTSD
38 36 F Side Yes Driver CP, PCS
39 32 F Front No Driver CP, PCS, PTSD
40 45 M Side No Driver CP, PCS, PTSD
41 40 F Head on No Driver CP, PCS, PTSD
42 45 F Side No Moose hit driver CP, PCS, anxiety
43 12 M Side No Front passenger CP, PCS, anxiety
44 61 F Side Yes Driver CP, PCS, PTSD
45 49 M Front NA Driver CP, PCS, PTSD
46 49 F Front Yes Driver CP, PCS
47 48 F Rear NA Driver CP, PCS
48 52 M Front Yes Rear passenger CP, PCS, anxiety
49 52 F Rear Yes Driver CP, PCS, PTSD
50 53 M Side Yes Driver CP, PCS
51 38 F Front Yes Front passenger CP, PCS, PTSD
52 31 F Rear Yes Front passenger CP, PCS, anxiety
53 51 F Pedestrian hit by car Yes Pedestrian (hit by car, jogging) CP, PCS
54 56 F Rear Yes Driver CP, PCS
55 60 F Rear Yes Driver CP, PCS
56 45 M Side Yes Bicyclist (hit by car) CP, PCS, anxiety
57 42 F Rear Yes Driver CP, PCS, PTSD

Information regarding patient’s motor vehicle accident and morbidity. LOC = loss of consciousness, CP = chronic pain, PCS = post-
concussive syndrome, PTSD = post-traumatic stress disorder, NA = not available.

Fifty-four nearly age- and sex-matched controls (mean age of 43.5. SD 9.4; 38 females)
from the Human Brain Institute (HBI) normative database were used for comparison [60].
The control group consisted of healthy people with no history of mTBI or any other physi-
ological, neurological, or neuropsychiatric condition. The EEG acquisition and analysis
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were the same for controls and patients. The HBI control data were acquired before the
start of our study. However, the methods and equipment we used for the patient sample
were identical to the methods and equipment used for the controls from the HBI database.

This study was approved by the Bruyère Research Ethics Board. All participants
provided written informed consent (ethics approval code: # M16-14-009).

2.2. EEG Data Acquisition

EEG data were recorded with a 19-channel EEG Quik-Cap (Electrocap International
Inc., Eaton, OH, USA) using Ag/AgCl surface electrodes connected to a Mitsar 21-channel
EEG amplifier (Mitsar-201, CE0537, Mitsar, Ltd., St Petersburg, Russia) running on WinEEG
software according to the 10–20 international system [61]. The ground electrode was placed
on the right ear and reference electrode on the left. Electrogel was applied to each electrode
via syringe with impedance maintained below 5 kΩ. EEG data were recorded and digitized
at a sampling frequency of 250 Hz. As noted above in Section 2.1, the same protocol was
followed for patients and controls.

One day prior to the assessment, participants were telephoned and told to avoid
caffeine and tobacco, to get normal sleep, and to take their medications as usual. For our
patient population, this mostly included anti-inflammatory pain medications, occasionally
opiate-based pain medications, in some cases of comorbidity antidepressants or antipsy-
chotics, and rarely anticonvulsants. Assessments were performed with patients seated
upright in a dimly lit, unshielded room with an EEG technician present. Verbal instructions
included sitting upright, remaining still, avoiding jaw clenching and blinking, fixating
gaze and remaining awake. Resting-state qEEG recordings were made with eyes open for
a duration of 3 min. Pauses (<60 s each) allowed patients to move or blink as needed.

2.3. EEG Data Analysis

Eye blinks and other stereotypical artifacts were removed by independent component
analysis (ICA) via EEGLAB and the Infomax algorithm (blinking and lateral eye move-
ments) [62,63]. Statistically defined artifact rejection was then carried out with the FASTER
method, removing segments based on extreme deviations of amplitude and variance from
the mean [64].

After carefully removing artifacts in both control and patient recordings, the data were
analyzed using Neurophysiological Biomarker Toolbox (NBT) and MATLAB 2018b soft-
ware [65,66]. First, the EEG signal was re-referenced to current-source density (CSD) [67].
Doing this reduces the amount of volume conduction in the signal. The EEGs were then
band-pass filtered between 1 and 45 Hz, and Welch’s method was used to calculate the
power spectral density (PSD) of six frequency bands: 1–4 Hz (delta), 4–7 Hz (theta),
7–13 Hz (alpha), 13–15 Hz (low beta), 15–30 Hz (high beta), and 30–45 Hz (gamma). Values
for absolute power, relative power, and phase-locking were calculated for each frequency
band at each electrode. From these values, whole-brain averages across the 19 electrodes
were computed for patients and controls. Given that the location of injury on the head
is heterogeneous (i.e., front end collision, rear end collision, side impact), whole-brain
averages/medians were used for statistical analyses.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS Statistics Version 20.0 [68]. Kolmogorov–
Smirnov tests were conducted to test for normality. Since normality was violated for the
majority of the variables, medians were used and nonparametric two-tailed Mann–Whitney
U tests (Bonferroni corrected alpha: 0.05/6 = 0.0083) were performed to identify differences
in absolute power, relative power, and phase-locking between patients and controls for
each frequency band (Table 2; Figures 1a and 2a). Additionally, effect sizes (r) were calcu-
lated based on the Z statistic where r is the magnitude of the difference between groups.
Uncorrected P-values below 0.05 and 0.01 were anatomically clustered as increases (red)
and decreases (blue) on topographic plots (Figures 1b and 2b). Lastly, Pearson correlations
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were calculated based on the duration of the patients’ diagnoses and their absolute EEG
power (Table 3).

Table 2. qEEG signature comparisons between patients and controls.

qEEG Parameters

Absolute Power µv2 Relative Power Phase-Locking

Frequency
Bands

Patient
Mdn
(IQR)
25th
75th

Control
Mdn
(IQR)
25th
75th

p-value
(r)

Patient
Mdn
(IQR)
25th
75th

Control
Mdn
(IQR)
25th
75th

p-value
(r)

Patient
Mdn
(IQR)
25th
75th

Control
Mdn
(IQR)
25th
75th

p-value
(r)

Delta
(1–4 Hz)

0.79
(0.58)
(1.03)

0.49
(0.44)
(0.59)

0.000000
0.6

0.30
(0.26)
(0.34)

0.25
(0.23)
(0.28)

0.000006
0.43

0.28
(0.28)
(0.28)

0.28
(0.28)
(0.28)

0.078
0.17

Theta
(4–7 Hz)

0.45
(0.35)
(0.59)

0.35
(0.29)
(0.39)

0.00003
0.4

0.18
(0.16)
(0.19)

0.18
(0.16)
(0.19)

0.75
0.03

0.25
(0.25)
(0.25)

0.25
(0.25)
(0.25)

0.42
0.07

Alpha
(7–13 Hz)

0.44
(0.36)
(0.55)

0.4
(0.28)
(0.52)

0.029
0.21

0.17
(0.15)
(0.19)

0.19
(0.17)
(0.23)

0.0005
0.33

0.19
(0.19)
(0.20)

0.207
(0.19)
(0.21)

0.048
0.19

Low Beta
(13–15 Hz)

0.40
(0.33)
(0.48)

0.31
(0.25)
(0.43)

0.002
0.29

0.15
(0.13)
(0.16)

0.16
(0.14)
(0.17)

0.067
0.17

0.15
(0.15)
(0.16)

0.15
(0.15)
(0.16)

0.74
0.03

High Beta
(15–30 Hz)

0.34
(0.27)
(0.45)

0.27
(0.22)
(0.37)

0.006
0.26

0.13
(0.11)
(0.15)

0.14
(0.12)
(0.15)

0.077
0.17

0.13
(0.13)
(0.13)

0.13
(0.13)
(0.14)

0.10
0.15

Gamma
(30–45 Hz)

0.18
(0.13)
(0.24)

0.13
(0.09)
(0.59)

0.003
0.29

0.06
(0.05)
(0.8)

0.07
(0.05)
(0.8)

0.77
0.03

0.10
(0.10)
(0.11)

0.10
(0.10)
(0.11)

0.69
0.04

Group medians of 19-electrode channel global average. Whole-brain qEEG differences across all frequency bands between patients
with PCS + CP versus healthy age- and sex-matched controls using independent sample, two-tailed Mann–Whitney U test comparisons.
Exact p-values are reported. The Bonferroni correction was applied for each frequency band yielding a 0.05/6 = 0.0083 significance
threshold. Therefore, p < 0.0083 is significant. Significant p values are marked in bold font. Effect sizes r are reported. Mdn = median,
IQR = interquartile range.
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= 0.0083), except for alpha. Delta waves were the most affected. (b) Absolute power differences
across all frequency bands between patients with PCS + CP versus healthy age- and sex-matched
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frequency bands are significantly increased.
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Figure 2. (a) Relative power differences (expressed as medians) across all EEG frequency bands
between patients with PCS + CP versus healthy age- and sex-matched controls. Relative delta
power was significantly elevated in patients, whereas alpha was significantly decreased (Bonferroni-
corrected alpha: 0.05/6 = 0.0083). (b) Relative power differences across all frequency bands between
patients with PCS + CP versus healthy age- and sex-matched controls using independent sample,
two-tailed Mann–Whitney U test comparisons and color-coded uncorrected p-values overlaid on
EEG headmaps. Dark red indicates increases between patients versus controls at <0.005, dark blue
the converse, and white means no significant change. Delta is significantly elevated, and alpha is
significantly decreased.

Table 3. Correlation between absolute power and duration of symptoms.

Absolute Power Frequency Bands Pearson Correlation p-Value

Delta (1–4 Hz) 0.35 p < 0.01
Theta (4–7 Hz) 0.31 p < 0.05

Alpha (7–13 Hz) 0.32 p < 0.05
Low Beta (13–15 Hz) 0.32 p < 0.05
High Beta (15–30 Hz) 0.06 n.s
Gamma (30–45 Hz) −0.06 n.s

Correlations between absolute power and duration of symptoms (time since MVA) in patients with PCS + CP..

2.5. Support Vector Analysis

Finally, a post hoc supervised learning support vector non-probabilistic binary linear
kernel classification analysis was conducted using an open-sourced Java-based software
called Rapid Miner Studio 9.5 [69]. The goal was to test the discriminatory power of
various EEG signals in predicting patients versus controls within our cohort using a
support vector approach. Based on the results of our statistical analysis, we specifically
created models containing the EEG signals that had the most significant differences between
groups: absolute power, absolute delta power, and absolute delta and theta power. Each
model consisted of at least 111 rows and 21 columns (i.e., absolute delta power at each of
the 19 electrode sites, plus the whole-brain average across all electrodes, plus the binary
classifier patient or control, for all 111 participants). Each model tested the discriminatory
power of the included biomarkers on predicting the binary class patient or control.

Based on our initial analysis, three support vector models were created: absolute
power values for six discrete frequency bands (111 × 21 × 6); absolute power for delta and
theta frequency bands (111 × 21 × 2); and absolute power in the delta frequency band
(111 × 21).

The following process was applied to each of the three above models. The process
began with the creation of a training and validation set, where the validation set was used
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in a multiple hold-out performance calculation. The total dataset was split 60:40 into a
training and validation set using automatic stratified sampling. For our sample, this was
equal to 66 in the training set and 45 in the validation set. Then, the training set was
trained using cost-sensitive scoring whereby a 10-fold multiplier generated 10 artificial
datapoints for each real datapoint that was being predicted. The distributions of the
artificial datapoints were then used to define the confidence in terms of their proximity to
the real value being predicted. These confidences were then averaged and used to derive
the expected cost. Values with the lowest costs were used to define the ultimate prediction
within the training set. The values closest to the optimally separating hyperplane are
considered the optimal feature set. For the validation set, the known trained values were
applied to the unlabeled hold out set. Then, the optimal feature set was applied to the
training data and the validation model before applying the final prediction model. Lastly,
the final prediction model was derived by once again applying the aforementioned 10-fold
cost-sensitive scoring method to the validation set based on the optimal training set.

3. Results
3.1. Statistical Analysis
3.1.1. Absolute Power in Patients vs. Controls

The most obvious and consistent difference between patients and controls was seen
in absolute power (Figure 1a,b). Absolute power is a measure of the electrical output of
synchronous neuronal firing relative to a reference. Independent two-tailed Mann–Whitney
U tests revealed that patients’ EEG power relative to controls was significantly elevated
across delta (U = 2606, p = 0.000000, r = 0.6), theta (U = 2246, p = 0.00003, r = 0.4), beta
low (U = 2055, p = 0.002, r = 0.29), beta high (U = 2007, p = 0.006, r = 0.26), and gamma
(U = 2049, p = 0.003, r = 0.29), but not quite for alpha (U = 1910, p = 0.029, r = 0.21) with a
corrected significance threshold of 0.0083. Of note are the high and medium effect sizes for
delta and theta, respectively. This preponderance of hypersynchronous and low-frequency
EEG is further summarized in Table 2. Figure 1a also shows the marked power increase
in patients vs. controls, and regional differences based on electrode location can be seen
topographically in Figure 1b. The color scale of each brain topogram is such that smaller
p-values equal a darker red (increase) or darker blue (decrease) based on standard deviation
units relative to the distribution of expected normal values.

3.1.2. Relative Power

Relative power is a ratio metric of absolute power which measures the ratio power at
one frequency relative to the total power of all other frequencies. As shown in Figure 2a,b,
relative power in participants with PCS and CP vs. healthy controls was again increased
in the delta band (U = 2304, p = 0.000006, r = 0.43) but now decreased in the alpha band
(U = 2129, p = 0.0005, r = 0.33) with medium effect sizes. There were no significant differ-
ences in relative power for any of the other frequency bands, though small effects were
present in beta low and beta high.

3.1.3. Phase-Locking Connectivity

Phase-locking is a measure of functional connectivity that is derived by comparing
electrical activity in a single channel in relation to other channels at a specific moment in
time. Independent two-tailed Mann–Whitney U tests revealed patients’ phase-locking did
not significantly differ from controls in any frequency band but there were non-significant
trends towards decreased connectivity in the alpha band (U = 1874, p = 0.048, r = 0.19)
and increased connectivity in delta (U = 1838, p = 0.078, r = 0.17). Further results are
summarized in Table 2.

3.1.4. Correlation between Absolute Power and Duration of Symptoms

The Pearson correlations summarized in Table 3 suggest a weak to moderate positive
correlation of elevated power and duration of symptoms. The correlation was strongest in
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the delta band (r = 0.35, p < 0.01). Theta (r = 0.31, p < 0.05), alpha (r = 0.32, p < 0.05), and
low beta (r = 0.32, p < 0.05) were also significantly correlated but high beta and gamma
were not.

3.2. Support Vector Machines

Support vector machine learning most successfully classified participants using a com-
bination of delta and theta absolute power: accuracy 87.6% (SD = 7), AUC 90% (SD = 14.9),
precision 100% (SD = 0), F measure 85.1% (SD = 8.7), sensitivity 75% (SD = 14.4), speci-
ficity 100% (SD = 0). SVM results were also robust across other biomarkers including
just delta absolute power: accuracy 81.9% (SD = 6), AUC 86.1% (SD = 12.7), precision
100% (SD = 0), F measure 78.5% (SD = 7.1), sensitivity 65% (SD = 9.1), specificity 100%
(SD = 0); and absolute power using all frequency bands: accuracy 78.6% (SD = 6.5), AUC
92.8% (SD = 7.2), precision 90% (SD = 13.7), F measure 77.5% (SD = 7.1), sensitivity 71.7%
(SD = 18.3), specificity 86.7% (SD = 18.3).

4. Discussion

The present study identified diffuse elevated broadband power, especially in the low-
frequency spectrum, as a primary feature of patients with post-concussive syndrome and
chronic pain. Statistical and machine learning analysis supported our a priori hypothesis
that PCS combined with CP would lead to a compounding increase in absolute power in
low (PCS) and high (CP) frequency bands. Diffuse delta (r = 0.6) and theta (r = 0.4) power
were the most prominent significant differences between patients and controls, and each
boasted relatively large effect sizes; and our support vector model using delta and theta
power was able to discriminate patients from controls with up to 87.6% accuracy. Although
it is still not clinically viable, this level of SVM classification is superior to the current
literature for mTBI [34,35] and on par for pain [37]. This is also the first demonstration of a
potential biomarker for comorbid PCS + CP from resting state EEG.

This important first account of the combined abnormalities of PCS + CP on electro-
physiological signatures provides rationale for further investigation of delta and theta
power as potential clinically useful biomarkers. In our future research, we aim to vali-
date these candidate markers in a population of acute concussion and pain to see if they
can predict the development of PCS + CP and subsequently predict treatment response.
Additionally, this will require us to extend our results by validating the aforementioned
signatures at the individual patient level. For our results to be fully translatable into clinical
practice, it will be important to extend our group level findings to the single subject level.
In the present experiment, the interpretation of our results is limited to the group level.
In other words, a group of PCS + CP vs. healthy controls would be expected to show the
patterns found in this paper (i.e., high delta, high theta, etc.), but a single subject may not
always fit this pattern.

Although there is still a great deal of research required to validate these signatures
as viable biomarkers of PCS + CP, our present study made some important contributions
and improvements on the previous literature. Firstly, our study was conducted in a rel-
atively large, nearly age- and sex-matched sample with a homogeneous mechanism of
injury. A homogenous mechanism of injury is important because of the biomechanical
and psychosocial factors that distinguish MVA injury from other causes of PCS [23,70,71].
As such, homogenous samples may provide additional value to research data obtained
from brain injury patients. That being said, there is still a heterogeneous nature of mT-
BIs caused by car accidents as the orientation of the impact can vary. This is why it is
important to consider the global diffusivity of the elevated EEG power presented in our
results. Secondly, we demonstrated significant weak to moderate positive correlations
between globally distributed absolute power and duration of symptoms across lower
frequency bands (1–15 Hz) which suggests progression of disease, as pain and suffering
continue to affect the brain over months and years. This correlation seems to represent
an ongoing change in the brain that occurs throughout the duration of the illness. This
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supports the hypothesis that whole-brain absolute power of 1–15 Hz oscillations may be
useful in measuring response to treatment. Thirdly, since the first report of EEG changes
after concussion from Walker et al. [72], there have been remarkable advancements in the
algorithms that are used to detect abnormalities. Nonetheless, the clinical utility of EEG
findings in TBI have been limited by: inconsistent findings reported by preliminary studies,
differences in methodology between studies, and complex parameters that have been
proposed as clinical biomarkers. The present study overcame each of these limitations by
offering a methodology that is easily replicable and a biomarker that is easy to produce and
understand. Consequently, with further validation, it would not be difficult for translation
into concussion screening or into outpatient treatment centers. Finally, this study was
conducted in real-world clinical practice where strict avoidance of medication is seldom
practical as limiting its use may also create withdrawal with a concomitant influence on
EEG data. Thus, our study adopted the approach of many previous neuroimaging studies,
such that we instructed patients to continue their medication as usual (occasionally includ-
ing anti-inflammatory pain medications, opiate-based pain medications, and in some cases
of comorbidity, antidepressants or antipsychotics, and rarely anticonvulsants). While it is
possible that some part of the between-group difference in global absolute power is due to
the impact of medication on brain physiology, conversely, they may in fact mitigate this
difference by providing symptom reduction. This real-world component of our study lends
to its ecological and thus translational validity. Additionally, Sarnthein et al. [52] provide
evidence that increased power was consistent in groups with or without centrally acting
pain medication. Therefore, the same should be expected from our cohort at the group level.
It is also expected, however, that there will of course be some differences in EEG at the indi-
vidual level (perhaps explained by medications or comorbidities within the patient group),
but at the group level, the variance between patients’ and controls’ EEGs in our sample
seem to be best explained by their chronic pain and their post-concussive syndrome.

Delta is understood as an unconscious rhythm largely generated by the brainstem and
characterized by drowsiness and sleep-like states. When seen in brain-injured patients, it
may represent lesions and/or brain inflammation [28,73]. The significant and generalized
nature of the increased delta synchronization reported in this study provides further
evidence that aberrant delta activity may be an indicator of diffuse axonal injury. Significant
slowing of patient EEG relative delta power (r = 0.43) and a decrease in alpha (r = 0.33) may
be indicative of a compensatory shift in the brain toward slower oscillations as there are
increased energy requirements for maintaining neuronal oscillations in the high-frequency
bands [74]. Therefore, our results may be representative of the brain’s attempt to conserve
neuronal energy in an already injured system. More generally, the broadband increase
in absolute power likely suggests abnormally elevated synchronization of intracortical
neuronal activity [38]. This finding, combined with the trend toward decreased alpha
phase-locking, may indicate that as shorter-range connectivity/synchronization (i.e., EEG
power) increases, longer-range connectivity (i.e., phase-locking) decreases. Further research
will have to elucidate this hypothesis.

5. Conclusions

Quantitative EEG is a low-cost, non-invasive measure useful for characterizing PCS
and CP. Using delta and theta power, we successfully differentiated patients from controls
with high accuracy, improving on the current literature. Increased delta and theta power
may be clinically relevant diagnostic indicators. These markers may even have prognostic
value, and could be combined with baseline and post-injury measures in order to assess
treatment response and guide treatment strategies, including medication, brain stimulation,
neurofeedback, or other rehabilitative interventions [75,76].
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