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The ability to discriminate conspecific vocalizations is observed across species and early during development. However, its neurophys-
iologic mechanism remains controversial, particularly regarding whether it involves specialized processes with dedicated neural ma-
chinery. We identified spatiotemporal brain mechanisms for conspecific vocalization discrimination in humans by applying electrical
neuroimaging analyses to auditory evoked potentials (AEPs) in response to acoustically and psychophysically controlled nonverbal
human and animal vocalizations as well as sounds of man-made objects. AEP strength modulations in the absence of topographic
modulations are suggestive of statistically indistinguishable brain networks. First, responses were significantly stronger, but topograph-
ically indistinguishable to human versus animal vocalizations starting at 169 –219 ms after stimulus onset and within regions of the right
superior temporal sulcus and superior temporal gyrus. This effect correlated with another AEP strength modulation occurring at 291–357
ms that was localized within the left inferior prefrontal and precentral gyri. Temporally segregated and spatially distributed stages of
vocalization discrimination are thus functionally coupled and demonstrate how conventional views of functional specialization must
incorporate network dynamics. Second, vocalization discrimination is not subject to facilitated processing in time, but instead lags more
general categorization by �100 ms, indicative of hierarchical processing during object discrimination. Third, although differences
between human and animal vocalizations persisted when analyses were performed at a single-object level or extended to include addi-
tional (man-made) sound categories, at no latency were responses to human vocalizations stronger than those to all other categories.
Vocalization discrimination transpires at times synchronous with that of face discrimination but is not functionally specialized.

Introduction
Vocalizations are essential in communication and social interac-
tions, conveying the speaker’s identity, gender, intentions, and
emotional state. Whether processing conspecific vocalizations
recruits dedicated brain resources remains highly controversial.
Studies in nonhuman primates demonstrated response sensitiv-
ity to conspecific vocalizations within temporal regions. Some
argue for selectivity within circumscribed rostral regions (Tian et
al., 2001). Others emphasize distributed mechanisms (Poremba
et al., 2004; Cohen et al., 2006; Petkov et al., 2008; Recanzone,
2008; Russ et al., 2008; Staeren et al., 2009). In humans, voice
recognition deficits (phonagnosia) after (right) temporo-parietal
brain lesions can dissociate from aphasia and agnosia (Assal et al.,
1981; Van Lancker and Canter, 1982), but frequently cooccur

with amusia (Peretz et al., 1994) or can even be observed in the
absence of gross structural damage (Garrido et al., 2009). Hemo-
dynamic imaging has documented selective responsiveness to
human vocalizations within the middle and anterior superior
temporal sulcus (STS) (Belin et al., 2000). Interpreting these data
in terms of functional selectivity is not straightforward. The
speech content of the stimuli may strongly contribute to selective
effects (Belin et al., 2000; Fecteau et al., 2004), as can the har-
monic structure of sounds, which is greater in vocalizations
(Lewis et al., 2005, 2009) (for data showing attention-driving
modulations with identical acoustic stimuli, see also von Krieg-
stein et al., 2003). Another consideration is that, as in monkeys,
effects can extend to regions beyond the STS (von Kriegstein et
al., 2003, 2007; Fecteau et al., 2005), highlighting the importance
of high spatial and temporal resolution for ascertaining when/
where functional selectivity originates within distributed brain
networks.

Despite the suitability of auditory evoked potentials (AEPs) for
addressing brain dynamics, extant studies have produced discordant
results with limited interpretational power. Levy et al. (2001, 2003)
documented an attention-dependent “voice-specific response”
peaking at 320 ms after stimulus onset. But this effect may instead
reflect living versus man-made categorization (Murray et al.,
2006) because voices were only contrasted with musical instru-
ments. Charest et al. (2009) compared responses to human vo-
calizations (speech and nonspeech) with those to environmental
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sounds or bird songs. Voice-related AEP waveform modulations
began 164 ms after stimulus onset, but additional analyses revealed
their effect was mostly (if not wholly) driven by the speech content of
the stimuli and/or acoustic differences. Moreover, because these
AEP studies analyzed voltage waveforms, the latency and spatial dis-
tribution of statistical effects are valid only for the chosen reference
(i.e., variance changes with the reference) and therefore have no
unequivocal neurophysiologic validity (Murray et al., 2008).
Consequently, the spatiotemporal brain mechanisms mediating
conspecific vocalization discrimination in humans remain un-
clear. We applied electrical neuroimaging analyses to AEPs from
psychophysically and acoustically controlled sounds to disam-
biguate whether vocalization discrimination relies on dedicated
neural mechanisms. Such would be predicted to recruit distinct
brain regions and to therefore result in topographic AEP differ-
ences. More generally, by including analyses of a wide range of
object categories and also by performing analyses on responses to
individual auditory objects in a manner akin to that typically
performed in nonhuman primates, we disambiguated categorical
processes from low-level acoustic analyses.

Materials and Methods
Participants. Ten healthy, right-handed individuals (seven females), aged
21–34 years, participated. All subjects provided written, informed con-
sent to participate in the study, the procedures of which were approved
by the Ethics Committee of the University of Geneva. None had a
history of neurological or psychiatric illnesses, and all reported nor-
mal hearing. Data from these individuals have been previously pub-
lished in an investigation of living versus man-made categorical
discrimination (Murray et al., 2006) as well as in a study examining
responses to subclasses of man-made sounds (De Lucia et al., 2009).
The primary analyses in the present study are thus a more extensive
analysis of these data (i.e., the AEPs to specific subclasses of living
stimuli; with additional analyses including AEPs to subsets of sounds
of man-made objects, detailed below). Plus, AEPs were calculated in
response to single vocalizations.

Stimuli. Auditory stimuli were complex, meaningful sounds (16 bit
stereo; 22,500 Hz digitization) [for a full listing, including details on the
acoustic attributes as well as psychometrics concerning these stimuli, see
Murray et al. (2006), their Table 1]. There were 120 different sound files
in total, 60 of which represented sounds of living objects (3 exemplars of
20 different referent objects) and 60 of which represented sounds of
man-made objects (3 exemplars of 20 different reference objects). Each
sound was 500 ms in duration, which included an envelope of 50 ms
decay time that was applied to the end of the sound file to minimize clicks
at sound offset. All sounds were further normalized according to the root
mean square of their amplitude. Our previous work has demonstrated

that the sounds used in this study were all
highly familiar as well as reliably identified with
a high level of confidence (see also supplemen-
tal table, available at www.jneurosci.org as sup-
plemental material) (Murray et al., 2009a; De
Lucia et al., 2010b).

The 60 sound files that were the focus of the
present investigation were restricted to those of
living objects, which were further sorted be-
tween human nonverbal vocalizations and an-
imal vocalizations (hereafter, human and
animal sounds, respectively). The 8 human
sounds included 3 exemplars each of the fol-
lowing (i.e., a total of 24 unique sound files):
whistling, sneezing, screaming, laughing, gar-
gling, coughing, clearing one’s throat, and
crying. The 12 animal sounds included 3 exem-
plars each of the following animals’ stereotypical
vocalizations (i.e., a total of 36 unique sound
files): sheep, rooster, pig, owl, frog, donkey, dog,
crow, cow, chicken, cat, and birds.

To assess whether these groups of human and animal vocalizations
differed acoustically, we statistically compared the spectrograms (defined
with Matlab’s spectrogram function with no overlapping and zero pad-
ding), using a time–frequency bin width of �5 ms and �74 Hz. Statisti-
cal contrasts entailed a series of nonparametric t tests based on a
bootstrapping procedure with 5000 iterations per time–frequency bin to
derive an empirical distribution against which to compare the actual
difference between the mean spectrograms from each sound category
(Aeschlimann et al., 2008; Knebel et al., 2008; De Lucia et al., 2009,
2010b). Note that there was no grouping or averaging of the spectro-
grams either for a given object or for a given category. Also, it should be
noted that this analysis provides complementary (and in some regards
more comprehensive) information to an analysis of formants, the latter
of which would lack the temporal information provided in the spectro-
gram analysis. A significant difference at a given time–frequency bin was
only considered reliable if all eight of its immediately adjacent bins also
yielded values of p � 0.05 (i.e., a 3 � 3 bin spatial threshold was applied).
This constitutes a minimal level of correction for multiple contrasts
and time–frequency autocorrelation, as we were particularly inter-
ested in this analysis being overly sensitive to acoustic differences.
Nonetheless, there were no statistically reliable differences between
the spectrograms from each group of sounds (Fig. 1). Individual
sound files of course differed one from the other to render the sound
referent identifiable and unique.

The groups of sounds were likewise compared in terms of their mean
harmonics-to-noise ratio (HNR), which was calculated using PRAAT
software (http://www.fon.hum.uva.nl/praat/). HNR provides an index
of the ratio of the energy contained in the harmonics versus nonharmon-
ics of a sound. The mean (�SEM) HNR for the 24 human sounds was
9.7 � 1.6 (range, �0.1 to 27.1), and for the 36 animal sounds was 9.1 �
1.2 (range, 0.0 to 29.1). These values did not significantly differ ( p �
0.75). Thus, although HNR may contribute to the general processing of
vocalizations (Lewis et al., 2005, 2009), it should not differentially con-
tribute to processing our set of human and animal vocalizations.

Finally, the groups of sounds were compared in terms of their power
spectrum, which quantifies the energy of a sound at a given frequency.
The power spectrum was calculated using a sliding Hamming window of
256 data points (11.38 ms) and 50% of overlap between consecutive
windows. The spectral peaks of the power spectrum indicate the for-
mants of the sounds, which are known to be related to the size of the
creature generating the vocalization and are also a characteristic feature
of vocalizations (Ghazanfar et al., 2007). These peaks are displayed in
Figure 2 for all of the stimuli (i.e., each of the three exemplars from each
vocalization). As expected, human nonverbal vocalizations had formants
that clustered around lower frequencies (i.e., below �2 kHz). This was
also generally the case for the animal vocalizations, with some exceptions.
Statistical comparison (unpaired t test with equal variances not assumed)
was performed on the fundamental frequency for each vocalization ( f0;

Figure 1. Statistical comparison of stimuli. Left, The spectrogram of each stimulus was generated and comparisons (nonpara-
metric t tests) were performed across groups of sounds for each �5 ms and �80 Hz time–frequency bin. Right, Bins meeting the
following statistical criteria are displayed as red: eight spatially contiguous bins (equivalent to a cluster-level value of p �
0.00625).
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indicated by dots in Fig. 2). First, this was done without averaging the
f0 values for the three exemplars of a given object (i.e., so that there
were 60 f0 values; 24 for human vocalizations and 36 for animal
vocalizations). There was no evidence that the f0 values differed (0.71 vs
0.86 kHz; t(52.6) � 0.71; p � 0.48). Next, we repeated this analysis after
first averaging the f0 values across the three exemplars of a given object
(i.e., so that there were 20 f0 values; 8 for human vocalizations and 12 for
animal vocalizations). There was no evidence that the f0 values differed
(t(16.3) � 0.41; p � 0.69). This was done because the single-object AEPs
were calculated by averaging epochs from different exemplars of the
same object (to obtain sufficient signal quality). Thus, we could in turn
evaluate whether there was a systematic relationship between these
single-object AEPs and their corresponding f0 values.

The other 60 sound files were those of man-made objects. AEPs in
response to these sounds were included in an analysis targeted at the issue
of whether sounds of human vocalizations yielded significantly stronger
responses not only with respect to animal vocalizations, but also more
generally with respect to other categories of environmental sounds.
These sounds of man-made objects were subdivided between musical
instruments and objects associated with a specific sociofunctional con-
text (hereafter “music” and “nonmusic,” respectively). The 10 music
sounds included exemplars of notes being played on the following mu-
sical instruments (three exemplars per object): accordion, flute, guitar,
harmonica, harp, organ, piano, saxophone, trumpet, and violin (i.e.,
both string and brass instruments involving mouth and hand actions).
We would emphasize that these stimuli were neither rhythmic nor me-
lodic in character and were not perceived as music, but rather in terms of
the instrument generating the sound. We would also note that none of

the participants were musicians or had extensive musical training. The 10
nonmusic sounds included exemplars of the following objects (three per
object): bicycle bell, car horn, cash register, cuckoo clock, doorbell, clos-
ing door, glass shattering, police siren, church bell, and telephone [i.e.,
sounds that typically trigger a responsive action on being heard, as sup-
ported by our previously published psychophysical experiment appear-
ing in the study by De Lucia et al. (2009)]. Likewise, these two subcategories
of sounds of man-made objects were likewise controlled at the group level in
terms of their acoustic features as assessed with methods akin to those de-
scribed above for the evaluation of human and animal vocalizations [cf. De
Lucia et al. (2009, 2010b), their supplemental Fig. 1].

Procedure and task. Participants performed a living versus man-made
“oddball” detection paradigm, such that on a given block of trials “tar-
get” stimuli to which subjects pressed a response button occurred 10% of
the time. The use of sounds of living and man-made objects as target
stimuli was counterbalanced across blocks. The remaining 90% of stim-
uli (“distracters”) were comprised of the other sound category. The living
and man-made stimuli were blocked into series of 300 trials (�18 min)
with an interstimulus interval of 3.4 s. Each participant completed four
blocks of trials (two in which man-made sounds were targets and two in
which living sounds were targets) and took a 5–10 min break between
blocks to minimize fatigue. The order of blocks was varied across partic-
ipants. For all the AEP analyses in this study, only blocks of trials when
the sounds served as distracters were analyzed. This removes any con-
tamination of motor-related activity from the AEPs. For example, to
generate AEPs to the music and nonmusic subcategories of man-made
objects, we used the two blocks of trials when living sounds were the
targets and man-made sounds were the distracters. To generate AEPs to

Figure 2. Power spectra of each vocalization. Each line is the power spectrum for a single exemplar of a given vocalization. The two leftmost columns display the spectra for human vocalizations,
and the three rightmost columns, the spectra for animal vocalizations. The x-axis is frequency in kilohertz, and the y-axis is in arbitrary units. The dots indicate the lowest frequency peak in each
power spectrum for each of the sounds (i.e., f0 ). These f0 values were not significantly different between the two groups of vocalizations either when considered separately (t(52.6) � 0.71; p � 0.48)
or when first averaged across the exemplars of a given object (t(16.3) � 0.41; p � 0.69).
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human and animal vocalizations, we used the two blocks of trials when
man-made sounds were the targets and living sounds were the
distracters.

Behavioral as well as EEG data were collected from all conditions
throughout the length of the experiment, and STIM (Neuroscan) was
used to control stimulus delivery and to record behavioral responses.
Audiometric quality insert earphones (supplied by Neuroscan) were
used for stimulus delivery. This paradigm is in many regards similar to
what has recently been used in studies of nonhuman primates (Petkov et
al., 2008; Remedios et al., 2009). In these studies, the participants were
awake and centrally fixating, but did not perform any discrimination of
the acoustic stimuli. Similarly, in the study by Recanzone (2008), the
participants released a lever when the location of the stimulus changed
and thus were arguably attending to spatial features of the sounds. In the
present study, participants were attending to the auditory modality and
also to the general categories of the stimuli (i.e., whether it was living vs
man-made) but did not perform any overt discrimination of human
versus animal vocalizations. In this regard, any discrimination observ-
able in the AEPs can be considered as implicit. On the one hand, this
aspect of the design was intended for allowing a closer comparison with
results in animal models. Likewise, any paradigm demonstrating implicit
discrimination would also be of relevance as a clinical examination tool.
Finally, we opted for this design because previous studies have generated
conflicting evidence as to whether AEP correlates of vocalization discrim-
ination rely on overt attention to the “voice-ness” of the stimuli (Levy et al.,
2001, 2003; Charest et al., 2009).

EEG acquisition. Continuous 64-channel
EEG was acquired through Neuroscan Syn-
amps (impedances, �5 k�), referenced to the
nose, bandpass filtered 0.05–200 Hz, and
digitized at 1000 Hz. In what follows, we first
describe the preprocessing and analysis pro-
cedures for AEPs calculated across objects
(hereafter across-object AEPs). We then de-
tail our procedures of AEPs calculated for
individual objects (hereafter, single-object
AEPs).

Across-object AEP preprocessing. For across-
object AEPs, peristimulus epochs of continu-
ous EEG (�100 to 900 ms) from distracter
trials were averaged from each subject sepa-
rately to compute AEPs. As mentioned above,
EEG from target trials was not analyzed, al-
though the behavioral results reported below
refer to these trials. Trials with blinks or eye
movements were rejected off-line, using hori-
zontal and vertical electro-oculograms. An ar-
tifact criterion of �100 �V was applied at all
other electrodes, and each EEG epoch was also
visually evaluated. Data from artifact elec-
trodes from each subject and condition were
interpolated using three-dimensional splines
(Perrin et al., 1987). There were at least 105
acceptable EEG epochs per condition (human
vocalizations, animal vocalizations, music and
nonmusic AEPs) for each participant. After
this procedure and before group averaging,
each subject’s data were 40 Hz low-pass fil-
tered, baseline corrected using the �100 ms
prestimulus period, downsampled to a com-
mon 61-channel montage, and recalculated
against the common average reference.

Across-object AEP analyses and source estima-
tions. The first set of across-object analyses fo-
cused on identifying differences in AEPs in
response to human and animal vocalizations.
This was accomplished with a multistep analy-
sis procedure that we refer to as electrical neu-
roimaging, examining both local and global
measures of the electric field at the scalp. These

analyses have been extensively detailed previously (Michel et al., 2004;
Murray et al., 2008, 2009b). Briefly, they entail analyses of response
strength and response topography to differentiate effects attributable to
modulation in the strength of responses of statistically indistinguishable
brain generators from alterations in the configuration of these generators
(viz. the topography of the electric field at the scalp). That is, electrical
neuroimaging analyses examine two orthogonal features of the electric
field at the scalp—its strength and topography—that have different un-
derlying neurophysiologic bases. In addition, we used the local autore-
gressive average distributed linear inverse solution (LAURA) (Grave de
Peralta Menendez et al., 2001) to visualize and statistically contrast the
likely underlying sources of effects identified in the preceding analysis
steps.

Electrical neuroimaging analyses, being reference independent, have
several advantages over canonical waveform analyses. The statistical out-
come with voltage waveform analyses will change with the choice of the
reference electrode (Murray et al., 2008). This is because the intersubject
(or intermeasurement) variance at the chosen reference will forcibly be
zero and in turn vary elsewhere over the electrode montage. Conse-
quently, changing the reference will change the spatial distribution of the
variance and in turn the latency and distribution of statistical effects.
Nonetheless, a visual impression of effects within the dataset was ob-
tained by analyzing average-reference waveform data from all electrodes
as a function of time poststimulus onset in a series of pairwise t tests
(thresholded at p � 0.05) with correction for temporal autocorrelation at

Figure 3. a, Exemplar waveforms from a frontocentral midline electrode (FCz). These group-averaged waveforms exhibit
prototypical AEP peaks. Response modulations are visually apparent from 160 ms after stimulus onset. b, The results of
millisecond-by-millisecond paired t tests at each of the scalp electrodes from the group-averaged AEP waveforms are shown (only
p � 0.05 with a 25 ms temporal criterion are shown).
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individual electrodes through the application
of a 25 consecutive data point criterion for the
persistence of differential effects (i.e., 25 ms
duration). Note, however, that our conclu-
sions are based solely on reference-independent
measures of the electric field at the scalp.

Changes in the strength of the electric field at
the scalp were assessed using global field power
(GFP) (Lehmann and Skrandies, 1980; Koenig
and Melie-Garcia, 2010) from each subject and
experimental condition. Values at each time
point were compared with a paired t test, as
above. This measure indicates the global
strength of the response, regardless of its topo-
graphic distribution. To statistically identify
periods of topographic modulation, we calcu-
lated the global dissimilarity (Lehmann and
Skrandies, 1980) between responses for each
time point and applied a Monte Carlo boot-
strapping analysis procedure that is colloqui-
ally referred to as topographic ANOVA
(TANOVA) (Murray et al., 2008). Because
electric field changes are indicative of changes
in the underlying generator configuration
(Murray et al., 2008), this analysis provides a
statistical means of determining whether and
when brain networks mediating responses to
human and animal vocalizations differ.

An agglomerative hierarchical clustering analysis of the AEP topogra-
phy at the scalp identified time periods of stable topography, which is a
data-driven means for defining AEP components (Murray et al., 2008,
2009b; De Lucia et al., 2010a). The optimal number of topographies or
“template maps” that accounted for the group-averaged data set (i.e., the
poststimulus periods of both conditions, collectively) was determined by
a modified Krzanowski–Lai criterion (Murray et al., 2008, 2009b). The
pattern of template maps identified in the group-averaged data was then
statistically tested in the data of each individual subject, using spatial
correlation. The output is a measure of relative map presence for each
subject that is in turn submitted to a repeated-measure ANOVA with
factors of condition and map. In conjunction with the aforementioned
TANOVA, this procedure reveals whether AEPs from a given condition
are more often described by one map versus another, and therefore
whether different intracranial generator configurations better account
for AEPs from each condition.

Intracranial sources were estimated using a distributed linear inverse
solution and LAURA regularization approach (Grave de Peralta Menen-
dez et al., 2001). LAURA uses a realistic head model, and the solution
space included 4024 nodes, selected from a 6 � 6 � 6 mm grid equally
distributed within the gray matter of the Montreal Neurological Institute
(MNI) average brain (courtesy of R. Grave de Peralta Menendez and S.
Gonzalez Andino, both at the University Hospital of Geneva, Geneva,
Switzerland). The above AEP analyses defined the time periods over
which sources were estimated. Statistical analyses of source estimations
were performed by first averaging the AEP data across time to generate a
single data point for each participant and condition. This procedure
increases the signal-to-noise ratio of the data from each participant. The
inverse solution (10 participants � 2 conditions) was then estimated for
each of the 4024 nodes in the solution space. Paired t tests were calculated
at each node using the variance across participants. Only nodes with
values of p � 0.005 (t(9) � 3.68) and clusters of at least 12 contiguous
nodes were considered significant. This spatial criterion was determined
using the AlphaSim program (available from the Analysis of Functional
NeuroImages website), which entailed performing 10,000 Monte Carlo
permutations on the 4024 nodes of our lead field matrix to determine the
false discover rate for clusters of different sizes. In our case, there was a
false-positive probability of 0.0192 for observing a cluster of minimally
12 contiguous nodes. The results of the source estimations were rendered
on the MNI brain with the Talairach and Tournoux (1988) coordinates
of the largest statistical differences indicated. Functional coupling between

regions identified during statistical analysis of source estimations was evalu-
ated using nonparametric correlation (Spearman’s �).

The second set of across-object AEP analyses focused on determining
whether or not there are selectively enhanced responses to human vocal-
izations relative not only to animal vocalizations but also to the music
and nonmusic conditions described above. For this, we used the GFP in
response to each condition from each subject. Area measures were taken
over time periods either defined based on our previous work (Murray et
al., 2006) or based on the above analyses. These were submitted to a
one-way ANOVA using the within-subject factor of sound variety.

Single-object AEP preprocessing and analyses. For single-object AEPs,
peristimulus epochs of continuous EEG (�100 to 500 ms) from dis-
tracter trials were averaged from each subject separately to compute
AEPs. A shorter time interval than above was selected in part because
these analyses were conducted as a follow-up to the above analyses. Con-
sequently, we could focus our analyses on time intervals identified from
the across-object AEPs. Likewise, a shorter epoch length improved the
acceptance rate and the consequent signal quality of the single-object
AEPs. Trials with blinks or eye movements were rejected off-line, using
horizontal and vertical electro-oculograms. An artifact criterion of �100
�V was applied at all other electrodes, and each EEG epoch was also
visually evaluated. Data from artifact electrodes from each subject and
condition were interpolated using three-dimensional splines (Perrin et
al., 1987). There was a minimum of 15 acceptable EEG epochs per object
for any given participant. After this procedure and before group averag-
ing, each subject’s data in response to each object were 40 Hz low-pass
filtered, baseline corrected using the �100 ms prestimulus period, down-
sampled to a common 61-channel montage, and recalculated against the
common average reference.

Analyses of single-object AEPs were limited to GFP waveforms and
area measures. As is detailed below in Results, the across-object AEP
analyses identified robust GFP differences between responses to human
and animal vocalizations in the absence of any modulations in AEP to-
pography. The earliest of these effects was over the 169 –219 ms post-
stimulus interval. Consequently, the single-object AEP analyses were
limited to GFP area measures over this same time interval, although for
completion we include displays of the full time series. These GFP area
measures were submitted to a univariate ANCOVA using vocalization
type as the fixed factor, subject as the random factor, and f0 for each
object as the covariate. In addition, we used a nonparametric linear re-
gression analysis (Spearman’s �) both at the single-subject and group

Figure 4. a, Modulations in response strength were identified using GFP. Group-averaged GFP waveforms are displayed along
with the results of millisecond-by-millisecond paired t tests. b, Topographic modulations between conditions were assessed using
global dissimilarity. The results of the TANOVA procedure are illustrated as a function of time (in both panels 1 minus p value is
shown after applying a p � 0.05 and 25 ms temporal criterion, as in Fig. 3).
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level to assess whether GFP area over the 169 –219 ms period was linked
to the f0 of the vocalization.

Results
Behavioral results
Participants accurately performed the target detection task (Mur-
ray et al., 2006). The mean (�SEM) percentage of correct re-
sponses to human and animal sounds when they served as targets
were 85.8 � 4.1 and 90.2 � 2.7%, respectively, and did not sig-
nificantly differ (t(9) � 1.50; p � 0.15). Likewise, reaction times to
human and animal sounds were 895 � 36 and 901 � 44 ms,
respectively, and did not significantly differ (t(9) � 0.32; p �
0.75). Thus, behavioral differences cannot readily account for the
AEP modulations described below. Plus, because the main AEP
analyses were based on data from distracter trials, any response-
related activity in the effects we obtained were minimized (if not
eliminated).

Vocalization discrimination:
across-object AEPs
The first level of analysis focused on deter-
mining the onset of response differences
(based on average-referenced voltage wave-
forms) between across-object AEPs in re-
sponse to sounds of human and animal
vocalizations. Figure 3 displays the group-
average AEPs from a fronto-central mid-
line electrode (FCz) where the magnitude
of the earliest difference was largest, as
well as the results of the millisecond-by-
millisecond paired t test across the 61-
channel electrode montage. Temporally
sustained and statistically reliable differ-
ences were observed across several elec-
trodes of the montage beginning �100–200
ms after stimulus onset.

The remainder of analyses with these
across-object AEPs was therefore based
on reference-independent measures of
the electric field at the scalp: one examin-
ing response strength independent of
topography and the other examining re-
sponse topography independent of
response strength (i.e., GFP and dissim-
ilarity, respectively). The first of these, a
millisecond-by-millisecond analysis of
the group-averaged GFP waveforms re-
vealed sustained differences between re-
sponses over the 169 –219, 291–357, and
487– 621 ms poststimulus periods (Fig.
4a). Responses were stronger in response
to human vocalizations over all of these time
periods. Second, global dissimilarity be-
tween conditions tested on a millisecond-
by-millisecond basis whether the
topographies of the AEPs differed be-
tween conditions. Sustained topographic
differences were observed over the 389 –
667 ms poststimulus periods (Fig. 4b), but
not over the earlier time periods when
GFP modulations were observed. In fact,
over the 169 –219 ms period, the p value of
the TANOVA never dropped below 0.32
(the average p value over this time period
was 0.67). Thus, there was no evidence of

either short-lived significant periods of topographic difference or
trends of such. It is perhaps worthwhile to mention that these
features (i.e., response strength and response topography) are
ordinarily overlooked in canonical analyses of AEPs. The above
analyses therefore allow for differentiating, as a function of time,
when AEPs to human versus animal vocalizations differ in either/
both of these features that in turn have distinct underlying neu-
rophysiologic bases for their appearance. This pattern would
suggest that the earliest differentiation between across-object
AEPs is attributable to modulations in the strength of statisti-
cally indistinguishable configurations of intracranial brain net-
works. In other words, the earliest differentiation of human
and animal vocalizations appears to rely on the same (or at
least statistically indistinguishable) brain networks. Distinct,
specialized regions do not appear to be implicated during
these early stages.

Figure 5. a, b, Group-averaged distributed linear source estimations were calculated over the 169 –219 ms poststimulus period
for each experimental condition. Results are rendered on the average MNI brain. Axial slice shows the activations for each of the two
conditions in correspondence to the maximal t value at 47, �22, 6 mm. c, Mean difference in source estimations included a
distributed set of regions. The scaling for this difference is one-half that of the maximum for the estimations in response to animal
vocalizations. d, Results of the statistical contrast of the source estimations between AEPs to human and animal vocalizations are
displayed in the same manner as in a and b.
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A topographic hierarchical cluster
analysis was then conducted to identify
time periods of stable electric field topog-
raphy both within and between experi-
mental conditions. This analysis, first
performed at the group-averaged across-
object AEP level, is a means of identifying
AEP components and for determining
whether the above topographic modula-
tion follows from a singular and stable to-
pographic difference or rather from
multiple configuration changes (Murray
et al., 2008). The global explained vari-
ance of this clustering for the concate-
nated group-averaged dataset from both
experimental conditions was 97.38%. This
analysis indicated similar maps were ob-
served for both conditions until �400 ms
after stimulus onset, mirroring the effects
obtained when measuring global dissimilar-
ity. Over the 389–667 ms poststimulus pe-
riod, four different maps were observed at
the group average level; two of which pre-
dominated in the responses to human vo-
calizations (supplemental Fig. 1, available at
www.jneurosci.org as supplemental mate-
rial). This was statistically evaluated using a
measure of map presence that is based on
the spatial correlation between the template
maps identified in the group-averaged AEPs
and single-subject data. Over the 389–667
ms period, there was a significant main ef-
fect of map (F(2,8) � 4.502; p � 0.049) and a
significant interaction between factors of ex-
perimental condition and template map
(F(2,8) � 6.429; p � 0.022). Follow-up con-
trasts revealed that one template map (map HV) was more often
spatially correlated with responses to human vocalizations (t(9) �
4.074; p � 0.003), whereas another was more often spatially corre-
lated with responses to animal vocalizations (map AV; t(9) � 2.821;
p � 0.020). There was no reliable difference between conditions for
either of the other two template maps (map X and map Y) (see
supplemental Fig. 1, available at www.jneurosci.org as supplemental
material).

Vocalization discrimination: across-object source estimations
Analyses to this point indicate that AEP responses to sounds of
human vocalizations and animal vocalizations first differed both
in their strength, but not topography, over the 169 –219 ms pe-
riod and that a single and common topography was identified
over this time period for both conditions. By extension, such a
pattern of effects suggests that human and animal vocalization
processing initially involves a statistically indistinguishable brain
network that varies in its response strength. This is highly consis-
tent with findings emerging from recent studies in nonhuman
primates in which recordings across five auditory regions all ex-
hibited similar selectivity in their responses to conspecific vocaliza-
tions (Recanzone, 2008) (see also Petkov et al., 2008).

Intracranial sources were estimated with a distributed inverse
solution (for details, see Materials and Methods) for each across-
object AEP and participant over the 169 –219 ms period and then
group-averaged (Fig. 5a,b). Responses to both human and ani-
mal vocalizations included prominent sources along the superior

temporal lobes with additional sources evident posteriorly at the
temporo-parietal junction and also within the occipital lobe. The
mean difference in source estimations revealed a widespread net-
work of brain regions exhibiting stronger activation in response
to human than animal vocalizations (Fig. 5c). This network prin-
cipally included bilateral superior temporal and temporo-
parietal cortices. It is noteworthy that in these regions group
average responses to human vocalizations were �1.5 times those
to animal vocalizations (note difference in scales across Fig. 5a,b).
Figure 5d displays the statistical difference between these source
estimations, which after applying our threshold criteria yielded
one cluster of 13 voxels that was located in BA22/41 in the right
hemisphere [maximal t value at 47, �22, 6 mm, using the coor-
dinate system of Talairach and Tournoux (1988)]. This distrib-
uted difference in absolute source strength is likely the basis for
our observation of a GFP modulation in the absence of topo-
graphic effects, even though statistical differences between source
estimations were spatially restricted with the threshold we
applied.

Source estimations were also performed over the 291–357 ms
period. Both conditions included prominent sources along the
superior temporal lobes bilaterally with additional sources evi-
dent posteriorly at the temporo-parietal junction and also within
the occipital lobe (Fig. 6a,b). Responses to human vocalizations
also included prominent sources within the prefrontal and infe-
rior frontal cortices bilaterally, although somewhat more
strongly within the left hemisphere. Statistical contrast of these

Figure 6. a, b, Group-averaged distributed linear source estimations were calculated over the 291–357 ms poststimulus period
for each experimental condition (scale indicated). Results are rendered on the average MNI brain. Axial slice shows the activation
for each of the two conditions in correspondence to the maximal t value at �53, �3, 40 mm. c, Results of the statistical contrast
of the source estimations between AEPs to human and animal vocalization are displayed in the same manner as in a and b.
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source estimations identified a single cluster of 30 significant
voxels that extended across BA45 and BA6 in the left hemisphere
(maximal t value at �53, �3, 40 mm) (Fig. 6c). Thus, distinct
time periods of differential processing of human vocalizations
modulate responses in spatially disparate brain regions (i.e.,
BA22/41 at 169 –219 ms vs BA45/6 at 291–357 ms). This pattern
of results suggests that conspecific vocalization discrimination in
humans likely involves a wide network of brain regions, each of
which is potentially performing a distinct computation at a spe-
cific poststimulus latency.

A final set of source estimations was conducted over the 389 –
667 ms period and revealed sources similar to those observed
during the preceding time periods (supplemental Fig. 2, available
at www.jneurosci.org as supplemental material). Statistical com-
parisons revealed a single cluster of nine voxels within BA10 in

the left hemisphere (maximal t value at �23, 53, 15 mm). As this
cluster did not meet our spatial extent threshold, we only discuss
it as a basis for generating hypotheses for future research.

We next examined functional coupling of differential responses
to human versus animal vocalizations not only across brain regions
but also across time intervals of differential processing. Differences
in scalar values of source estimations within the right BA22/41 at
169–219 ms were positively correlated with differences in scalar val-
ues of source estimations within the left BA45/6 at 291–357 ms
(Spearman’s �(8) � 0.770; p � 0.009) (Fig. 7).

Vocalization selectivity: across-object AEPs
To further situate effects of vocalization discrimination with re-
spect to other object categories, we compared the GFP of re-
sponses to human and animal vocalizations (i.e., the data
described and analyzed above) with that of the music and non-
music conditions recorded during the same experiment [detailed
in the study by Murray et al. (2006)]. The group average GFP wave-
forms are shown in Figure 8a. Based on the above analyses as well as
our previous evidence showing living versus man-made categoriza-
tion effects over the 70–119 ms period (Murray et al., 2006), we

calculated GFP area over the 70–119, 169–
219, and 291–357 ms poststimulus intervals
and subjected them to separate ANOVAs
using sound variety (human, animal, non-
music, and music) as the within-subject fac-
tor (Fig. 8b–d). Over the 70–119 ms period,
there was a main effect of sound variety
(F(3,7) � 4.43; p � 0.05) that was attribut-
able to stronger responses to either man-
made variety than to either human or
animal vocalizations. This (unsurpris-
ingly) replicates our previous work (Mur-
ray et al., 2006), even though the AEPs
here were calculated for each condition
with a lower number of trials (and there-
fore lower signal-to-noise ratio). Over the
169 –219 ms period, there was also a main
effect of sound variety (F(3,7) � 8.17; p �
0.01). In this case, responses to human
and animal vocalizations significantly dif-
fered from each other ( p � 0.005), which
is not surprising in view of all of the above
analyses with these data. By contrast, how-
ever, responses to neither type of vocaliza-
tion significantly differed from responses to
either subtype of man-made sounds (all val-
ues of p � 0.45). Over the 291–357 ms pe-

riod, there was again a main effect of sound variety (F(3,7) � 13.87;
p � 0.002). Responses to human and animal vocalizations signifi-
cantly differed from each other ( p � 0.0001), and responses to non-
music and music significantly differed from each other ( p � 0.008).
Thus, although there is evidence for the discrimination of vocaliza-
tions from each other there is no evidence for selectively stronger
responses to human vocalizations over other varieties of sounds (i.e.,
sounds of subcategories of man-made objects). These collective
findings across multiple time periods thus sharply contrast with the
observation that responses to human vocalizations are stronger than
those to various classes of man-made sounds (Belin et al., 2000) [but
see Lewis et al. (2005) and Engel et al. (2009) for evidence for distinct
networks for different categories of sounds].

More generally, these analyses involving a larger set of sound
categories allow us to establish a temporal hierarchy of auditory

Figure 7. Linear correlation across the activation difference between responses to human
and animal vocalizations within the two clusters shown in Figures 5d and 6c, x-axis and y-axis,
respectively.

Figure 8. a, Group-averaged GFP waveforms in response to vocalizations as well as two classes of sounds of man-made objects.
b– d, GFP area measures (SEM indicated) over selected poststimulus intervals.

De Lucia et al. • Vocalization Discrimination in Humans J. Neurosci., August 18, 2010 • 30(33):11210 –11221 • 11217



object discrimination, with living versus
man-made sounds discriminated first at
70 –119 ms, followed by human versus an-
imal nonverbal vocalizations at 169 –219
ms, and later still by continued discrimi-
nation of vocalizations as well as the dis-
crimination of subtypes of man-made
sounds at 291–357 ms (Murray and
Spierer, 2009; Spierer et al., 2010). These
temporal considerations provide a com-
plementary argument against a model of
facilitated and/or selective discrimination
of conspecific vocalizations, because at no
latency were responses to human vocal-
izations reliably distinct from those to all
other sound categories tested here. More-
over, there was no evidence to indicate
that human vocalizations are subject to
earlier discrimination than other catego-
ries of sound objects. Rather, the high
temporal resolution of our data provide
evidence for the contrary (i.e., that a
general-level of living/man-made catego-
rization precedes discrimination of hu-
man vocalizations).

Vocalization discrimination:
single-object AEPs
Despite the above acoustic analyses, it
could be argued that the differences be-
tween across-object AEPs is the result of
undetected acoustic differences. To address
this possibility, we calculated within-
object AEPs (for details, see Materials and
Methods). This generated a matrix of 20
single-object AEPs � 10 subjects. The
GFP waveforms for each object (averaged
across subjects) are shown in Figure 9a.
GFP area measures were calculated over
the 169 –219 ms poststimulus interval
(i.e., the time period when vocalizat-
ion discrimination was identified using
across-object AEPs) (Fig. 9b). These were
submitted to a univariate ANCOVA using
vocalization type as the fixed factor, sub-
ject as the random factor, and f0 of the
objects as a covariate. There was a signifi-
cant effect of vocalization type (F(1,187) �
9.51; p � 0.002), thereby replicating the
observation of human versus animal vo-
calization discrimination using a more
fine-grained analysis of AEPs. There was
no evidence that vocalization type covaried with f0 (F(2,187) �
1.43; p � 0.242), providing no indication that vocalization dis-
crimination was (directly) linked to this low-level acoustic feature of
the stimuli. We also assessed whether single-object GFP area mea-
sures over the 169–219 ms period from individual subjects corre-
lated with f0. Nonparametric correlations were calculated. None of
the 10 subjects exhibited a significant correlation between these
measures (Spearman’s �(18) ranged from 0.392 to 0.020; p values
ranging from 0.09 to 0.91). Similarly, there was no evidence for a
significant correlation when using the group average GFP area
measures (Spearman’s �(18) � 0.139; p � 0.56) (Fig. 9c).

Discussion
Electrical neuroimaging analyses identified the spatiotempo-
ral dynamics of conspecific vocalization discrimination in hu-
mans. Responses were significantly stronger to conspecific
vocalizations over three poststimulus periods. The first (169 –219
ms) followed from strength modulations of a common network
within the right STS and extending into the superior temporal
gyrus (STG) and was functionally coupled with a subsequent
difference at 291–357 ms within the left inferior prefrontal gyrus
and precentral gyrus. The third effect (389 – 667 ms) followed
from strength as well as topographic modulations and was lo-

Figure 9. Results of single-object AEP analyses. a, Group-averaged GFP waveforms are displayed for each vocalization (left
panel, human vocalizations; right panel, animal vocalizations) along with the mean across vocalizations (thicker lines). b, GFP area
taken over the 169 –219 ms poststimulus interval for each single-object AEP (light gray bars) as well as the average for each
category of vocalizations (black bar, human vocalizations; dark gray bar, animal vocalizations; SEM indicated). The inset displays
the main effect of object category after conducting a univariate ANCOVA (see Results). c, Scatterplot comparing GFP area over the
169 –219 ms period and the corresponding f0 value for each object (black dots refer to human vocalizations and white dots to
animal vocalizations). There was no evidence for a systematic relationship between these measures (R 2 � 0.0006).
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calized to the left superior frontal gyrus. These results support
several conclusions regarding the mechanisms subserving vo-
calization discrimination in humans. First, the initial stages of
vocalization discrimination are based on modulations in re-
sponse strength within a statistically indistinguishable network of
brain regions. Additional control analyses with single-object
AEPs ruled out explanations of the earliest differentiation in
terms of low-level acoustics (Fig. 9). Second, at no latency were
responses to human vocalizations stronger than those to a wider
set of object categories, even though responses reliably differed
from animal vocalizations (Fig. 8). Third, the latency of our effects
allowed us to situate voice discrimination along a more general
timeline of auditory object discrimination (Fig. 10). Vocaliza-
tion discrimination lags general living/man-made categoriza-
tion by �100 ms (Fig. 8). There is no evidence that voices are
subject to facilitated processing over other types of objects
either in terms of recruiting a voice-selective module/network
or in terms of the speed with which the brain performs its dis-
crimination. Such notwithstanding, it is noteworthy that the la-
tency of the earliest voice discrimination is nearly synchronous
with effects of face discrimination (Bentin et al., 2007), sup-
porting the possibility that voice and face processes unfold in
parallel, mutually informing one another (Schroeder et al.,
2008; Ghazanfar, 2009).

A principal outcome is that there was no evidence for the
selectivity of responses to human vocalizations. Rather, the ear-
liest effects were the consequence of modulations in response
strength in the absence of reliable topographic differences. Parsi-
mony argues for common (or at least a statistically indistinguish-
able) networks of brain regions varying in strength as a function
of vocalization type. In line with these findings at the level of the
surface-recorded AEPs, our source estimations identified highly
similar distributions of active brain regions in response to both
human and animal vocalizations over both of the initial time
periods (Figs. 5, 6). Statistical differences were limited to focal
brain regions, although absolute differences were more widely
distributed (Fig. 5c). Additionally, because responses were always
stronger for human than for animal vocalizations, conspecific
vocalizations may represent a more salient stimulus (for corre-
sponding findings in the monkey, see Petkov et al., 2008; for a

discussion of auditory saliency maps, see
Kayser et al., 2005). By performing addi-
tional analyses comparing GFP responses
to a wider set of categories of sound
sources, we showed that human vocaliza-
tions were at some latencies less salient
(i.e., had significantly weaker responses)
than sounds of man-made sources and
were never significantly stronger than
all other sound categories (although
nonetheless stronger than animal vocal-
izations) (Fig. 8). Stronger responses
would have been expected had human
vocalizations been subject to selective
processing (Belin et al., 2000).

Several aspects of our study allowed us
to evaluate the intrinsic “tuning” of the
auditory system to human vocalizations,
which can be viewed as another approach
to addressing the topic of functional selec-
tivity. Previous AEP research has sug-
gested that correlates of conspecific
vocalization discrimination may depend

on selective attention to voices (Levy et al., 2003), although stud-
ies in nonhuman primates have repeatedly demonstrated vocal-
ization sensitivity without task requirements (Recanzone, 2008;
Russ et al., 2008) or in anesthetized subjects (Tian et al., 2001).
Here, participants performed a living/man-made discrimination
with no requirement to discriminate vocalizations. Performance
did not differ across vocalization types. Finally, the temporal in-
formation afforded by AEPs allowed us to situate the earliest
vocalization-related difference in the AEPs (170 ms) both with
respect to mean reaction times on this task (�900 ms) and also
with respect to target-distracter AEP differences (100 ms) (Murray et
al., 2006), the latter of which provides an upper temporal limit on
the speed by which categorical and decision-related brain pro-
cesses initiate. Thus, vocalization discrimination transpires sub-
sequently to these processes and is therefore unlikely to be driving
decision-related effects.

The timing of these effects is also highly consistent with pre-
dictions based on recordings in monkeys. Multisensory integra-
tion of specific face and voice signals peaks at �85–95 ms within
core and lateral belt cortices (Ghazanfar et al., 2005, 2008). The
selectivity of these integration effects suggests that categorization
of voices occurred within this latency. However, the temporal
dynamics of vocalization discrimination has to our knowledge
not been specifically assessed in this or other studies in monkeys.
Nonetheless, applying a “3:5” conversion ratio between latencies
in macaques and humans (Schroeder et al., 2008) would suggest
that vocalization discrimination in humans should manifest
around 150 –160 ms after stimulus. Although near-synchronous
timing of face and vocalization discrimination has been previ-
ously hypothesized (Belin et al., 2004), previous AEP studies have
hitherto produced discordant results that moreover cannot be
unequivocally attributed to vocalization discrimination. Effects
recently reported at 164 ms appeared to be driven by the speech
content of the stimuli [cf. Charest et al. (2009), their Fig. 4].
Others reported effects at �320 ms, although these depended on
participants’ attention to the voices (Levy et al., 2001, 2003; Gunji
et al., 2003) and might also be explained as resulting from more
general discrimination of living versus man-made objects be-
cause a musical instrument was used for the main contrast. The
present study circumvented these caveats not only in the para-

Figure 10. Schematic representation of a temporal hierarchy in auditory object discrimination summarizing the results of this
study. Categorical effects on GFP are shown as a function of time relative to when they are first observed (subsequent effects not
shown for simplicity). In a hierarchical fashion over time, general sound processing (initial 70 ms) is followed by living versus
man-made discrimination (70 –119 ms), then by human versus animal vocalization discrimination (169 –219 ms), and finally by
the discrimination of musical instruments versus other man-made objects (291–357 ms).
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digm but also in the use of electrical neuroimaging analyses with
across-object and single-object AEPs. These analyses firmly situ-
ate the timing of conspecific vocalization discrimination at laten-
cies consistent with observations in nonhuman primates and
contemporaneous with face discrimination.

In addition to their timing and likely mechanism, we localized
differential processing of conspecific vocalizations first to BA22/
BA41 in the right hemisphere (169 –219 ms) and subsequently to
BA45/6 in the left hemisphere (291–357 ms), although we would
note that a wider network of regions was also observed to be
equally responsive to both types of vocalizations (Figs. 5, 6).
These loci are in general agreement with previous hemodynamic
imaging evidence in humans (Belin et al., 2000, 2002, 2004; von
Kriegstein et al., 2003; Fecteau et al., 2005) and monkeys
(Poremba et al., 2004; Petkov et al., 2008), as well as microelec-
trode recordings in monkeys (Cohen et al., 2007; Romanski,
2007; Recanzone, 2008; Russ et al., 2008).

The temporal information provided in the present study al-
lows us to situate effects of vocalization discrimination with re-
spect to general semantic analyses and task-related effects. Our
previous research has shown that object discrimination processes
already onset at 70 ms with task-related effects at 100 ms after
stimulus (Murray et al., 2006). Aside from their consistency with
human imaging, our findings are also highly consistent with re-
cent imaging findings in awake monkeys showing a set of audi-
tory fields whose activity was enhanced in response to conspecific
vocalizations versus vocalizations from other animals and pri-
mates as well as phase-scrambled counterparts (Petkov et al.,
2008). In particular, right-lateralized primary and posterior para-
belt fields as well as bilateral anterior fields exhibited response
enhancements. It should be noted, however, that imaging studies
in nonhuman primates either limited their field of view (Petkov
et al., 2008) or selected regions of interest (Poremba et al., 2004),
leaving unknown the full spatial distribution of differential re-
sponses to vocalizations. More germane, differential activity dur-
ing the 169 –219 ms period observed in the present study
extended across what are undoubtedly multiple distinct func-
tional regions from the STG to the STS and middle temporal
cortex. Together, the results of Petkov et al. (2008) and our own
highlight the role of several distributed auditory regions in con-
specific vocalization discrimination (Recanzone, 2008).

The distributed nature of these processes is all the more evi-
dent in the fact that several distinct time periods of differential
responsiveness were observed. In particular, stronger source
strengths within the left inferior prefrontal cortex in response to
human versus animal vocalizations were observed over the 291–
357 ms poststimulus period. Studies in both humans (Fecteau et
al., 2005) and monkeys (Cohen et al., 2006, 2007; Romanski,
2007; Russ et al., 2008) have shown that prefrontal neurons re-
spond differentially to conspecific vocalizations. One possibility
is that the initial differentiation of human vocalizations within
the right STS/STG is causally related to effects at 291–357 ms
within left prefrontal cortices, particularly given the known con-
nectivity between the temporal and frontal cortices (Romanski et
al., 1999; Petrides and Pandya, 2007) (for the role of interhemi-
spheric fibers, see also Poremba et al., 2004). This proposition
receives some support from our analysis showing a significant
positive correlation between response modulations at 169 –219
ms within right BA22/41 and those at 291–357 ms within left
BA45/6 (Fig. 7).

In conclusion, the present electrical neuroimaging findings
reveal that voice discrimination transpires substantially earlier
than conventionally held and occurs over multiple, functionally

coupled stages in a wide network of brain regions. Such findings
highlight that models of functional specialization must incorpo-
rate network dynamics.
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