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Analytical Footprints: Compact Representation of
Elementary Singularities in Wavelet Bases

Dimitri Van De Ville, Member, Brigitte Forster-Heinlein, Member,
Michael Unser, Fellow, Thierry Blu, Senior Member

Abstract—We introduce a family of elementary singularities
that are point-Hölder α-regular. These singularities are self-
similar and are the Green functions of fractional derivative
operators; i.e., by suitable fractional differentiation, one retrieves
a Dirac δ function at the exact location of the singularity. We
propose to use fractional operator-like wavelets that act as a
multiscale version of the derivative in order to characterize
and localize singularities in the wavelet domain. We show that
the characteristic signature when the wavelet interacts with an
elementary singularity has an asymptotic closed-form expression,
termed the analytical footprint. Practically, this means that
the dictionary of wavelet footprints is embodied in a single
analytical form. We show that the wavelet coefficients of the
(non-redundant) decomposition can be fitted in a multiscale
fashion to retrieve the parameters of the underlying singularity.
We propose an algorithm based on stepwise parametric fitting
and the feasibility of the approach to recover singular signal
representations.

Index Terms—Elementary singularities, Footprints, Wavelet
Bases, Generalized Fractional Splines, Fractional Derivatives

I. INTRODUCTION

WAVELET bases provide an elegant decomposition of
L2(R), the space of square integrable functions [1],

[2]. Various applications take advantage of the wavelet rep-
resentation; e.g., data compression, denoising, and analysis
of singularities [3]. For a biorthogonal wavelet system, it is
well known that the order of approximation of the scaling
function at the synthesis side imposes the number of vanishing
moments—and thus the differentiation order—of the wavelet
at the analysis side. The differentiator behavior has direct
consequences for applications. First, transient features such
as discontinuities are characterized by wavelet coefficients
in their neighborhood only, which is consistent with the
derivative-like behavior. Second, the smooth parts of the
signal get filtered out and transfered to the lowpass subband
that is subsampled coarsely. Mallat and colleagues [4]–[6]
used wavelets to recover a characteristic representation of the
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signal from its wavelet coefficients’ zero-crossings (when the
wavelet acts like a second-order derivative) or their modulus
maxima (when it acts like a first-order derivative). Due to the
lack of shift-invariance of the wavelet transform, Mallat and
Zhong [5] proposed a redundant and nonorthogonal version,
thus extending wavelet bases to wavelet frames. This transform
was later also studied by Wang [7]. While the redundant
wavelet transform makes the analysis of the coefficients easier,
it brings along an important disadvantage, next to redundancy,
which is the non-uniqueness of the synthesis step.

Characterization in terms of elementary singularities (e.g.,
spikes, jumps, or discontinuities of the derivatives) is one way
to model signals. Mathematically, the behavior of elemen-
tary singularities can be characterized by their Lipschitz (or
Hölder) exponent α, which can be infered from the rate of
decay of its wavelet coefficients as the scale s decreases:∣∣∣⟨f(·),√s−1ψ(·/s− k)

⟩∣∣∣ ≤ Asα+1/2.

It also is the key property behind the concept of the cone
of influence of a singularity over scale [6]. Modeling in
terms of singularities is especially relevant for field of seismic
exploration, where the detection of different layers in the
underground can be formulated as a “sparse spike decon-
volution” problem [3, Sect. 13.3.2]. Here, the underlying
signal is assumed to be a sum of spikes, measured through
the seismic wavelet. In that case, it appropriate to impose
the sparsity constraint using ℓ1 minimization on the signal
representation in the Dirac basis [8], [9]. The spike model
can also be extended; for example, the Lipschitz exponent
has been obtained using the continuous wavelet transform in
order to measure local sharpness of the reflectors [10] or by
investigating the effect of the singularity on the continuous
wavelet [11]. This type of approach has also been pursued
using discrete B-spline bases that are tuned to a large class of
singularities [12]. Singularities and their multiscale properties
have been used in other fields as well such as for the detection
of characteristic points in ECG signals [13] or to perform
step detection and estimation using multiscale products [14].
More recently, Dragotti and Vetterli proposed “wavelet foot-
prints” as atoms that explicitly characterize signal jumps and
that constitute a dictionary [15]; these footprints need to be
learned from wavelet decompositions and become shift-variant
in the case of wavelet bases. The requirement of learning
the wavelet footprint comes from the fact that the mother
wavelet of a discrete wavelet transform is often only known
implicitly and does not have a tractable analytical expression
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(e.g., Daubechies’ wavelet are defined by the iterated filter
relation). Bruni and Vitulano proposed a practical scheme for
more general singularities that is also capable of resolving
overlapping footprints [16].

In this paper, we do not consider an explicit dictionary, but
we derive a closed-form analytical footprint of the elementary
singularity in a well-chosen wavelet basis—retrieving the
singularities from their wavelet decomposition then becomes
a parametric fitting problem. As a starting point, we consider
the fractional derivative/integral operator ∂γτ , where the order
γ and the phase τ can both be real-valued. Elementary
singularities are then introduced as the Green functions ρ
of the derivative operator ∂γτ , for γ ≥ 0; i.e., they satisfy
∂γτ {ρ} = δ. Equivalently, they can be interpreted as the
impulse response of the fractional integral operator ∂−γ

τ .
Next, we consider the family of semi-orthogonal fractional
B-spline wavelet bases [17], [18] associated to ∂γτ , γ ≥ 1,
which have also been used for layer detection in seismic
exploration [12]. We focus on a particular wavelet within this
family, termed the “operator wavelet,” for which we derive
an explicit closed-form expression together with its fractional
integrals that model the interaction of the wavelet with an
elementary singularity. This allows us to generate the atoms
of a dictionary without explicit learning; i.e., our analytical
footprint contains all the information. The operator wavelet
also has the attractive property that the wavelet coefficients
within a basis decomposition of these singularities are mono-
or bimodal only.

This paper is organized as follows. In Sect. II, we start by
revisiting fractional derivatives and the associated singularities.
Then, in Sect. III, we propose the design procedure for the
operator wavelet and we investigate its main properties. We
also characterize the wavelet and its fractional integrals, which
leads to the definition of the analytical wavelet footprint. In
Sect. IV, we demonstrate how to use these footprints with a
practical stepwise parametric fitting algorithm that properly
separates the singular and smooth parts of a signal.

Notations

We define the conventional inner product between two L2

functions f1 and f2 as

⟨f1, f2⟩ =
∫ ∞

−∞
f1(x)f

∗
2 (x)dx, (1)

where ∗ denotes the complex conjugate. The associated Eu-
clidean norm is ||f ||2L2

= ⟨f, f⟩. The Fourier transform of f
is defined as

f̂(ω) =

∫ ∞

−∞
f(x)e−jωxdx. (2)

For sequences in ℓ2, we define the inner product

⟨h1, h2⟩ℓ2 =
∑
k∈Z

h1(k)h
∗
2(k). (3)

The z-transform of a sequence h ∈ ℓ2 is denoted by

H(z) =
∑
k∈Z

h[k]z−k, (4)

while the corresponding Fourier transform is H(ejω). We
define the fractional power of a complex variable z as zα =
|z|αejα arg(z) with j =

√
−1 and arg(z) ∈ [−π, π[. When we

omit the range for integrals and summations, they should be
understood as over R and Z, respectively.

II. FRACTIONAL DERIVATIVES AND ELEMENTARY
SINGULARITIES

Fractional derivative/integral operators are a long-standing
research topic in mathematics [19]–[22] with many applica-
tions in physics, for example [23]. These operators can be
introduced in various ways [24], [25]; here, we define them in
the sense of distributions by the Fourier-domain formulation:

∂γτ f(x) =

∫ ∞

−∞
(−jω)

γ
2 −τ (jω)

γ
2 +τ︸ ︷︷ ︸

=:∂̂γ
τ (ω)

f̂(ω)ejωx dω
2π
, (5)

where γ ∈ R is the order and τ ∈ R is the phase parameter. We
also notice that the Fourier representation of the time-reversed
(or adjoint) operator ∂

γ

τ = ∂γ−τ corresponds to the ∂̂γτ (−ω).
The fractional derivative/integral operators form a complete
family of scale-invariant convolution operators [26].

Definition 1 (Elementary singularity): The elementary sin-
gularity ργτ (x) of order γ and phase shift τ is the Green
function of the operator ∂γτ :

∂γτ ρ
γ
τ (x) = δ(x). (6)

These Green functions can be determined by inverse Fourier
transformation and are given by

ργ+1
τ (x) =

 Cγ
τ |x|γ +Dγ

τ |x|
γ
log |x| , γ is odd

Cγ
τ |x|γ log |x|+Dγ

τ |x|
γ
sign(x), γ is even

Cγ
τ |x|γ +Dγ

τ |x|
γ
sign(x), otherwise

(7)
where Cγ

τ and Dγ
τ are suitable constants [27, ch. 2], [28, pp.

257f], [22, pp. 16–17], [29], [18].
The prototypical example is the unit step function u(x) =

ρ11/2 = (x)0+, which is such that Du(x) = δ(x) where
D = ∂11/2 is the ordinary derivative operator. Thanks to
the scale-invariance of the associated operators, each Green
function is self-similar in the sense that ργτ (x/T ) = λργτ (x)
with λ = T 1−γ . In Figure 1, we show several subsets of our
family of elementary singularities. For first-order singularities,
they vary from the unit step to the spike, as shown in (a).
Higher-order singularities characterize discontinuities of a
corresponding γ-th order fractional derivative. Notice that the
signal ργτ has precisely one singularity at the origin with a
Lipschitz exponent γ − 1 [17].

Definition 2 (Singular signal model): A signal is said to
be singular if it is a finite sum of weighted elementary
singularities plus a smooth term that is C∞.
Specifically, we express a singular signal containing M singu-
larities of orders γm ≥ 0, and with phase parameters τm as a
sum of the elementary singularities ργm

τm and the smooth part
f0(x):

f(x) =
M∑

m=1

amρ
γm
τm (x− xm) + f0(x), (8)

where the continuously-defined parameters are the amplitudes
am, m = 1, . . . ,M , and the positions xm ∈ R.
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Fig. 1. Family of elementary singularities associated to the fractional derivative operator ∂γ
τ . Several subsets of singularities are shown in (a)-(d). The

sweep-through starts in blue and ends in red.

III. OPERATOR WAVELETS

A. Fractional (α, τ)-Splines and Wavelets

Closely related to the fractional derivative operators are the
fractional B-splines of degree α ≥ 0 (α ∈ R) and phase
parameter τ ∈ R. These are most conveniently defined in the
Fourier domain as

β̂α
τ (ω) =

(
1− ejω

−jω

)α+1
2 −τ (

1− e−jω

jω

)α+1
2 +τ

. (9)

This family of B-splines contains the traditional symmetric
(τ = 0) and causal (τ = (α + 1)/2) B-splines. The Fourier
domain definition of the B-spline can also be written as

β̂α
τ (ω) =

∆̂α+1
τ (ejω)

∂̂α+1
τ (ω)

(10)

where the numerator

∆̂α+1
τ (z) = (1− z)

α+1
2 −τ (1− z−1)

α+1
2 +τ (11)

is the z-transform of the fractional finite difference operator
∆γ

τ of order γ (convergence limited to the unit circle z =
ejω). We can interpret the B-spline as the application of the

localization operator ∆α+1
τ to the elementary singularity; i.e.,

βα
τ = ∆α+1

τ ρα+1
τ (x) [30].

The (α, τ)-splines satisfy the (dyadic) two-scale relation
where the scaling filter h[k] relates B-splines at two consecu-
tive scales as

βα
τ

(x
2

)
=

√
2
∑
k

h[k]βα
τ (x− k) (12)

whose z-transform is given by

H(z) = 2−α− 1
2
∆̂α+1

τ (z2)

∆̂α+1
τ (z)

= 2−α− 1
2 (1 + z)

α+1
2 −τ (1 + z−1)

α+1
2 +τ

= 2−α− 1
2 ∆̂α+1

τ (−z). (13)

The autocorrelation filter of these splines is written in the
Fourier domain as

A(ejω) =
∑
k

∣∣∣β̂α
τ (ω + 2πk)

∣∣∣2 . (14)

The associated approximation spaces Vi at a (dyadic) scales
i ∈ Z are specified as

Vi = span
{√

2−iβα
τ

(
2−ix− k

)}
k∈Z

, (15)
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and the wavelet spaces

Wi = span
{√

2−iψ(2−ix− k)
}
k∈Z

, (16)

can be constructed as the orthogonal complement between two
subsequent approximation spaces; i.e., Wi⊕⊥Vi = Vi−1. The
construction of a proper wavelet basis is summarized in the
following proposition.

Proposition 1: For any given fractional B-spline βα
τ , one

can specify a corresponding semi-orthogonal spline wavelet
ψ, parametrized by some bounded filter Q(z). The following
properties apply.
(i) The wavelet is characterized by the relation

ψ
(x
2

)
=

√
2
∑
k

w[k]βα
τ (x− k), (17)

where w[k] is the so-called wavelet filter. The Fourier
domain counterpart is

ψ̂(2ω) =W (ejω)
β̂α
τ (ω)√
2
, (18)

where W (z) = z−1Q(z2)H(−z−1)A(−z);
(ii) The wavelet generates a Riesz basis whenever Q(ejω)

is bounded by C0 ≤
∣∣Q(ejω)

∣∣ ≤ C1 for some positive
constants 0 < C0, C1 <∞;

(iii) At low frequencies, the wavelet follows the behavior of
the associated derivative operator:

ψ̂(ω) ∝ ∂̂γτ (−ω)e−jω/2+O(|ω|γ+1
), as ω → 0. (19)

For the proof see App. B.
Proposition 1 (iii) shows that for any valid polynomial

Q(z2), the corresponding wavelet behaves as a fractional
derivative operator. Therefore, analyzing a signal f(x) with
this wavelet yields samples of the operator ∂γτ applied to a
smoothed version of the input signal:

⟨f(·), ψ(· − k)⟩ = ∂γτ {ϕ ∗ f} (k), (20)

where the smoothing function is formally defined in the
Fourier domain as ϕ̂(ω) = ψ̂(ω)/∂̂γτ (−ω). The key point is
that ϕ̂(0) is well-defined and non-vanishing because of (19).

When α is integer, and τ = 0, one obtains the classical
“symmetric B-spline wavelet” by setting Q(z) = 1, which
corresponds to the wavelet filter W (z) with the shortest
possible support [31]:

W (z) = z−1H(−z−1)A(−z). (21)

It is also possible to select Q(z) to obtain the well-known
(orthogonal) Battle-Lemarié wavelets [32].

B. Operator Wavelets

In this paper, we are interested in one particular fractional
spline wavelet: the operator-like wavelet.

Theorem 1: The operator wavelet ψ for the fractional B-
spline scaling function of order γ = α+1 and phase parameter
τ corresponds to

ψ
(x
2

)
= ∂

γ

τβ
2γ−1
int (x− 1) , (22)

where β2γ−1
int is the symmetric 2γ-th order interpolating B-

spline. The operator wavelet has the following attractive prop-
erties:
(i) it closely matches the derivative operator in the Fourier

domain as shown by its Taylor development

ψ̂(ω) ∝ ∂̂γτ (−ω)e−jω/2 +O(|ω|3γ), as ω → 0; (23)

which has a much smaller residual than (19).
(ii) the wavelet and its fractional integrals have an asymptotic

analytical form

∂−γ0

−τ0 ψ(x) →
πγ−γ0+1

4γ
Re

 ejπ(x−(τ+τ0))

sin
(

π(γ−γ0)
4γ + j π

2(2x−1)
4γ

)


︸ ︷︷ ︸
g(x;γ,τ,γ0,τ0)

.

(24)
for x→ 0 where γ0 < γ. The limiting form improves as
the order γ = α+ 1 increases.

For the proof see App. C.
The form (22) of the operator wavelet deserves some further

analysis. As the fractional derivative operator acts on the
smoothing function that is an interpolating B-spline of twice
of the order γ, the γ-th derivative of a spline of order 2γ
results in a spline of order γ, thus ensuring that the wavelet
is contained in the span of the scaling function at the next
finer scale. In fact, the operator wavelets coincide with the
“cardinal spline wavelets” that were proposed by Chui and
Wang [33] for causal B-spline of integer order. Here, we
are proposing an extension to fractional operators (fractional
orders and shifts). The fact that this construction improves the
operator-like behavior of the wavelet does seem to have been
emphasized before. The limiting form of the operator wavelet
is also an original contribution of this work.

We should also note that there are other instances in the lit-
erature that are relying on an equation similar to (22); i.e., ob-
taining the wavelet by applying the operator to the interpolant
of the “augmented order” function space, especially in higher
dimensions. Micchelli et al. [34] proposed this construction for
polyharmonic wavelets in any number of dimensions and for
dyadic subsampling; these wavelets are related to the (iterated)
Laplacian operator. This concept of wavelet design has also
been generalized for almost any differential operator [35],
including for Wirtinger-type operators [36], [37] and Riesz
transforms [38].

Coming back to the fractional splines, we now show some
examples where we compare the B-spline wavelets and the
operator ones. In these comparisons, we assume that both
wavelets are scaled in the same way. For these illustrations, we
rescale the B-spline wavelet such that the frequency response
for ω → 0 matches the derivative operator.

We start by noting that the B-spline wavelets and operator
wavelets coincide for α = 0. In Fig. 2 (a), we show the
frequency response of both wavelets together with that of the
corresponding derivative operator. For α > 0, the operator
wavelet matches the operator behavior more closely than the
B-spline wavelet does. The examples in Fig. 2 (b)-(d) illustrate
how the operator wavelets coincide with the pure derivative
operator in the Fourier domain over a large range of ω. These
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plots hold for every shift τ . It is also interesting to plot the
wavelets in the spatial domain. In Fig. 3 (a), the symmetric
wavelets for α = 1 (i.e., the “linear” wavelets) are shown. The
operator wavelet has a theoretical infinite support but stays
in practice very similar to the B-spline wavelet. For higher
degrees, such as α = 2.5 as shown Fig. 3 (b), the difference
between both wavelets becomes more significant.

C. Filterbank Implementation

As usual, we introduce the subscript notations for the
scaling function and wavelets as φi,n(x) = 2−i/2φ(x/2i −n)
and ψi,n(x) = 2−i/2ψ(x/2i − n), respectively. Each signal
f(x) of V0 can be expanded uniquely as a sum of two parts
coming from V1 and W1. Iterating the expansion J times
results into the decomposition

f(x) =
∑
n∈Z

c(J)[n]φJ,n(x) +
J∑

i=1

∑
n∈Z

d(i)[n]ψi,n(x), (25)

where the coefficients c(i)[n] and d(i)[n] are determined as
the projection of the signal in the subspaces; i.e., we have
c(i)[n] = ⟨f, φ̃i,n⟩ and d(i)[n] =

⟨
f, ψ̃i,n

⟩
, where φ̃ and ψ̃ are

the dual scaling function and dual wavelet. The dual function φ̃
is the unique function in V0 that satisfies ⟨φ̃0,k, φ0,l⟩ = δk−l.

In practice, the wavelet decomposition algorithm can be
translated into an efficient filterbank implementation using the
scaling and wavelet filters. Figure 4 shows one iteration of
the wavelet decomposition from both the point of view of
the continuous domain and the discrete domain. To have the
operator-like behavior on the input signal, one should put the
operator wavelet as the wavelet ψ̃ at the analysis side, and its
dual at the synthesis side. In that case, the filters of Fig. 4 are

G̃0(z) = H(z),

G0(z) = H(z)
A(z)

A(z2)
,

G̃1(z) = z−12α
H(−z−1)

A(z)
,

G1(z) = z−12−αH(−z−1)
A(z)A(−z)
A(z2)

.

To correctly perform a wavelet decomposition of a signal
f(x), specified by its measurements f(n) at the initial scale,
one should apply a prefilter to obtain the coefficients c(0)[n]
for its representation in V0. Here, we use the interpolation
presentation of the B-spline representation at the initial scale.

In practice, we implement the operator wavelet transform
using an FFT-based algorithm [39]. Given the analytical
knowledge of all filters in the Fourier domain, this implemen-
tation method allows perfect reconstruction irrespective of the
filter support that may be finite of infinite. It should be noted
that using the FFT should be seen as a computational method
that allow us to deploy a fast and exact algorithm within the
constraints of periodic boundary conditions.

D. Decomposition of Elementary Singularities

Proposition 2 (Analytical Wavelet Footprint): Analyzing
an elementary singularity associated to the fractional derivative

(order γ0, phase parameter τ0, and located at position x0) by
the operator wavelet ψ (order γ, phase parameter τ ) at scale
i and position k leaves a footprint that can be approximated
by the analytical form 2i(γ0−1/2)g(x0/2

i − k; γ, τ, γ0, τ0), as
defined by (24).
Proof: Given the properties of the operator wavelets and its
fractional integrals, we can easily derive any wavelet coeffi-
cient di[k] at scale i and position k of the discrete operator-
wavelet decomposition for the given singularity:

d(i)[k] =
⟨√

2−i ψ(·/2i − k), ργ0
τ0 (· − x0)

⟩
=

√
2−i

⟨{
∂
γ

−τϕ
}
(·/2i − k), ργ0

τ0 (· − x0)
⟩

= 2i(γ0−1/2)
⟨{
∂
γ−γ0

τ−τ0ϕ
}
(·/2i − k), ∂γ0

τ0 ρ
γ0
τ0 (· − x0)

⟩
= 2i(γ0−1/2)

⟨{
∂
−γ0

−τ0ψ
}
(·/2i − k), ∂(· − x0)

⟩
= 2i(γ0−1/2)

{
∂
−γ0

−τ0ψ
}
(x0/2

i − k)︸ ︷︷ ︸
−→g(x0/2i−k;γ,τ,γ0,τ0)

We first illustrate the analytical wavelet footprint by the
non-sampled form g(x; γ, τ, γ0, τ0). In Fig. 5, the singularities
of Fig. 1 are analyzed by the operator wavelet (γ = 3,
τ = 0). Interestingly, changing the phase of the singularity
influences the shape and symmetry of the operator wavelet,
while changing the order of the singularity affects mainly the
amplitude.

Proposition 3 (Lipschitz regularity): The signal model of
(8) with singularities of order γk, k = 1, . . . ,M , is uniformly
Lipschitz α0 = maxm(γm − 1). Consequently, there exists
A > 0 such that the coefficients d(i)[k] at level i and position
k of the operator wavelet decomposition of f satisfy∣∣d(i)[k]∣∣ ≤ Asα0+1/2, (26)

where s = 2i is the scale.
Proof: Let us introduce αm = γm−1 as the Lipschitz exponent
of the m-th singularity, and the upperbound

Am = max
x

|g(x; γ, τ, γm, τm)|

for the limiting form of the analytical wavelet footprint. Then,
using scale s = 2i, we can easily derive that∣∣d(i)[k]∣∣ ≈

∣∣∣∣∣
M∑

m=1

am2i(γm−1/2)g(xm/2
i − k; γ, τ, γm, τm)

∣∣∣∣∣
≤

M∑
m=1

sαm+1/2 |am| |g(xm/s− k; γ, τ, γm, τm)|︸ ︷︷ ︸
≤Am

≤ Asα0+1/2,

where α0 = maxm αm and A =M maxm(|am|Am).
When the operator wavelet (or its fractional integral) is used

as a wavelet basis, the wavelet coefficients will be sampled
versions of the continuous function. A useful feature is the
mono- or bimodal character of these coefficients, as can be
observed from Fig. 6. This property follows from the fact that
the smoothing kernel—the interpolating B-spline—converges
rapidly to the sinc-function [40]. Consequently, the smoothing
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(c) γ = 4 (d) γ = 8
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Fig. 2. Associated to the operator ∂γ
τ , modulus of the frequency response of the (rescaled) B-spline wavelet, the operator wavelet, and the derivative operator,

for various values of γ.

kernel at scale 0 will have a bandwidth of approximately
[−2π, 2π]. Samples of this function at positions k ∈ Z all have
the same sign, while samples of its derivatives could be mono-
or bimodal only. This property is useful for applications, since
the analytical wavelet footprint will have two local extrema at
most.

IV. RESULTS AND DISCUSSION

We now illustrate the analytical footprints for the task of
retrieving elementary singularities from an operator-wavelet
decomposition. The algorithm that we are using is greedy and
matches footprints one-by-one in a multiscale fashion; it is
summarized in App. D.

A. Stepwise Parametric Fitting with Analytical Footprints

To illustrate the concept, we applied the algorithm to a
piecewise polynomial signal of length 512 where the sin-
gularities are discontinuities; i.e., 8 singularities of the type
ρ10.5. We select the operator wavelet decomposition with
parameters γ = 8, τ = 0. In Fig. 7 (a), the decomposition
of the signal on the operator wavelet basis is shown with 3
decomposition levels. The bimodal property allows us to find
potential singularity locations by looking for the local extrema
pm at a given scale i′, which are used as initial estimates

2i
′
pm for the positions of the analytical footprints. Next, we

perform parametric fitting of the expression of Proposition
2 using the Levenberg-Marquardt algorithm (Matlab 7.8.0)
to solve the non-linear least-squares fitting criterion based
on information at all scales. Both parameters, amplitude and
edge position, are defined continuously. We use multiple initial
estimates for the position (i.e., 2i

′
(pm − 1), . . . , 2i

′
(pm + 1))

and retain the parameters of the best fit. In Fig. 7 (c), we
show the measured and fitted coefficients for the largest local
extremum of the first decomposition level (corresponding the
edge at position 305 in the signal). The fitted coefficients
are then subtracted from the wavelet decomposition and the
procedure is repeated for the next local extremum. In this way,
we obtain a list of singularities that allows us to synthetize
the singularity signal shown in Fig. 7 (b), together with is
wavelet decomposition. The wavelet subbands are identical
to those of the original signal (as they should be), while
the lowpass subband contains the residual that encodes the
smooth polynomial part. To compensate for the asymptotic
nature of the analytical footprint, we adjust the amplitudes of
the singularities by a global scaling factor obtained by linear
regression between coefficients of all wavelets subbands of the
synthetized singular signal and the ones of the original signal.
Finally, by reconstructing the difference between the original
lowpass and the one of the singularity signal, we obtain the
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Fig. 3. The (rescaled) B-spline wavelet, the operator wavelet, and the limiting form, for various values of γ associated to the operator ∂γ
τ , with τ = γ/2.
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G̃0(z
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⟨
f, ψ̃i+1,n

⟩
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-

-⟨f, φ̃i,n⟩
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↑ G1(z)-
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(b)
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↓ w(i+1)[n]-

-

-c(i)[n]
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↑ G0(z)

���2

↑ G1(z)-

-

- c(i)[n]

Fig. 4. The discrete wavelet transform for one decomposition level. (a) The continuous-domain representation. (b) The discrete-domain representation.
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Fig. 5. Effect of the elementary singularity ∂−γ0
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on the operator wavelet (γ = 3, τ = 0). Several subsets of singularities are shown in (a)-(d). The
sweep-through starts in blue and ends in red.
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Fig. 6. Mono- or bimodal character of the wavelet coefficients of an edge singularity ρ10.5(x− x0), where x0 varies between 0 and 1 and 14 steps. Top:
Operator wavelet γ = 8, τ = 0. Middle: Operator wavelet acting on edge singularity. Bottom: Wavelet coefficients of the edge singularity at different shifts
x0 (red to blue) are sampled versions of the middle plot; they are all mono- or bimodal.

smooth part that can be added to the singularity signal and
constitutes the reconstructed signal, see Fig. 7 (d). We show
an example for another type of singularity (discontinuity of
the derivative; i.e., γ0 = 2, τ0 = 1) in Fig. 8.

One important issue is how well singularities can be sep-
arated when they are close to each other. For the proposed
algorithm, singularities are fitted independently, and conse-
quently their footprints can interfere if too close. We define
the constant L as the distance over which the envelope of the
operator wavelet is below a given percentage p of its peak
value; given the sinc-like behavior of the smoothing kernel,
this happens approximately for L = (2p)−1 (see also Fig. 6
bottom). Therefore, avoiding interaction between footprints for

J decomposition levels requires singularities to be spaced at
least L · 2J samples apart. Notice that this condition is very
similar to the one in [15], where the size of the wavelet filter
played a central role. Empirically, we found that our one-by-
one fitting procedure gave correct results for p < 16% in
the noiseless case, corresponding to L > 3, which leads to a
minimal signal separation of 3 · 2J for a decomposition with
J levels.

Finally, we mention that artificial discontinuities may arise
due to the periodic boundary conditions of our FFT-based
implementation. To avoid this type of artifact, we linearly
detrended the singularity signal before obtaining its decom-
position and then added it back to the reconstructed low-pass
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Fig. 7. (a) Original signal (γ0 = 1, τ0 = 1/2) with its operator wavelet decomposition. (b) Singularity signal obtained from (a) with its operator wavelet
decomposition. The wavelets coefficients in (a) and (b) are almost completely identical, while the difference in the lowpass subband encodes the smooth part.
(c) Result of the fitting procedure for the large edge of the signal at position 305. The fitting uses all scales at the same time; coefficients from coarses scales
are larger. (d) Reconstructed signal, together with the constituting singularity and smooth signal parts. The SNR of the reconstruction is 43dB.

residual.
Although our algorithm is not specifically designed for

denoising, it can yield competitive results for the class of
singular signals satisfying (8). In Fig. 9, we show the outcome
when applying the same algorithm as before to the signal
deteriorated with additive Gaussian noise (SNR 20dB). All
signal discontinuities are well recovered and the remaining
noise originates from the residual lowpass subband; the total
SNR improvement is about 7dB.

B. Discussion

We demonstrated that it is possible to extract and charac-
terize singularities from the operator-wavelet decomposition
using the analytical wavelet footprints. The analytical form
replaces an explicit dictionary that needs to be learned and that
suffers from redundancy in the case of shift-variant wavelet
signatures (as occur with non-redundant bases). The algorithm
is related to matching pursuit [41] in the sense that the
singularities are fitted one by one. However, the dictionary

is never explicit and the parameters (am, xm) are retrieved
by a numerical optimization algorithm. Discretizing the posi-
tions xm on the (uniform) measurement grid would allow to
solve the problem with matching pursuit or sparsity-pursuing
algorithms [3]. While applying algorithms from the discrete
setting is outside the scope of this paper, theoretical results on
the exact recovery criterion can shed light on the minimum
spacing between singularities [42], [43]. Specifically, for the
case of spike deconvolution with Morlet wavelet and small
noise, the minimum spacing of 5·s̃ was found, with s̃ the width
(standard deviation) of the Gaussian smoothing kernel [3],
[44]. For the operator wavelet, we have s̃ ≈ 2J+1, which
makes the bound 10 ·2J . Empirically, we found a lower bound
of 3 · 2J in the noiseless case, which is the same order of
magnitude; the difference could be explained by high order of
the operator wavelet that we use (γ = 8) and the fact that we
exploit the knowledge that only two singularities needs to be
fitted. Another advantage of parametric fitting of the analytical
footprints is the ability to reach subsample resolution since the
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Fig. 8. (a) Original signal (γ0 = 2, τ0 = 1) with its operator wavelet decomposition. (b) Singularity signal obtained from (a) with its operator wavelet
decomposition. The wavelets coefficients in (a) and (b) are almost completely identical, while the difference in the lowpass subband encodes the smooth part.
(c) Result of the fitting procedure for the large edge of the signal at position 90. The fitting uses all scales at the same time; coefficients from coarses scales
are larger. (d) Reconstructed signal, together with the constituting singularity and smooth signal parts. The SNR of the reconstruction is 62dB.
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Fig. 9. The SNR improvement of the reconstructed signal is 7dB (noisy signal 20dB).
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problem is completely formulated in the continuous domain;
this opens the door to superresolution. The stepwise fitting
algorithm that was applied in Sect. IV-A is primarily meant
as a proof-of-concept. We believe that it may be improved on
several counts.

In the present implementation, the singularities are fitted
one after the other. A more evolved version could fit multiple
singularities at the same time, explicitly taking into account
their interference patterns. Another option is to rely on ad-
ditional information provided by different operator wavelets.
One attractive choice is to use a Hilbert-pair of operator
wavelets [45], [46]; i.e., the ones corresponding to order γ
with phase parameter τ , and order γ with phase parameter
τ + 1/2, respectively.

We should also mention that the approach is not neces-
sarily optimal for denoising. Although the operator wavelet
decomposition is a semi-orthogonal one, that is, wavelets
of different scales are orthogonal but not within the same
scale. Therefore, white noise will become correlated between
wavelet coefficients at the same scale. The fitting procedure
could be extended to take into account the correlation. Also,
depending on the amount of noise, the local extrema could
be detected at a different decomposition level or using a more
robust detector. Moreover, the number of decomposition levels
directly influences the amount of smoothing in the lowpass
subband.

Finally, we mention that the proposed algorithm preselects
the type of singularity that will be fitted. Although the
same operator-wavelet decomposition can be used to deal
with different singularities, going beyond this limitation is a
remaining challenge for future research. Our attempts to let the
parametric fitting also take care of the order or the phase of the
singularities did not give satisfactory results. Another problem
related to mixing signatures of singularities of different order
is their significant difference in dynamic range (e.g., compare
Figs. 7 (a) and 8 (a)).

V. CONCLUSION

In this paper, we proposed a particular wavelet basis, named
operator wavelets, that is part of the family of fractional B-
spline wavelets. The corresponding (non-redundant) wavelet
transform acts as a multiscale fractional derivative operator,
which have been studied extensively in mathematics. We
provided a closed-form formula for the response of these
wavelets to the whole class of self-similar (γ, τ) singular-
ities. We also showed a practical algorithm to extract the
singularities from a given signal and separate and reconstruct
the singularity and the smooth parts. One attractive feature
of our approach approach is that it works for non-redundant
decompositions and explicitly takes into account the effect
of subsampling. This could open new possibilities for signal
analysis on compact decompositions.

APPENDIX A
CONSTRUCTION OF FRACTIONAL B-SPLINE WAVELETS

These B-splines satisfy the three admissibility conditions
for a scaling function [17], [18]:

(i) They generate a Riesz basis; i.e., the autocorrelation filter
is bounded by two constants 0 < C0 ≤

∣∣A(ejω)∣∣ ≤ C1 <
∞.

(ii) They fulfill the partition of unity:∑
n

βα
τ (x− n) = 1. (27)

(iii) They satisfy a two-scale relation.
Consequently, the B-splines generate a multi-resolution anal-
ysis of L2(R); that is, a sequence of nested subspaces

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(R). (28)

We now revisit and extend the design strategy for the semi-
orthogonal spline wavelet transform that was initially proposed
in [31]. To that end, we select the wavelet space

Wi = spann∈Z

{√
2−iψ

( x
2i

− n
)}

(29)

as the orthogonal complement of Vi, such that Vi⊕Wi = Vi−1.
The wavelet is therefore constrained to be orthogonal to all
integer-shifted versions of the scaling function at the same
scale, which also implies orthogonality to wavelets at different
scales; i.e., Wi ⊥ Wj , for i ̸= j.

By construction, the wavelet at scale 1 is included in V0,
which is expressed as

ψ
(x
2

)
=

√
2
∑
k

w[k]βα
τ (x− k). (30)

It also has to fulfill the orthogonality condition V1 ⊥ W1:⟨
ψ
( ·
2

)
, βα

τ

( ·
2
− n

)⟩
= 0, n ∈ Z. (31)

Taking the z-transform of (31) results into

W (z)H(z−1)A(z) +W (−z)H(−z−1)A(−z) = 0. (32)

This condition requires W (z)H(z−1)A(z) to be an odd poly-
nomial; thus the degree of freedom of Q(z2).

APPENDIX B
PROOF OF PROPOSITION 1

First, we verify that the proposed form of W (z) satisfies
the semi-orthogonality condition of (32). We then derive the
Riesz bounds of the wavelet filter as

R(ejω) =
∑
k

∣∣∣ψ̂(ω + 2πk)
∣∣∣2

=
1

2

∣∣∣W (z1/2)
∣∣∣2A(z1/2) + 1

2

∣∣∣W (−z1/2)
∣∣∣2A(−z1/2)

= |Q(z)|2A(z1/2)A(−z1/2)(∣∣H(−z−1/2)
∣∣2

2
A(−z1/2) +

∣∣H(z1/2)
∣∣2

2
A(z1/2)

)
= |Q(z)|2A(z1/2)A(−z1/2)A(z).

Consequently, the wavelet generates a Riesz basis if 0 < C0 ≤∣∣Q(ejω)
∣∣ ≤ C1 < ∞. This guarantees a stable perfect recon-

struction filterbank when implementing the discrete wavelet
transform.
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To characterize the operator-like behavior of the semi-
orthogonal spline wavelet, we rewrite (18) as

2ψ̂(2ω) =
√
2W (ejω)β̂α

τ (ω)

=
√
2e−jωQ(ej2ω)H(−e−jω)A(−ejω) · ∆̂

γ
τ (e

jω)

∂̂γτ (ω)

= ∂̂γτ (−ω)
√
2e−jω

Q(ej2ω)H(−e−jω)A(−ejω)
∆̂γ

τ (e−jω)

∆̂2γ
0 (ejω)

∂̂2γ0 (ω)
(33)

= ∂̂γτ (−ω)2−αe−jωQ(ej2ω)A(−ejω)β̂2γ−1
0 (ω),(34)

where we have used the identity H(−z) = 2−α− 1
2 ∆̂α+1

τ (z).
Note that in (34), none of the factors except ∂̂γτ (−ω) cancels
at ω = 0. Therefore, we derive the asymptotic form of (34) as

F {ψ(·/2)} (ω) = C2e
−jω∂̂γτ (−ω)+O(|ω|γ+1

), as ω → 0,
(35)

with the constant C2 = limω→0 2
−αQ(ej2ω)A(−ejω) =

2−γ+2

π2γ ζ(2γ)(22γ − 1)Q(1), where ζ(s) =
∑

n>0
1
ns is the

Riemann zeta function.

APPENDIX C
PROOF OF PROPOSITION 1

First, we show that the operator wavelet of (22) is obtained
for Q(z2) = 2α/(A(z)A(−z)), which is bounded and thus a
valid choice. For this Q(z2), we find in the Fourier domain
that

2ψ̂(2ω) = ∂̂γτ (−ω)e−jω β̂
2γ−1
0 (ω)

A(ejω)
. (36)

The term 1/A(ejω) can be recognized as the interpolation
prefilter of the 2γ-th order symmetric B-spline. By identifying
the interpolating B-spline β2γ−1

int , we further develop (36) as

2ψ̂(2ω) = ∂̂γτ (−ω)e−jωβ̂2γ−1
int (ω) , (37)

which corresponds in the spatial domain to

ψ
(x
2

)
= ∂

γ

τβ
2γ−1
int (x− 1) . (38)

The resulting wavelet filter becomes

W (z) = z−12α
H(−z−1)

A(z)
, (39)

which can be rewritten as

W (z)
1

∆̂γ
τ (z−1)

A(z) = z−1, (40)

and thus satisfies the wavelet filter condition derived in
App. A.

Second, the expression of the operator wavelet (36) can be
further manipulated in the Fourier domain:

2ψ̂(2ω) = ∂̂γτ (−ω)
e−jω

1 + |ω|2γ
∑

k ̸=0
1

|ω+2πk|2γ
. (41)

The proposed wavelet depends on the space defined by the
B-spline scaling function, but is independent of the choice of
a particular spline scaling function. Since the second factor
in (41) is essentially constant for ω ≤ π, we may infer that

this wavelet closely matches the frequency response of the
operator over a large range in the Fourier domain. Indeed, the
order of the second term of the Taylor development at ω = 0
increased from γ + 1 to 3γ:

ψ̂(ω) ∝ ∂̂γτ (−ω/2)e−jω/2 +O(|ω|3γ), as ω → 0. (42)

Finally, we derive an explicit form of ∂−γ0

−τ0 ψ. We start
from (41) and use the fact that the wavelet ψ̂(2ω) has most
of its energy mostly around π and −π. This allows us to
approximate the sum in the denominator by two dominant
terms

2ψ̂(2ω)

(−jω)γ0/2−τ0(jω)γ0/2+τ0

≈ e−jω (jω)(γ−γ0)/2−(τ+τ0)(−jω)(γ−γ0)/2+(τ+τ0)

1 +
∣∣∣ ω
ω−2π

∣∣∣2γ +
∣∣∣ ω
ω+2π

∣∣∣2γ .

We now focus on the positive frequencies ω > 0 and apply
the change of variables ω = π(1 + η) where η is close to 0:

∂̂−γ0

−τ0 2ψ̂
+(2ω)

=
e−jπ(1+η)πγ−γ0(−j(1 + η))

γ−γ0
2 −τ−τ0(j(1 + η))

γ−γ0
2 +τ+τ0

1 +
∣∣∣ 1+η
1−η

∣∣∣2γ +
∣∣∣ 1+η
3+η

∣∣∣2γ
≈ e−jπ(1+η)πγ−γ0e−jπ(τ+τ0)(1 + η)γ−γ0

1 +
∣∣∣ 1+η
1−η

∣∣∣2γ
≈ e−jπ(1+η)πγ−γ0e−jπ(τ+τ0)e(γ−γ0)η

1 + e4γη
,

where the last step makes use of the approximation 1 + η ≈
eη . This latter expression we then use to compute the Fourier
inverse of the analytical signal of the wavelet:

∂−γ0

−τ0 ψ
+(x)

=
1

2π

∫ +∞

−∞
∂̂−γ0

−τ0 ψ̂
+(ω)ejωxdω

=
1

π

∫ +∞

−∞
∂̂−γ0

−τ0 ψ̂
+(2ω)ej2ωxdω

≈ −π
γ−γ0e−jπ(τ+τ0)

2

∫ +∞

−∞

e(γ−γ0)η

1 + e4γη
ejπ(2x−1)(1+η)dη

= −π
γ−γ0e−jπ(τ+τ0−2x)

8γ∫ 1

0

ξ−
γ−γ0
4γ −j

π(2x−1)
4γ (1− ξ)−1+

γ−γ0
4γ +j

π(2x−1)
4γ dξ︸ ︷︷ ︸

B(1− γ−γ0
4γ −j

π(2x−1)
4γ ,

γ−γ0
4γ +j

π(2x−1)
4γ )

= − πγ−γ0+1ejπ(2x−(τ+τ0))

8γ sin
(

π(γ−γ0)
4γ + j π

2(2x−1)
4γ

)
where we used the change of variables 1/(1 + e4γη) = ξ to
identify the Beta function for which the identity B(1−a, a) =
Γ(1 − a)Γ(a) = π/ sin(aπ) holds. This ultimately yields the
following asymptotic expression for the operator wavelet and
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its fractional integrals:

∂−γ0

−τ0 ψ(x) ≈ −π
γ−γ0+1

4γ
Re

 ejπ(2x−(τ+τ0))

sin
(

π(γ−γ0)
4γ + j π

2(2x−1)
4γ

)
 .
(43)

The complex argument of the sin-function can be evaluated
using sin(a+ jb) = sin(a) cosh(b) + j cos(a) sinh(b).

APPENDIX D
ALGORITHM FOR STEPWISE PARAMETRIC FITTING

We first choose the operator wavelet transform (order γ,
phase τ ). Next, we select the singularity type that we want
to recover (order γ0 < γ, phase τ0). The signal f is decom-
posed in the operator wavelet basis, resulting in coefficients
d(i)[k] at scales i = 1, . . . , J + 1 and positions k. For a
chosen subband at scale i′, we now make a list of the local
extrema pm, m = 1, . . . ,M . The core of the algorithm will
now fit singularities one by one for each local extremum.
Specifically, we optimize the parameters of the analytical
footprint (amplitude am, position xm) using the Levenberg-
Marquardt optimization algorithm based on the multiscale
information of the wavelet coefficients d(i)[k], i = 1, . . . , J .
We try several initial estimates for the position xm : 2i

′
(pm−

1), . . . , 2i
′
(pm + 1). Next, the fitted analytical footprint is

subtracted from the coefficients d(i)[k] (i = 1, . . . , J). After
fitting M singularities, we synthetize the singularity signal
f1 using amρ

γ0
τ0 (x − xm) and obtain its wavelet coefficients

d′(i)[k]. We now adjust the singularity amplitudes am by least-
squares solution of the optimal scaling factor between d′(i)[k]
and the initial coefficients d(i)[k]. Finally, we reconstruct the
smooth signal f0 from the residual lowpass c(J)[k] − c′(J)[k]
only. Our approximation of f based on the singular signal
model is given by f1 + f0.
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