AUTHORS: Poitry-Yamate C, Lei H, Gruetter R

Journal of Neurochemistry, 109(1): 38-45, May 2009


ABSTRACT

Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky BBB implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue-to-plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus-blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady-state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of ∼1.5 μmol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate-limiting step for glucose transport into brain cells is at the blood-hypothalamus interface, and that glycogenolysis is consistent with a substantial blood -to- intracellular glucose concentration gradient.

Download PDF


BibTex


Module: