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ABSTRACT
Image recovery in optical interferometry is an ill-posed non-linear inverse problem arising
from incomplete power spectrum and bispectrum measurements. We reformulate this non-
linear problem as a linear problem for the supersymmetric rank-1 order-3 tensor formed by the
tensor product of the vector representing the image under scrutiny with itself. On one hand,
we propose a linear convex approach for tensor recovery with built-in supersymmetry, and
regularizing the inverse problem through a nuclear norm relaxation of a low-rank constraint.
On the other hand, we also study a non-linear non-convex approach with a built-in rank-1
constraint but where supersymmetry is relaxed, formulating the problem for the tensor product
of three vectors. In this second approach, only linear convex minimization subproblems are,
however, solved, alternately and iteratively for the three vectors. We provide a comparative
analysis of these two novel approaches through numerical simulations on small-size images.
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1 IN T RO D U C T I O N

Interferometry is a unique tool to image the sky at otherwise inac-
cessible resolutions. Ideally, an interferometer measures complex
visibilities identifying the Fourier coefficients of the intensity image
x of interest. In this context, the visibility associated with a given
telescope pair at one instant of observation gives the Fourier trans-
form of the image of interest at a spatial frequency identified by
the baseline components in the image plane. At radio wavelengths,
these visibilities are indeed accessible, thereby setting a linear in-
verse problem in the perspective of image recovery. The standard
CLEAN algorithm operates by local iterative removal of the convolu-
tion kernel associated with the partial Fourier coverage (Thompson,
Moran & Swenson 2001). Convex optimization methods regulariz-
ing the inverse problem through sparsity constraints have recently
been proposed in the framework of the recent theory of compressive
sampling (Wiaux et al. 2009a,b; Wenger et al. 2010; Wiaux, Puy &
Vandergheynst 2010; Li, Cornwell & de Hoog 2011; McEwen &
Wiaux 2011; Carrillo, McEwen & Wiaux 2012).

At optical wavelengths though, atmospheric turbulence induces
a random phase delay that implies a systematic cancellation of
the visibility values. Power spectrum information can, however, be
retrieved, together with partial phase information through phase
closure or bispectrum measurements (Baldwin & Haniff 2002;
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Thorsteinsson, Buscher & Young 2004; Thiébaut & Giovanelli
2010). These considerations apply both to aperture masking in-
terferometry on a single telescope (Baldwin et al. 1986; Haniff
et al. 1987; Tuthill et al. 2000) and to optical interferometer ar-
rays such as the Very Large Telescope Interferometer.1 Provid-
ing detailed images of complex astrophysical phenomena is an
important challenge for optical interferometry today (Baldwin &
Haniff 2002). In the perspective of image recovery, prior constraints
are also essential to regularize this non-linear ill-posed inverse
problem.

The state-of-the-art MIRA method (Thiébaut 2008) takes a
maximum a posteriori approach where the image is the so-
lution of an optimization problem with an objective function
f (x) = fdata(x) + �fprior(x), for some arbitrary parameter � to be
tuned, and with additional positivity and total flux constraints. Spar-
sity priors have in particular been promoted (Thiébaut 2008; Re-
nard, Thiébaut & Malbet 2011). The data non-linearity induces
non-convexity of the objective function. The adopted strategy is to
perform only local optimization, in the context of which the solution
depends not only on the data and on the priors, but also strongly
on the initial image and on the path followed by the local optimiza-
tion method. The WISARD alternative (Meimon, Mugnier & Besnerais
2005) takes a two-step alternate minimization (AM) self-calibration
approach. First, the missing Fourier phases are recovered on the

1 www.eso.org/sci/facilities/paranal/telescopes/vlti/
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basis of a current estimate and phase closure information enabling
to build pseudo-complex visibilities. Secondly, the image is recov-
ered from the pseudo-complex visibilities as in radio interferome-
try. While the second step is convex and leads to a unique image
independently of the initialization, the first step is not. The over-
all procedure remains non-convex and the final solution depends
on the initial guess. In summary, state-of-the-art methods are non-
convex due to the intrinsic data non-linearity (Thiébaut & Giovanelli
2010), and therefore known to suffer from a strong sensitivity to
initialization.

The approaches proposed here stem from a different perspec-
tive. We first formulate a linear version of the problem for the real
and positive supersymmetric rank-1 order-3 tensor X = x ◦ x ◦ x
formed by the tensor product of the size-N vector x representing
the image under scrutiny with itself. This allows us to pose a linear
convex problem for recovery of a size-N3 tensor X with built-in
supersymmetry, and regularizing the inverse problem through a nu-
clear norm relaxation of a low-rank constraint, also enforcing reality
and positivity constraints. We also study a non-linear non-convex
approach with a built-in rank-1 constraint but where supersym-
metry is relaxed, formulating the problem for the tensor product
u1 ◦ u2 ◦ u3 of three size-N vectors. In contrast with the state of
the art though, only linear convex minimization subproblems are
solved, alternately and iteratively for the vectors, also enforcing
reality and positivity.2 While the former approach is much heavier
than the latter in terms of memory requirements and computation
complexity due to the drastically increased dimensionality of the
unknown, the underlying convexity ensures essential properties of
convergence to a global minimum of the objective function and in-
dependence of initialization, justifying a comparative analysis. For
numerical experiments, we consider a generic discrete measure-
ment setting where measurements identify with triple products of
discrete Fourier coefficients of x. These triple products are selected
randomly according to a variable-density scheme sampling more
densely low spatial frequencies, and are affected by simple additive
Gaussian noise.

In Section 2, we review convex optimization and proximal split-
ting methods. In Section 3, we introduce our generic discrete data
model and describe our new linear tensor formulation of the optical-
interferometric imaging problem. In Sections 4 and 5, the new
AM and nuclear minimization (NM) approaches are discussed. Our
simulation setting for comparison of these two methods and corre-
sponding results are presented in Section 6. Finally, we conclude in
Section 7.

2 C O N V E X O P T I M I Z ATI O N A N D P ROX I M A L
SPLITTING METHODS

A real-valued function f (x), from R
N to R, is called convex if

f ((1 − β)x1 + βx2) ≤ (1 − β)f (x1) + βf (x2) (1)

for any x1, x2 ∈ R
N and any β ∈ [0, 1]. Optimization problems

including convex objective functions and convex constraints, called
convex optimization problems, have many attractive properties, in
particular the essential property that any local minimum must be a

2 We also attempted an alternative non-convex approach consisting of solv-
ing the non-linear problem directly for x, using the non-convex projected
gradient method proposed by Attouch, Bolte & Svaiter (2013). First, sim-
ulations did not produce any meaningful reconstruction and this approach
was discarded.

global minimum, which comes directly from the definition of a con-
vex function. Also, convex problems can be efficiently solved, both
in theory (i.e. via algorithms with worst-case polynomial complex-
ity) and in practice (Boyd & Vandenberghe 2004). Among the broad
range of convex optimization methods, proximal splitting methods
offer great flexibility and are shown to capture and extend sev-
eral well-known algorithms in a unifying framework. Examples of
proximal splitting algorithms include Douglas–Rachford, iterative
thresholding, projected Landweber, projected gradient, forward–
backward, alternating projections, alternating direction method of
multipliers and alternating split Bregman (Combettes & Pesquet
2011). They solve optimization problems of the form

min
x∈RN

f1(x) + · · · + fK (x), (2)

where f1(x), . . . , fK (x) are convex lower semicontinuous func-
tions from R

N to R. In the case of convex constrained prob-
lems, they can be reformulated as unconstrained problems by using
the indicator function of the convex constraint set as one of the
functions in (2), i.e. fk(x) = iC(x) where C represents the con-
vex constraint set. The indicator function, defined as iC(x) = 0
if x ∈ C or iC(x) = +∞ otherwise, belongs to the class of con-
vex lower semicontinuous functions. Note that complex-valued
vectors are treated as real-valued vectors with twice the dimen-
sion accounting for real and imaginary parts (Carrillo, McEwen &
Wiaux 2013).

Proximal splitting methods proceed by splitting the contribution
of the functions f1(x), . . . , fK (x) individually so as to yield an
easily implementable algorithm. They are called proximal because
each non-smooth function in (2) is incorporated in the minimization
via its proximity operator (Combettes & Pesquet 2011). Let f be a
convex lower semicontinuous function from R

N to R, then the
proximity operator of f is defined as

proxf (x) � arg min
z∈RN

f (z) + 1

2
‖x − z‖2

2. (3)

In the case of indicator functions of convex sets, the proximity
operator is the projection operator on to the set. Most proximal
splitting algorithms reach a solution to (2) by alternately applying
the proximity operator associated with each function. For exam-
ple, in the case that all functions in (2) are indicator functions, the
algorithm reduces to the classical projection on to convex sets al-
gorithm (Boyd & Vandenberghe 2004), which performs alternate
projections to reach the solution. An important feature of proximal
splitting methods is that they offer a powerful framework for solving
convex problems in terms of speed and scalability of the techniques
to very high dimensions. See Combettes & Pesquet (2011) for a re-
view of proximal splitting methods and their applications in signal
and image processing. The reader is also referred to Carrillo et al.
(2013) for a description of proximal splitting algorithms and their
use in radio-interferometric imaging.

3 DATA MO D E L A N D T E N S O R FO R M U L AT I O N

For the sake of simplicity, we adopt a discrete setting where the in-
tensity image of interest is represented by the real and positive vec-
tor x ∈ R

N
+ with components xi. Its 2D discrete Fourier transform

is denoted by x̂ ∈ C
N with components x̂i . By abuse of notation,

we denote x̂−i the component of x̂ at the opposite spatial frequency
to that associated with x̂i . Signal reality implies x̂−i = x̂∗

i , where ∗

stands for complex conjugation.
The optical interferometry inverse problem is simplified con-

sidering a generic discrete measurement setting where the closure

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/437/3/2083/1022072 by guest on 14 July 2020



Tensor optimization for optical interferometry 2085

constraint is relaxed and optical-interferometric measurements take
the generic form of a triple product of Fourier coefficients of the
image: x̂i x̂j x̂k . Power spectrum measurements follow with j = −i,
and k = 0 (x̂0 stands for the Fourier coefficient at zero frequency),
and explicit bispectrum measurements would follow from the con-
straint that the spatial frequencies associated with x̂i , x̂j and x̂k

sum to zero. In this context, measurements are performed on
the frequencies of a discrete grid in the Fourier plane, the so-
called frequels. In a real scenario, the Fourier transform should
be evaluated at (non-equispaced) continuous frequencies (Carrillo
et al. 2013). We write the measurement equation in compact
form as

y = V(x) + n, (4)

where V is a non-linear operator providing an undersampled set
of triple products of Fourier coefficients of x. The measurement
vector y ∈ C

M , with components ya (1 ≤ a ≤ M), is assumed to
be affected by a simple noise vector n ∈ C

M with independent
identically distributed (i.i.d.) Gaussian components na. The num-
ber of measurements is typically smaller than the signal dimension:
M < N. Finally, we assume that the total flux is measured indepen-
dently and consider a normalized signal such that

∑
i xi = x̂0 = 1.

This flux normalization is approximately enforced by adding the
data point x̂3

0 = 1.
In what follows, we show how to bring the linearity of the mea-

surement scheme by lifting the image model from a vector to a
tensor formulation. We start by reviewing some tensor definitions
and notations. First, the order (or number of dimensions, ways or
modes) of a tensor X ∈ C

N1×···×Nd with components Xi1,...,id is the
number d of the indices characterizing its components. For the sake
of simplicity, we will present the formulation only for tensors of
order 3. A three-way tensor X ∈ C

N1×N2×N3 is rank-1 if it can be
written as the outer product of three vectors, i.e. X = a ◦ b ◦ c,
or component-wise Xijk = aibj ck . Secondly, the rank of a tensor,
rank(X ), is defined as the smallest number of rank-1 tensors that
generate X as their sum. In other words, if X can be expressed
as X = ∑R

r=1 ar ◦ br ◦ cr , then rank(X ) ≤ R. The notion of rank
when applied to a tensor is analogous to the matrix rank though
most of the common properties of the latter do not hold when deal-
ing with objects of a dimension higher than 2. One of the main
differences is that there is no algorithm to compute the rank of a
given tensor. In fact, the problem is Non-deterministic Polynomial-
time hard (NP-hard) (Hastad 1990). The well-known method to
find a rank-k approximation of a matrix through the largest k val-
ues of its singular value decomposition (Stewart 1992) does not
apply or have an equivalent for the case of high-dimension ten-
sors. Thirdly, matricization is the process of transforming a tensor
into a matrix. The mode-n matricization of a tensor X is denoted
by X(n) and results from unfolding all its modes but the mode
n into the rows of a matrix. The n-rank of a tensor follows as
n-rank(X ) = (rank(X(1)), rank(X(2)), rank(X(3))). In contrast to the
rank function, it is easier to handle, since the problem is reduced
to calculations with matrices which are already well-known ob-
jects with nice properties. The reader can refer to the review from
Kolda & Bader (2009) for a more detailed explanation on different
notions of tensor rank and their associated decomposition meth-
ods. Finally, a tensor is called cubical if every mode has the same
size, i.e. X ∈ R

N×N×N . A cubical tensor X is called supersymmet-
ric if its entries are invariant under permutation of their indices:
Xijk = Xikj = Xjik = Xjki = Xkij = Xkji .

The measurement model (4) can be recast as the following lin-
ear model for the real and positive supersymmetric rank-1 order-3
tensor X = x ◦ x ◦ x ∈ R

N×N×N
+ :

y = T (X ) + n, (5)

where the linear operator T consists of performing a 2D discrete
Fourier transform along each of the three dimensions, identified by
an operator F , followed by a selection and vectorization operator
M providing variable-density undersampling in this 6D Fourier
space: T = MF . The unit flux measurement is also included in
the mask as a measurement on the ‘triple-zero frequency’. Note
that this formulation is a generalization of the PhaseLift approach
for the well-known phase retrieval problem (Candès, Strohmer &
Voroninski 2011). In that framework, quadratic measurements of
the form | 〈x, ai 〉 |2 for given projection vectors ai are seen as linear
measurements on the rank-1 matrix X = xx† representing the outer
product of the signal with itself († stands for the conjugate-transpose
operation).

We note, however, that the rank-1 and supersymmetry properties
are not explicitly built in in the tensor formulation (5), which thereby
presents a drastically increased dimensionality, N3, of the unknown
X compared to the original x of size N in (4). In the following
sections, we discuss our two different regularization schemes for
tensor recovery. We first study a non-convex AM approach where
the rank-1 constraint is built in, and subsequently move to a convex
NM scheme with built-in supersymmetry.

4 R A N K - 1 A LT E R NAT E M I N I M I Z AT I O N

4.1 Algorithm formulation

We consider the following explicit rank-1 formulation of (5), where
supersymmetry is relaxed:

y = T (u1 ◦ u2 ◦ u3) + n. (6)

The measurements can now be understood as an undersampled set of
products of Fourier coefficients of u1, u2 and u3, thus bringing back
non-linearity. We consider the following non-convex minimization
problem for tensor recovery:

min
u1,u2,u3∈R

N+
‖T (u1 ◦ u2 ◦ u3) − y‖2

2. (7)

A priori this problem seems to be non-linear and non-convex as the
initial problem (4). Thanks to the non-supersymmetric relaxation
though, an AM algorithm can be designed, solving sequentially for
each variable (u1, u2 or u3) while keeping the other two fixed, and
iterating until convergence. At each iteration, the three linear and
convex subproblems

min
up∈R

N+
‖T(uqus )u p − y‖2

2, (8)

are therefore solved sequentially for 1 ≤ p �= q �= s ≤ 3, where the
linear operators T(uqus ) are defined by T(uqus )up ≡ T (u p ◦ uq ◦ us).
In each subproblem, the linear operator is computed using the values
of the fixed variables at the current step. The final AM algorithm is
depicted in Algorithm 1. The algorithm is initialized with the same
random vector for each of the three subproblems. The algorithm is
stopped when the relative variation between the objective function
in (7) evaluated at successive solutions is smaller than some prede-
fined bound or after the maximum number of iterations allowed is
reached. At convergence, the tensor solution takes the form of three
vectors u1, u2 and u3. We have no guarantee that the three solution
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vectors are identical and heuristically choose the final solution to
be their mean, as shown in step 8 of Algorithm 1.3

Algorithm 1 AM algorithm

1: Initialize k = 1, u1
(0), u2

(0), u3
(0) ∈ R

N .
2: while not converged do
3: u1

(k) = arg minu1 ‖T(u2
(k−1)u3

(k−1))u1 − y‖2
2.

4: u2
(k) = arg minu2 ‖T(u1

(k)u3
(k−1))u2 − y‖2

2.
5: u3

(k) = arg minu3 ‖T(u1
(k)u2

(k))u3 − y‖2
2.

6: k ← k + 1
7: end while
8: xAM = 1

3 (u1
(k) + u2

(k) + u3
(k))

9: return xAM

4.2 Optimization details

To solve each of the subproblems in Algorithm 1 (steps 3–5),
we resort to a forward–backward (projected gradient) algorithm
(Combettes & Pesquet 2011). The forward–backward algorithm
solves (8) using a two-step procedure: a gradient descent step (for-
ward step) to minimize the quadratic function in (8) and a projection
step (backward step) to bring back the current update to the con-
straint set. The algorithm uses the following recursion:

up
(t+1) = proxiC

(
up

(t) + μ(t)
p T†

(uqus )

(
y − T(uqus )u p

(t)
))

, (9)

where t denotes the iteration variable, C = R
N
+ and μ(t) is a vari-

able step size that controls the gradient descent update. The step
size is adapted using a backtracking line-search procedure (Beck &
Teboulle 2009). The proximity operator proxiC

is nothing but the
projector on to the positive orthant R

N
+ , i.e. setting the imaginary

part and the negative values of the real part to zero (Boyd & Van-
denberghe 2004).

The memory requirement to solve this minimization problem is
dominated by the storage of the three vectors, which is of size
O(N ). In terms of computation time, the algorithm is dominated at
each iteration by the application of the operator T which computes
three 2D fast Fourier transforms of size N, with an asymptotic
complexity of order O(N log N ). This approach is computationally
efficient. In contrast with the state-of-the-art approaches such as
MIRA and WISARD, it brings convexity to the subproblems. However,
the global problem remains non-convex and the solution may still
depend on the initialization. One can easily identify convergence
to a local minimum through large residual values of the objective
function. With the aim to mitigate the dependence on initialization,
and as suggested by Haldar & Hernando (2009), we propose to
run the algorithm nri times with random initializations, choosing a
posteriori the solution with a minimum objective function value.

3 Note that Attouch et al. (2010) prove that this AM approach converges
to a critical point of the objective function (7), provided that terms of the
form γ ‖up − ūp‖2

2 controlling the distance between the current unknown
up with respect to its value at the previous iteration ūp are added to the
objective function in (8), for any γ > 0. Simulations in the context of the
setting described in Section 6 show that the algorithm converges to the same
solution for γ �= 0 and γ = 0. Other simulations also show that starting
the minimization of the three variables with the same random initial point
leads to very similar solutions for the three vectors, or for their mean, both
in terms of signal-to-noise ratio and in terms of visual quality.

5 SUPERSYMMETRI C NUCLEAR
M I N I M I Z AT I O N

5.1 Algorithm formulation

Tensor supersymmetry can be embedded in various ways. One ap-
proach is to formulate the inverse problem (5) only for the subset
of variables Xijk with i ≤ j ≤ k. The collection of these values
defines the ‘subtensor’ Xs, which can be related to X by an op-
erator R replicating tensor components over all permutations for
each triplet (i, j, k): X = R(Xs). The inverse problem would thus
read y = [T R](Xs) + n. We adopt an alternative and equivalent ap-
proach consisting of substituting the original measurement vector
y by its replicated version R( y), and using a symmetrized ver-
sion Ms of the selection mask, ensuring that all permutations of
a triplet (i, j, k) are assumed to be measured. We will see below
why a symmetrized data vector together with a symmetrized mea-
surement operator represents a sufficient condition to impose the
tensor symmetry at each step of the algorithm in our approach, and
in particular supersymmetry of the solution. The modified inverse
problem thus reads as

ys = Ts(X ) + ns, (10)

with ys = R( y), ns = R(n) and Ts = MsF denoting the sym-
metrized versions of the measurement vector, noise vector and
measurement operator, respectively. Without loss of generality, we
assume that the initial selection operator M contains no redundant
measurements, i.e. i ≤ j ≤ k. This ensures that R is well defined.
Also note that the noise statistics remain unaltered and only concern
the entries before replication.

Low-rankness, reality and positivity will be imposed as regular-
ization priors in the convex minimization problem to be defined.
As pointed out, the rank of a tensor is difficult to handle since
the problem of finding rank(X ) is NP-hard. Computing the rank
of different matricizations of the tensor is an easier task. The un-
foldings of a rank-1 tensor are actually rank-1 matrices, so that a
low-n-rank constraint can be used as a proxy for low rankness. The
rank of a matrix is, however, a non-convex function. The nuclear
norm, defined as the �1 norm of its singular values, is a well-
known convex relaxation of the rank function that was recently pro-
moted in matrix recovery theory (Candès & Recht 2009). Building
on those results, Gandy, Recht & Yamada (2011) tackle the low-n-
rank tensor recovery problem through the minimization of the sum
of the nuclear norms of the mode-n matricizations X(n) for all n. In
the supersymmetric case, the mode-n matricizations are all identi-
cal and denoted by X(n) = U(X ) ∈ C

N×N2
, where U stands for the

unfolding operator. We propose here to exploit the symmetry of
the tensor under scrutiny, together with the signal normalization, to
promote a computationally more efficient low-rank prior. Relying
on these properties, we note that summation over one index of a
tensor of the form x ◦ x ◦ x with

∑
ixi = 1 leads to the order-2

tensor x ◦ x, which is real, positive, symmetric, as well as rank-1
and positive-semidefinite. We define C as the operator performing
the summation over one dimension. Once more supersymmetry en-
sures that the resulting matrix is independent of the choice of the
dimension along which components are summed up: C(X ) ∈ C

N×N

with [C(X )]ij = ∑
k Xijk . A low-rank constraint on C(X ) will be

promoted, through a nuclear norm minimization, as a convex proxy
for the low rankness of X . Positive-semidefiniteness of C(X ), i.e.
the positivity of the eigenvalues, which are then identical to the
singular values, may also be explicitly added as a convex prior, de-
noted by C(X ) � 0, together with the convex reality and positivity
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constraints of X : X ∈ R
N×N×N
+ . This summation approach is a pri-

ori computationally significantly more efficient, given the reduced
matrix size of C(X ) compared to that of the unfolded matrix U(X ).

The resulting convex nuclear norm minimization problem (NM)
for X thus reads as

min
X∈S

‖C(X )‖∗ subject to ‖ ys − Ts(X )‖2 ≤ ε, (11)

where S = S1 ∩ S2, with S1 = R
N×N×N
+ and S2 = {X | C(X ) � 0}.

Recalling that the measurements y are assumed to be corrupted
with simple i.i.d. complex Gaussian noise with variance σ 2

n /2 on
real and imaginary parts, the residual estimator ‖ y − T (X )‖2

2 fol-
lows a χ2 distribution with 2M degrees of freedom, with expec-
tation 2M and standard deviation (4M)1/2. For a large number of
degrees of freedom, the distribution is extremely peaked around
its expectation value. This fact is related to the well-known phe-
nomenon of the concentration of measure (Carrillo et al. 2012). The
value ε2

0 = (2M + 4
√

M)σ 2
n /2, i.e. 2 standard deviations above the

expectation, represents a high percentile of the distribution (in prac-
tice, extremely close to 2M), and consequently a likely bound for
‖n‖2

2. An equivalent bound for the symmetrized residual noise term
‖ ys − Ts(X )‖2

2 may simply be inferred as ε2 � αε2
0 , where α is

simply the ratio of the number of components in ys to the number
of components in y. We take the value α = 6 as the relative number
of (i, j, k) triplets with repeated indices in the mask is very small.
Note that this last consideration only arises from the discrete setting
adopted.

Once the tensor solutionXNM is recovered, the problem of extract-
ing the sought signal xNM remains. If the tensor solution was actually
a real, positive, rank-1 supersymmetric tensor whose elements sum
up to unity, the retrieval of xNM could be done in different ways,
such as directly extracting the first eigenvector of matrix C(XNM) or
simply performing a sum over two dimensions

∑
jk[XNM]ijk . The

NM approach, however, does not guarantee that the final solution is
indeed rank-1. We therefore resort to the generic algorithm proposed
by Kofidis & Regalia (2002) to find the best rank-1 supersymmetric
approximation P1(XNM) of a supersymmetric tensor XNM in the
least-squares sense. This algorithm is a generalization for the tensor
case of the power method applied to find the dominant eigenvector
of matrices (Golub & Loan 1989). It boils down to determining
a unitary vector x and a scalar λ, such that ‖X − λx ◦ x ◦ x‖ is
minimized, where ‖ · ‖ indicates simply the sum of the square of
the components of the tensor. We denote the resulting solution as

xNM = [EP1](XNM), (12)

where E formally represents the operator retrieving from a super-
symmetric rank-1 order-3 tensor its underpinning vector. Note that
this vector extraction problem is not convex.4

The final NM algorithm is shown in Algorithm 2. To solve
the complex optimization problem in (11) we use the Douglas–
Rachford splitting algorithm, which is tailored to solve problems of
the form in (2) with K = 2. The problem in (11) can be reformulated
as in (2) by setting f1(X ) = ‖C(X )‖∗ + iS(X ) and f2(x) = iCε (X ),
where Cε = {X ∈ C

N×N×N : ‖ ys − Ts(X )‖2 ≤ ε}. The main recur-
sion of the Douglas–Rachford algorithm is detailed in steps 3 and

4 Note that Kofidis & Regalia (2002) provide a proof of convergence of
their algorithm for even-order tensors only. Simulations in the context of the
setting described in Section 6 show that this procedure systematically con-
verges for our order-3 tensors, and provides significantly better results than
a heuristic procedure based on extracting the first eigenvector of C(XNM) or
performing a sum over two dimensions

∑
jk[XNM]ijk .

4 of Algorithm 2, where ν > 0 and τ k ∈ (0, 2) are convergence
parameters. The sequence {X (k)} generated by the recursion in
Algorithm 2 converges to a solution of the problem (11)
(Combettes & Pesquet 2011). The algorithm is stopped
when the relative variation between successive solutions,∥∥X (k) − X (k−1)

∥∥ /
∥∥X (k−1)

∥∥, is smaller than some bound ξ ∈ (0,
1), or after the maximum number of iterations allowed, Tmax, is
reached. In our implementation, we use the values τ k = 1, ∀t,
ξ = 10−3 and ν = 10−1. In the following subsection, we detail the
computation of the proximity operators for f1 and f2.

Algorithm 2 NM algorithm

1: Initialize k = 1, X (1) ∈ R
N×N×N , τ k ∈ (0, 2) and ν > 0.

2: while not converged do
3: Z (k) = proxνf2

(
X (k)

)
.

4: X (k+1) = X (k) + τk

(
proxνf1

(
2Z (k) − X (k)

) − Z (k)
)
.

5: k ← k + 1
6: end while
7: xNM = [EP1](X (k)).
8: return xNM

5.2 Optimization details

The computation of the proximal operator of f1, which
includes the nuclear norm prior, as well as the positive-
semidefiniteness, reality and positivity constraints, is it-
self a complicated optimization problem. Therefore,
the dual forward–backward algorithm (Combettes &
Pesquet 2011) is used at each iteration of the Douglas–Rachford re-
cursion to compute the proximal operator of f1. We can decompose
f1 as f1(X ) = g1(X ) + g2(X ), where g1(X ) = ‖C(X )‖∗ + iS1 (X )
and g2(X ) = iS2 (X ). Let Q(0) ∈ C

N×N and S (0) ∈ C
N×N×N be

the all-zero matrix and the all-zero tensor, respectively. The dual
forward–backward algorithm uses the following recursion to
compute proxνf1

(X ):

Q(t+1) = (
I − proxνg1

) (
Q(t) + γtC

(S (t)
))

S (t+1) = proxνg2

(
X − C† (

Q(t+1))) , (13)

where I ∈ R
N×N is the identity operator and γ t ∈ (0, 2) is a step

size. The sequence {S (t)} converges linearly to proxνf1
(X ).

The computations of proxνg1
and proxνg2

are very simple opera-
tions. We start by computing proxνg1

. Let Q ∈ C
N×N be a symmet-

ric matrix and suppose it has an eigenvalue decomposition U�U†,
where U is the orthogonal matrix of eigenvectors and � = diag(λ1,
. . . , λN) is the diagonal matrix with the eigenvalues. Then, the
proximity operator of νg1 is computed as:

proxνg1
(Q) = U�̄νU

†, (14)

where �̄ν = diag((λ1 − ν)+, . . . , (λN − ν)+) and (a)+ = max (0,
a) denotes the positive part of a. The operator �̄ν performs a soft
thresholding on the eigenvalues of Q, to minimize the nuclear norm,
and also preserves only the positive eigenvalues, to project on to
the set of positive-semidefinite matrices (Vandenberghe & Boyd
1996; Cai, Candès & Shen 2010). The proximal operator of νg2 is
the projector on to the set of positive tensors in R

N×N×N which is
computed by setting the imaginary part and the negative values of
the real part of the input tensor to zero, i.e.

proxνg2
(S) = {(Re(S i,j ,k))+}1≤i,j ,k≤N, (15)
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Figure 1. Example of a variable-density-sampling pattern in the discrete
6D Fourier space of X of dimension N3, for an N = 162 image size and an
undersampling regime of M/N = 0.75.

where Re( · ) denotes the real part of a complex number (Boyd &
Vandenberghe 2004).

The proximal operator of f2 is the projector operator on to the set
Cε , which is computed as

proxνf2
(X ) = X + T †

s (Pε (Ts(X ) − ys) − Ts(X ) + ys) , (16)

where Pε(r) = min(1, ε/‖r‖2)r .
All the operations done in the computation of the proximal op-

erators of f1 and f2 preserve tensor symmetry, provided that the
symmetrized version Ts of the measurement operator and a sym-
metrized data vector are used. These two are sufficient conditions
to impose supersymmetry at each iteration of Algorithm 2, and
consequently for the final tensor solution.

The memory requirement to solve this NM problem is dominated
by the storage of the tensor, which is of size O(N3). In terms of
computation time, the algorithm is dominated at each iteration by
the application of the operatorTs which computes N2 2D fast Fourier
transforms of size N along each of the three dimensions, with an
asymptotic complexity of O(N3 log N ). These orders of magnitude
obviously stand in stark contrast with those for the AM approach.

While the NM approach is much heavier than the AM approach
in terms of memory requirements and computation complexity due
to the drastically increased dimensionality of the unknown, the
underlying convexity at the tensor level ensures essential properties
of convergence to a global minimum of the objective function and
independence of initialization, justifying a comparative analysis.

6 SI M U L ATI O N S A N D R E S U LTS

In this section, we evaluate the performance of the NM and AM
algorithms through numerical simulations. Our optimization code5

was implemented in MATLAB and run on a standard 2.4 GHz Intel
Xeon processor. Given the expected large memory requirements
and long reconstructions time for the NM formulation, we consider
small-size images with N = 162 = 256 for which the image vector
occupies of the order of 4 KB in double precision, while the size-N3

tensor variable already takes of the order of 100 MB. The memory
requirement for the simple tensor variable would already rise to the
order of 8 GB for a 322 = 1024 image size.

For what the measurement setting is concerned, we assume ran-
dom variable-density sampling in the 6D Fourier space, where low
spatial frequencies are more likely to be sampled than high fre-
quencies. In practice, the sampling pattern is obtained by sampling
frequels independently along each of the three tensor dimensions
from a bidimensional random Gaussian profile in the corresponding
fourier plane, associating the originally continuous random points
with the nearest discrete frequency. The sampling is carried out

5 Code and test data are available at https://github.com/basp-group/co-oi

Figure 2. Reconstruction quality and timing comparison between the NM
approach defined in (11) with the equivalent minimization problem where
the summation operator C is replaced by the unfolding operator U . Tests
done on N = 162 images with 32 randomly located spikes and ISNR = 30 dB,
for undersampling ratios M/N in the range [0.25, 1]. The SNR curves (top
panel) represent average values over 10 simulations and corresponding 1-
standard-deviation error bars. The timing curves (bottom panel) represent
average values over 10 simulations and minimum–maximum error bars.

progressively, noting that if a product is sampled twice the result
is discarded and repeating this procedure until M samples are ob-
tained. Again this consideration only arises from the discrete setting
adopted. Fig. 1 presents a typical sampling pattern.

In all experiments we define the input signal-to-noise ra-
tio as ISNR = −10 log(σ 2

n /e2
y), where e2

y = (1/M)
∑M

a |ya |2.
The signal-to-noise ratio of a reconstruction x̄ is defined as
SNR = −10 log(‖x̄ − x‖2/‖x‖2). With this definition, the higher
the SNR, the closer the recovered signal x̄ is from the original x.

As a preliminary experiment, we provide a comparison of the per-
formance of the NM approach defined in (11) with the equivalent
minimization problem where the summation operator C is replaced
by the unfolding operator U in the nuclear norm and where the
positive-semidefiniteness constraint is discarded as it does not ap-
ply for non-square matrices. Both algorithms were tested on images
constructed from 32 random spikes, with ISNR = 30 dB. The pos-
itive spike values are taken uniformly at random and normalized
to get unit flux, while positions are drawn at random from a Gaus-
sian profile centred on the image. The graphs in Fig. 2 represent
the SNR and timing curves as a function of undersampling in the
range [0.25, 1]. A total of 10 simulations per point are performed,
varying the signal, as well as the sampling and noise realizations.
Both approaches provide similar reconstruction qualities, with a
smaller variability of the component summation approach, which
is also slightly superior at low undersamplings. The component
summation approach, running in the order of 103 s, is, as expected,
significantly faster than the unfolding approach, running on average
more than 10 times more slowly in the range [0.5, 1]. We therefore
discard further consideration of the latter.

Having validated our NM approach in comparison with alter-
native state-of-the-art low-tensor-rank approaches, we compare its
performance with that of the AM scheme. First, we evaluate the
reconstruction quality on images constructed from 32 and 64 ran-
domly located spikes. The AM approach is also evaluated for vary-
ing reinitialization numbers: nri ∈ {1, 5, 10}. The graphs in Fig. 3
represent the SNR curves as a function of undersampling in the
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Figure 3. Reconstruction quality results for synthetic images of size
N = 162 with randomly distributed spikes and ISNR = 30 dB for undersam-
pling ratios M/N in the range [0.25, 1]. Top panel: 64 spikes. Bottom panel:
32 spikes. The curves represent the average SNR values over multiple simu-
lations (50 for AM and 10 for NM) and corresponding 1-standard-deviation
error bars.

range [0.25, 1]. A total of 50 and 10 simulations per point are per-
formed for AM and NM, respectively, varying the signal, as well
as the sampling and noise realizations. The results show a clear su-
periority of AM relative to NM in terms of average reconstruction
quality. Both approaches exhibit non-negligible variability. The de-
pendency of the non-convex AM approach on initialization is clearly
illustrated by the nri = 1 and 5 curves, confirming the importance of
the multiple reinitializations. We also observe a saturation between
nri = 5 and 10. As expected from asymptotic complexity consider-
ations, AM runs significantly faster than NM, with reconstructions
in the order of 102 s for nri = 5, approximately 10 times faster than
NM.

Secondly, simulations are performed in an identical setting on
realistic images representing low-resolution versions of the Eta
Carinae star system, of a simulated rapidly rotating star, and of the
M51 galaxy.6 The multiple simulations per point are performed by
varying the sampling and noise realizations. The graphs in Figs 4, 5
and 6 present the SNR curves as a function of undersampling in
the range [0.25, 1] (AM only reported for nri = 5), confirming
the previous results on random images. Reconstructed images are
also reported, providing visual confirmation of the superiority of
AM relative to NM over the full undersampling range. In both ap-
proaches, the visual quality difference between the reconstructions
with, respectively, best and median SNR values illustrates the vari-

6 Images from Renard et al. (2011) downloaded from the JMMC service at
apps.jmmc.fr/oidata/shared/srenard/

Figure 4. Eta Carinae star system illustration (N = 162, ISNR = 30 dB).
Top row: original image and SNR graph. The curves represent the average
SNR values over multiple simulations (50 for AM and 10 for NM) and
corresponding 1-standard-deviation error bars. Second and third rows: NM
(second) and AM for nri = 5 (third) reconstructions with best SNR for M = N
(left-hand panel), M = 0.75N (middle panel) and M = 0.25N (right-hand
panel). Fourth and bottom rows: NM (fourth) and AM for nri = 5 (bottom)
reconstructions with median SNR for M = N (left-hand panel), M = 0.75N
(middle panel) and M = 0.25N (right-hand panel).

ability of the reconstruction quality. The NM approach suffers from
a significantly larger visual degradation of the median SNR value at
M = 0.25N than AM. This degradation appears at larger sampling
ratios for M51.

Let us highlight that, while only five reinitializations are nec-
essary in the AM approach in low dimension to reach saturation,
additional experimental tests on random signals of size N = 642

show that nri = 20 or larger is necessary for a meaningful re-
construction, thereby emphasizing the convergence problem due
to non-convexity in higher dimension. Also, the computation time
scales linearly with nri and can rapidly blow up in this context.

7 C O N C L U S I O N

We have proposed a novel linear formulation of the optical-
interferometric imaging problem in terms of the supersymmetric
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Figure 5. Rapidly rotating star illustration (N = 162, ISNR = 30 dB).
Top row: original image and SNR graph. The curves represent the average
SNR values over multiple simulations (50 for AM and 10 for NM) and
corresponding 1-standard-deviation error bars. Second and third rows: NM
(second) and AM for nri = 5 (third) reconstructions with best SNR for M = N
(left-hand panel), M = 0.75N (middle panel) and M = 0.25N (right-hand
panel). Fourth and bottom rows: NM (fourth) and AM for nri = 5 (bottom)
reconstructions with median SNR for M = N (left-hand panel), M = 0.75N
(middle panel) and M = 0.25N (right-hand panel).

rank-1 order-3 tensor formed by the tensor product of the vec-
tor representing the image sought with itself. In this context, we
proposed a linear convex approach for tensor recovery with built-
in supersymmetry, and regularizing the inverse problem through
nuclear norm minimization. We have also studied a non-linear,
non-convex, AM approach where supersymmetry is relaxed while
the rank-1 constraint is built in. While the former approach is
associated with drastically increased dimensionality of the un-
known, the underlying convexity ensures essential properties of
convergence to a global minimum of the objective function and
independence of initialization, justifying its analysis. Simulation
results in low dimension show that the AM scheme provides
significantly superior imaging quality than the NM approach, in
addition to be much lighter in its memory requirements and com-

Figure 6. M51 galaxy illustration (N = 162, ISNR = 30 dB). Top row:
original image and SNR graph. The curves represent the average SNR values
over multiple simulations (50 for AM and 10 for NM) and corresponding
1-standard-deviation error bars. Second and third rows: NM (second) and
AM for nri = 5 (third) reconstructions with best SNR for M = N (left-hand
panel), M = 0.75N (middle panel) and M = 0.25N (right-hand panel). Fourth
and bottom rows: NM (fourth) and AM for nri = 5 (bottom) reconstructions
with median SNR for M = N (left-hand panel), M = 0.75N (middle panel)
and M = 0.25N (right-hand panel).

putation complexity. Another set of results in higher dimension,
however, suggest that the number of necessary reinitializations for
the non-convex AM scheme rapidly increases with N. This state
of things clearly calls for further consideration of a purely convex
approach.

Future work should address sparsity constraints along the lines of
the recent evolutions brought about in radio interferometry (Wiaux
et al. 2009a,b; Carrillo et al. 2012) and in optical interferome-
try (Thiébaut & Giovanelli 2010; Renard et al. 2011). Our ap-
proaches should also be studied in a more realistic setting with
exact power spectrum and bispectrum measurements in the con-
tinuous domain and for different noise statistics, and explicitly
compared to existing MIRA and WISARD implementations. Software
and hardware optimization will also be key to handle large-size
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images, e.g. using graphics processing units (Baron & Kloppen-
borg 2010).
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Renard S., Thiébaut E., Malbet F., 2011, A&A, 533, A64
Stewart G. W., 1992, SIAM Rev., 35, 551
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