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We propose a Riesz transform approach to the demodulation of digital holograms. The Riesz transform is a higher-
dimensional extension of the Hilbert transform and is steerable to a desired orientation. Accurate demodulation of
the hologram requires a reliable methodology by which quadrature-phase functions (or simply, quadratures) can
be constructed. The Riesz transform, by itself, does not yield quadratures. However, one can start with the Riesz
transform and construct the so-called vortex operator by employing the notion of quasi-eigenfunctions, and this
approach results in accurate quadratures. The key advantage of using the vortex operator is that it effectively
handles nonplanar fringes (interference patterns) and has the ability to compensate for the local orientation. There-
fore, this method results in aberration-free holographic imaging even in the case when the wavefronts are not
planar. We calibrate the method by estimating the orientation from a reference hologram, measured with an empty
field of view. Demodulation results on synthesized planar as well as nonplanar fringe patterns show that the ac-
curacy of demodulation is high. We also perform validation on real experimental measurements of Caenorhabditis
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elegans acquired with a digital holographic microscope.
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1. INTRODUCTION

The Hilbert transform is a powerful tool in modulation and
communication theory [1]. It is central to the notion of Gabor’s
analytic signal formalism [2] and plays a vital role in optics as
well as signal processing [3,4]. The Hilbert transform is linear,
shift invariant, and unitary. It is associated with an antisym-
metric phase response: for positive frequencies, it retards
the phase by 7, and for negative frequencies, it advances by
7. The magnitude response is constant across all frequencies.
These properties allow for mapping cosine functions into
sines—a feature that has been extensively used for generating
quadrature-phase signals and thereby for performing demodu-
lation of amplitude and phase/frequency-modulated signals.
Several higher-dimensional extensions of the Hilbert trans-
form have been proposed, which can be broadly grouped as
follows depending on the specific properties of the associated
kernel: (i) steerable extension based on the Riesz transform [5]
and (ii) separable extensions based on the quarter-plane and
half-plane geometries [6], which are not rotation covariant.
Thanks to its steerability property [7,8], the Riesz transform
can perform a Hilbert-transform-like analysis along any desired
orientation [9], while the separable extensions are biased to-
ward the horizontal or vertical directions. There is also another
version of the analytic signal—due to Biillow and Sommer—
that starts with separable Hilbert-transform constituents and
combines them into four quadrature components using sophis-
ticated quaternion algebra [10]. In this paper, we consider the
steerable extension, namely, the Riesz transform, and then con-
sider its complexified version, which we shall refer to as the
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complex Riesz transform. The complex Riesz transform was
introduced by Larkin et al. to the optics community under
the name of spiral-phase quadrature transform [11,12]. In the
same year, Felsberg and Sommer introduced the Riesz trans-
form to the signal processing community and also defined the
monogenic signal as a two-dimensional (2D) counterpart of the
analytic signal [13]. The Riesz transform is a vector operator in
the sense that it takes a function and maps it into a vector of
functions, whereas the quarter- and half-plane Hilbert trans-
forms are scalar operators (they map functions into functions).

For the application part, we consider the fringe demodula-
tion problem that arises in the context of digital holographic
microscopy (DHM), which is a coherent imaging modality suc-
cessfully used for biomedical imaging applications. The key
idea behind digital holography is to digitally record a modulated
wavefront. Its main advantage is to give access to the phase of
the complex wave field, which cannot be measured directly
otherwise. During reconstruction, the holograms are first de-
modulated and then brought into focus by using numerical tech-
niques such as the Fresnel wave-propagation technique. The
standard Fourier-based approach assumes a globally planar
reference wave so that demodulation can be performed without
causing distortions simply by performing frequency-domain
translation. It is also necessary to compensate for the curvature
of the reference wave before performing demodulation and
Fresnel propagation. In state-of-the-art hologram reconstruc-
tion techniques, such compensation is performed by fitting a 2D
phase function to a manually selected region of the hologram
[14]. In the absence of phase compensation, the reconstructions
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suffer from severe amplitude and phase distortions. A related
reconstruction approach is that of Liebling et al. [15], who per-
form a local quadratic fit to the hologram and estimate the
object wave using an auxiliary variable method. Their method
consists of solving a system of three linear equations at every
pixel location. Liebling et al. reported their algorithm for planar
reference waves, but it may be suitably extended to handle non-
planar reference waves as well. In a recent publication [16], we
established a link between exact hologram demodulation and
quarter-plane Hilbert transform under certain conditions speci-
fically for the case of planar wavefronts.

The problem that we are interested in solving in this paper
is that of hologram demodulation when the fringes are not
planar. We propose a complex Riesz transform approach
for hologram demodulation as an alternative to the more stan-
dard Fourier algorithms. The complex Riesz transform is a
consistent generalization of the Hilbert transform in higher di-
mensions in the sense that its frequency-domain specification
coincides with that of the Hilbert transform when the number
of dimensions is reduced to one. We show that the one-
dimensional (1D) demodulation ideas based on the Hilbert
transform are transposable to the 2D setup provided that
we can properly estimate the (local) spatial orientation (the
orientation map is essentially a 2D array whose entries are
the angles of local orientation of the fringes at each location)
of the modulating plane wave. One can then deploy the Riesz
transform to compute a directional analog of the Hilbert trans-
form (perpendicular to the wavefront of the modulating wave)
to obtain a directional analytic signal. To implement the
scheme, one needs a calibration step wherein a hologram
is recorded with an empty field of view to get the local orien-
tation and reference phase at each spatial location in the im-
age. The main point is that the scheme remains applicable in
the case when the modulation varies slowly across the field of
view (for example, curved wavefronts) to the extent that it
can be considered to be locally planar. We shall justify the
approach based on a quasi-eigenfunction approximation [17].
Our treatment based on the quasi-eigenfunction approxima-
tion is different from the stationary-phase analysis of Larkin
[12]. Whereas Larkin’s approach is based on the evaluation of
asymptotic integrals, our approach primarily relies on the
approximate local planarity of the fringes, which is a more
realistic condition. Moreover, the asymptotic behavior of
the convolution integral (for example, as the frequency of the
fringe tends to infinity) has limited practical significance.
Since the Riesz transform adapts to the curvature in the
fringes, the requirement of planar fringes is relaxed. There-
fore, this approach also provides for automatic compensation
of aberrations that arise due to curvature mismatch between
the reference and object arms of a holography system. We
note that it is not mandatory to have planar fringes in hologra-
phy, but in order to achieve high-quality imaging, the curva-
ture of the fringes must be taken into account in the
demodulation procedure; otherwise, it would result in phase
aberrations. With the proposed Riesz transform approach,
curvature of the fringes is automatically compensated for.

A. Contributions of the Paper
We next list the contributions of this paper:

e A systematic development of the demodulation algo-
rithm first in 1D and then in 2D. The 1D formalism helps in

Vol. 29, No. 10 / October 2012 / J. Opt. Soc. Am. A 2119

appreciating the properties that a demodulation operator
should possess and guides the design of the 2D operators.

* A quasi-eigenfunction approach to analyze the effect of
the complex Riesz transform on modulated functions. This
development leads to the vortex operator in a natural way.

* A reference hologram method to compute the orienta-
tion of the reference wave using the Riesz transform (the
calibration step).

e The application and evaluation of the proposed Riesz
demodulator on synthesized data as well as on holographic
microscopy data.

B. Organization of the Paper

This work relies on a mix of signal processing and coherent
optics techniques that may not necessarily be known to this
readership. Accordingly, we have tried to make the presenta-
tion as self-contained as possible. The relevant aspects of
hologram recording and reconstruction are presented briefly
in Section 2. The quasi-eigenfunction approximation is pre-
sented in Section 3. We then address the hologram demodula-
tion problem in 1D, primarily for systematic development and
for motivating the developments in the 2D case. We highlight
the properties of the 1D Hilbert transform and show how it
can be applied to compute the quadratures (Sections 4 and 5).
This approach of starting with 1D and then moving to 2D
capitalizes on the similarities and also brings up new issues
related to orientation estimation, which do not exist in 1D.
Another key difference is that the Bedrosian/Nuttall-
Bedrosian theorems, which play a key role in 1D Hilbert
transforms, do not have direct counterparts in 2D. Notwith-
standing this deficiency, we show how 2D quadratures may
be constructed using the Riesz transform (Section 6) and
develop the associated demodulation technique (Section 7).
We also present results on synthesized and experimental
DHM data.

C. Notations

We shall work mainly with 2D functions, which are defined
either in space or in frequency with the associated arguments
being x = (x,y) or @ = (w,, w,), respectively. The Fourier
transform operator is denoted by F. Its definition in 1D or
2D applies depending on the domain of definition of the func-
tions involved. The wave vector is denoted as k = (k,.k,),
where k, and k, are the wavenumbers in the x and y direc-
tions, respectively. The inner product of two index vectors
is defined in the usual sense and is denoted as (-, -); specifi-
cally, (k,x) = k,x + k,y. Two-dimensional sequences are re-
presented using square bracket notation: for example, y;[m]
has the argument m = (m, n).

2. DIGITAL HOLOGRAM RECORDING AND
RECONSTRUCTION

A. Hologram Recording

A hologram is formed as a result of the interference between
two mutually coherent waves—one emanating from the ob-
ject, denoted by o(x), and the other a reference wave r(x).
The interference pattern has a spatial intensity distribution
i(x), which is actually the hologram, given as

i(x) = [r(x) + o(x)|*
= [r@P + 0@ + r*@o) + rx)o (). (1)
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Fig. 1. Off-axis digital holography—recording.

The terms |r(x)|? and |o(x)|? are the intensities of the refer-
ence and object waves, respectively. The hologram #(x) is sui-
tably recorded at the hologram plane. In classical holography,
a photographic plate is used to record the hologram. In state-
of-the-art digital holography systems, a digital acquisition
device such as a charge-coupled device camera placed at
the hologram plane captures the spatial intensity distribution
[18,19]. In off-axis holography, the two waves are separated by
an angle 6, as shown in Fig. 1; this configuration presents
certain advantages for hologram reconstruction [20].

B. Hologram Reconstruction

Consider the reference to be a unit-modulus phase function:
r(x) = @, To reconstruct the hologram, a plane wave u(x)
(illumination wave) is employed to illuminate the hologram,
which creates a field y,(x) given as

Wo(x) = u(x)i(x)
= u(x) + u@)|o(x)> + u(@)r*(x)o(x) + u(x)rx)o*(x).

zero-order terms

imaging terms

@

The zero-order functions modify the amplitude of u(x), but not
its phase, whereas the imaging terms contain the complex
wave-field information. The spatial locations of the three func-
tions are shown in Fig. 2. The off-axis configuration causes a
separation between the imaging terms and the zero order.

Illumination wave
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In digital reconstruction, the wave-propagation mechanism is
replaced by a numerical approximation up to the second
order, which leads to the so-called Fresnel propagation algo-
rithm. In this case, the desired imaging order is first selected
by Fourier filtering (illustrated in Fig. 8 below), which is then
demodulated and Fresnel propagated to bring the complex
wave field into focus.

The demodulation part is relatively easy if there are no op-
tical aberrations and the reference is a plane wave. Optical
aberrations are typically compensated for by using a numer-
ical parametric lens approach, where the aberrated wave field
is multiplied with a suitably defined phase mask [21,22].
Another approach to compensate for aberrations consists
of employing a hologram with an empty field of view, known
as the reference correction hologram (RCH). Such a hologram
contains the phase terms induced by the optical elements of
the system. The aberration-corrected wave field is obtained by
dividing the phase of the complex wave field with that of
the RCH [14].

3. QUASI-EIGENFUNCTION
APPROXIMATION

We know from linear system theory that complex exponentials
are eigenfunctions of linear, shift-invariant (LSI) systems. To
elucidate further, consider an LSI system with a point-spread
function k(x), characterized by its frequency response fz(m).
When excited with the complex exponential /(" the system
produces a response &) jy(@,). Thus, for complex exponen-
tial inputs, the LSI system acts as a complex multiplier—this is
the eigenfunction property. If the input has both frequency and
amplitude modulations, then the eigenfunction property does
not hold. However, one can make an approximation by assum-
ing that the AMs and FMs are mild, that is, by assuming that
their derivatives are of small magnitude over the support of
h. Under this condition, the response of the LSI system to
o(x)e *® is approximately given by o(x)e#®h(V ¢(x)), where
V denotes the 2D gradient operator—this is referred to as the
quasi-eigenfunction approximation (summarized in Fig. 3) and
has been used in analyzing the effect of filtering on frequency-
modulated signals in radio-frequency communication [23] and
for deriving multidimensional energy operators in image pro-
cessing [17]. If ¢(x) = (.. x), then V¢(x) = w,, whereas if
¢(x) = (@, x) + @(x), where ¢(x) is a mild modulation as con-
sidered in this paper, then it becomes necessary to invoke the
quasi-eigenfunction approximation.

4. QUADRATURES IN 1D

We shall briefly recall some key properties of the Hilbert
transform that are important to the developments in this
paper. For a detailed treatment on Hilbert transforms, we
refer the reader to [3,4].

Hologram

Virtual image

J!! Il

i

Real image

Fig. 2. Off-axis digital holography—reconstruction.

(a) eilwe ) h(z) h(w,)el{we®)
(b) a(z)e?™ h(x) W(Vo(x))a(x)e® + ()
Error
Fig. 3. Tlustration of the (a) eigenfunction property and (b) quasi-

eigenfunction approximation for LSI systems. The error e¢(x) can be
bounded in some suitable norm for well-behaved A(x).
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A. Hilbert Transform

Definition: The Hilbert transform H is LSI and is specified by
the transfer function 2(w) = —jsign(w) = —j ﬁ, w€R It is
a unity-gain all-pass filter, associated with the phase
function - sign(w). The impulse response and frequency re-
sponse are shown in Fig. 4. Because of its characteristic fre-
quency response, a Hilbert transformer is also referred to as a
phase shifter in communication theory [1]. By virtue of this
property, it maps cosine functions into sine functions (the
Hilbert-transform operation must be interpreted in the distri-
butional sense for cosines and sines since they do not have
finite energy):

H{cos(w, - +0)}(x) = sin(w.x + 6). 3

For finite-energy functions, the Hilbert transform is a unitary
operator; that is, it preserves energy, or equivalently the L?(R)
norm: [|Hf ()| = [lf@)]l.

Given a finite-energy function f(x), its analytic counterpart
is defined as

Sas(0) =f () + JHf ().

V2 @) + (Hf)? @)

amplitude modulation (AM)
X exp (j tan~! (7;{5)6)) ) (polar form).  (4)

——
phase modulation (PM)

The derivative of the PM is the frequency modulation (FM).
The polar representation is important because it gives rise to
an interpretation of a signal in terms of its AM and FM
constituents. In practice, the phase is computed using the
four-quadrant arc tangent (function atan2 in MATLAB),
which gives angles in the range [z, +7].

B. Product Theorems

Under some conditions, the Hilbert transform of the product
of two functions exhibits certain separability properties. We
recall three product theorems, which are important for 1D
demodulation:

Theorem 1 (Bedrosian [24]). If f(x) and g(x) are two
square-integrable functions such that f(x) has a Fourier spec-
trum band-limited to wy,, and g(x) has a Fourier spectrum that
is zero over |w| < w,, that is, it is a high-pass signal, then
H{fg}(x) =f(@)Hg(x).

Based on a calculation by Nuttall on the accuracy of the
quadrature approximation of the Hilbert transform [25],
Bedrosian gave a generalized version.

! [h(w)] Zh(w)

N i
R i

(a) (b) (©)

Fig. 4. Characterization of the Hilbert transformer: (a) impulse
response, (b) magnitude spectrum, and (c) phase spectrum.
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Theorem 2 (Bedrosian [25]). If f(x) and g(x) are two
square-integrable functions such that the Fourier spectrum
of f(x) vanishes for w < -, and that of g(x) vanishes for
® > w,, then H{fg}(x) = f(x)Hg(x).

An interesting corollary of Theorem 2 follows; it specifies
the conditions under which the Hilbert transform agrees with
the quadrature model.

Corollary 1 (Nuttall-Bedrosian [25]). If the Fourier
spectrum of f(x) = o(x)e*® vanishes for w < -w,, then
H{o(x) cos(wx + ¢(x))} = o(x) sin(w.x + P(x)).

A product theorem related to amplitude-modulated sinu-
soids is stated next. It is an extension of Eq. (3) to amplitude-
modulated cosines, provided that the maximum frequency in
the AM is less than the carrier frequency.

Theorem 3 (Urkowitz [26]). If o(x) is a square-integrable
function band-limited to [0,w,] and , <@, then
H{o(x) cos(w.x + 6)} = o(x) sin(w.x + 6).

5. 1D HOLOGRAM DEMODULATION

It is instructive to first solve the demodulation problem in 1D
as it gives insights into the mechanics of the demodulation
approach. We then develop the 2D demodulation algorithm
analogously.

According to the hologram formation model reviewed in
Subsection 2.A, the 1D hologram is given by

@) =1+ o(@)e I, ®)

where ¢(x) is the instantaneous phase of the reference wave
and the reference is assumed to be normalized, that is,
|r(x)] = 1. To proceed with the demodulation, we consider
two cases: (i) linear phase, ¢(x) = w,x, where we have exact
results; and (ii) generalized phase, ¢(x), where approximate
analysis is carried out. The approximations arise mainly be-
cause product theorems are not applicable to generalized
phase functions.

A. Linear Instantaneous Phase: ¢(x) = w x

In this case, we have f(x) = |1 + o(x)e7**|?, where w, is the
carrier frequency and o(x) is the complex object wave with
spectral support [-w,, w;]. By developing the squares, we get

f(@) =14+ |o@)> + 2Re{o(x)e®"}, (6)

where Re{-} corresponds to the real part. The zero-order term
1+ |o(@)]*> is supported over o € [-(w, + @), (@g + ®)],
whereas the modulated component 2 Re{o(x)e7*"} is sup-
ported over two spectral regions specified together as
[~w, — wy, —@, + ®4]VU[w, — @, ®, + @p]. The spectral occu-
pancy of the various terms is shown in Fig. 5. If o, > 2w, + @y,
then the three spectra do not overlap with each other. Under
this condition, the zero order can be suppressed and the
desired order can be selected by bandpass filtering. Thus,
the function of interest in Eq. (6) is f(x) = 2Re{o(x)e7*"}.
We next perform a calibration experiment with an empty field
of view, that is, o(x) = 1, which results in the measurement

g(x) = 2 4 2 cos(w.x). )

(@)

The constant is suppressed by removing the mean. Suppres-
sing the constant is important because the Hilbert transform
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exhibits singular behavior for constants. Applying the Hilbert-
transform operator to r(x) yields 2 sin(w.x). The complex
reference wave is then obtained as the analytic signal

Tas(X) = 7(x) + JHT(x) = 2070%, (%)

Next, consider the analytic signal of f ():

Sas(@) = F @) +jH @),
= 2Re{o(x)e 7"} + jH{Re{20(x)e7"}},
= 20(x)e 7@ ©)

(Corollary 1 of Theorem 2). From Egs. (8) and (9), we get that

: 10)

which is the object wave encoded in the hologram. It must be
noted that we have not assumed o(x) to be real valued. There-
fore, the demodulation technique is applicable to complex-
valued object waves. This feature makes it attractive and
relevant for holography applications where complex object
waves arise naturally and the phase of the object wave plays
a key role in the reconstruction process. The key properties
aiding demodulation are Eq. (3) and Theorem 3, which are
central to the construction of quadratures. The in-phase and
quadrature components are taken together to form the
complex signal, which is required in the final stage of
demodulation [Eq. (10)].

B. Generalized Phase

If the Fourier spectrum of o(x)e/#® vanishes for o < -w,,
then the Nuttall-Bedrosian property applies (Corollary 1).
Since the quadrature in this case matches exactly that given
by the Hilbert transform, exact demodulation is possible by
following the procedure described in Subsection 5.A. Other-
wise, it is possible to generate only approximate quadratures.
This aspect is discussed next.

Let us assume that o(x) is a smooth function with a rate of
variation smaller than that of the carrier frequency w, and that
the phase function ¢(x) is of the form ¢(x) = w.x + (),
where @(x) is the nonlinear phase variation about the carrier
frequency such that |d‘f7(x)| < @,. Under these assumptions,
the function o(x)eé”®@ can be locally approximated as a

Bandpass filter

T'[_' """"" H

—We —(wa =+ wb) 0 (wa + wb) We

Fig. 5. (Color online) (a) Spectrum of o(x) and (b) spectra of various
functions in Eq. (6). The bandpass filter is used to select the desired
imaging order.
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sinusoid. Invoking the quasi-eigenfunction approximation,
we write

d(gg))o(x)ei(wcxﬂﬂ(x))

H{o(x)e/@rto@)) ~ h(a) +
= —jo(x)e/@a+o@) (1D

Similarly,

H{o(x)e‘f(“’c”’*‘/'(‘”)’} ~ fL(—wc — _dgo(x))O(x)e—j(uw+«/:(m))
dx
- jo(x)efj(wcxﬂp(x)). (12)

Combining Egs. (11) and (12), we have the approximate
quadrature relation:

Hio(@) cos(wex + p(x))} = 0(x) sin(wx + (x)).  (13)

Nuttal and Bedrosian [25] showed that the approximation
error in Eq. (13) has a finite energy, given by |l¢||2 =
1 [-o | F{o(-)eY}(w)*dw, which is directly related to how
far from being one sided the spectrum of o(x)e/#@ is. This
result indicates that, as w, increases, the quantity ||¢||; de-
creases and the Hilbert transform gives accurate estimates
of the quadratures.

Having computed approximate quadratures, demodulation
can then proceed in the same fashion as in the case of a
constant-frequency carrier.

A proof of principle is shown in Fig. 6. We generated a com-
plex object wave with real and imaginary parts as shown in
Figs. 6(a) and 6(c), respectively. The FM is linear, sweeping
from 0.4z radians to 0.5z radians (normalized frequencies)
over the observation duration of 1024 points. We find that,
although the demodulation is approximate, the level of accu-
racy is acceptable. Note that the error cannot be made zero
because of the approximations involved.

To recapitulate, the basic idea in the 1D algorithm is to
obtain the quadrature components from the in-phase signals
by exploiting the properties of the Hilbert transform. We
pursue the same philosophy to derive the 2D demodulation
algorithm.

6. QUADRATURES IN 2D

A. Complex Riesz Transform
The Riesz transform is a scalar-to-vector signal transformation
specified by the mapping f(x) — fr(x) as follows:

(@) [ () )
Sr0) = (fz(x)) = ((hy *f)(x))’ (4

where x = (x,¥), f is the input image, and the filters &, and h,,
are characterized by their frequency responses as

. Wy

~ ,
- , h =2 15

lloll

To make an analogy, the Riesz transform is to the Hilbert
transform what the gradient operator is to the derivative
operator.

To derive the corresponding impulse responses 7, (x) and

R, (x), consider the Fourier transform pair F (ﬁ) = "fu—”” 8],

f&x(w) =
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-3 Estimation error
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o

SEER = 52.62dB

(b)

- 200 400 600 800

Sample index

1000

-3 Estimation error
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o

SEER = 53.07dB

(d)
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1000

Fig. 6. (Color online) Performance of the Hilbert-transform-based demodulation algorithm. The AM is complex. The FM is linear, sweeping from
0.4z radians to 0.5z radians over the observation duration of 1024 points. The subplots (a) and (c) show the real and imaginary parts of the object
wave, respectively, in comparison with the reconstructed ones. The subplots (b) and (d) show the associated estimation error. The signal-to-
estimation-error ratio (SEER) values are also indicated. Note that the demodulation accuracy is sufficient for most practical applications.

which is also a good example of circular symmetry of a 2D
function and its Fourier transform. Performing partial differ-
entiation with respect to x or y, we obtain

Y (16)

h(x) = S —
(%) 2allx?

x
=~ . h —
ol ™)

In the present work, we construct a complexified version of
the 2D Riesz operator (which we refer to as the complex Riesz
transform), by combining the two Riesz components in
Eq. (14), which correspond to two orthogonal directions, into
a single complex function. The 2D complex Riesz operator,
denoted by R, is specified by its spectral behavior:

Riw &2 @), an
—————
i (@)
where f(w) = Fif}(w) = S S @) J@X@x is the 2D

Fourier transform of f and iy (@) = (h, + jhy)(a)) = ”m”
e/¥(@) is the complex Riesz transfer function, where y denotes
the phase angle. The function hR (w) is a phase-only function
with a unity magnitude and a phase response that resembles a
spiral (see Fig. 7).

B. Properties of the Complex Riesz Transform

We recall from [9] some important properties of the complex
Riesz transform that are relevant to the present discussion.
The complex Riesz transform is a shift- and scale-invariant
operator. It is also unitary, which follows directly from the

property that |2z ()|> = 1. Therefore, it is also a self-adjoint
operator; that is, R™! = R*, where

+(0y

The complex Riesz transform of a cosine wave of frequency
w, = (w, cos By, w, sin ;) is given by

RS (X)<—> — o /(@) (18)

R cos({w,,.))(x) = ¢% sin({w,,x)). 19

It is also closely related to the directional Hilbert transform as
follows:

Fig. 7. (Color online) Phase response of the complex Riesz operator
over the domain [-z,7]x [-7,z]. The units for all three axes are
radians.



2124 J. Opt. Soc. Am. A / Vol. 29, No. 10 / October 2012

Hof (0)= cos 6f1(x) + sin 0f5(x) = Rele’Rf (x)},  (20)

which can be established by taking into account the steerabil-
ity of the Riesz transform [7,8]. By steerability, we mean that
the transform computed along any direction can be expressed
as a linear combination of the transforms computed along
other directions. As a result, it suffices to compute the trans-
form along those elementary directions (in this case, x and y)
and then use linear combinations to obtain the transform com-
puted along any other direction (the linear combination
weights depend on the desired orientation). For more details,
the reader is referred to [7,8]. The manner in which the direc-
tional Hilbert transform and the Riesz transform are related is
analogous to the fashion in which the directional derivative
and the gradient operator are related.
By plugging Eq. (19) into Eq. (20), we get that

Ha, €os({,. ) (x) = sin((w,..x)). @1)

If the direction for computing the Hilbert transform does not
match the orientation of the cosine wave, we have that

Hg cos((@,, .))(x) = cos(d - 6y) sin({w,, x)). (22)

roll-off

The above equation is obtained by substituting Eq. (19) in
Eq. (20) considering 6 # 6. The cos(6 - 6,) roll-off calls for
precise orientation estimation in order to have high accuracy
in computing directional Hilbert transforms. We next show
how the orientation is computed using the Riesz transform in
a structure-tensor formalism.

C. Structure-Tensor Formalism for Estimating
Orientation

The structure-tensor formalism allows for precise calculation
of local orientation. It gives accurate results for plane waves
and for locally planar fringe patterns. The local orientation of
a fringe at position x, is specified as the solution to the
optimization problem:

O(x) = arg max (0 x [H, ) (x0). (23)

where v is a positive, radially symmetric localizing function
(typically, a symmetric Gaussian smoothing kernel is used)
and the operator H, follows the definition given in Eq. (20).
The cost function in Eq. (23) is rewritten as

(v * [Hof [*) (x0) = v * (cos 6f(x) + sin 6f 5(x))?
= cos? O(v * f3) + sin? (v * f3)
+ 2 cos 6 sin Ov * (f1f9)
=uTJ(xp)u, (24)

— 0
where u = ({° /) and

_ vxfi v (f1f2)
J(xO)_(U*(ﬁ}z) U*}§2 )

The right-hand side of Eq. (24) is a quadratic form, and opti-
mizing it is equivalent to solving an eigenvalue problem [27].
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The optimum orientation is specified by the eigenvector cor-
responding to the maximum eigenvalue .. The orientation
6 is directly given in terms of the entries of the structure
tensor J as follows:

(25)

0(xp) = % tan’l( 20 * (f13) )

v f5—vxf3

7. 2D HOLOGRAM DEMODULATION

As per the 2D hologram formation model, the measured inten-
sity is given by f(x) = |1 + o(x)e7*® 2, where o(x) is the com-
plex-valued object wave and ¢(x) is the phase function of the
reference wave. This model for the hologram is general and
covers any fringe shape [straight if ¢(x) is linear, and curved
if ¢(x) is quadratic, etc.] and can account for curvature of both
object and reference beams.
Developing the squares, we get that

@) =1+ Jo@)[* +2Re{o(x)e ¥} (26)
e

zero order

To assess the spectral occupancy of the various components
in Eq. (26), we consider a plane-wave reference, that is,
¢(x) = (w.,x), and an object wave that has a circular spectral
support (see Fig. 8). The assumption of circular spectral sup-
port is compatible with the practical setting because the spec-
tral influence of the microscope objective employed in the
measurements indeed results in such spectra. Let the spectral
radius of o(x) be o. Correspondingly, the spectral radius of the
zero-order term is 20. The modulated diffraction orders can be
separated from the zero order by an appropriate choice of w,.
Specifically, by selecting o, > %, overlap between the zero
order and the imaging orders is avoided. The zero order
can then be suppressed and the desired order selected by
bandpass filtering. Alternatively, the zero order can be sup-
pressed by separately measuring |o(x)|?, for example by block-
ing the reference arm illumination and then subtracting it from
Eq. (26). However, in this case, it is not required to have a
separation between the zero order and the imaging terms.
Thus, effectively, the function of interest in Eq. (26) is
2Re{o(x)e ™)},

For the demodulation problem, we consider two cases:
(i) plane-wave reference and a constant o(x) and (ii) nonplanar

Bandpass filter

£

Wz

.

Zero-order

(@) (b)

Fig. 8. (Color online) (a) Spectral support of o(x); (b) Spectral sup-
port of various functions in Eq. (26). The bandpass filter is used to
suppress the zero-order terms.
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waves but with ¢(x) and o(x) assumed to be slowly varying.
The first case helps in understanding the mechanics of
demodulation, while the latter one is of greater practical
relevance.

A. ¢(x) = (w,.x) and o(x) = a (Constant)

Consider the function of interest in Eq. (26): f x) =
2Re{ae7@*)}. As in the 1D demodulation algorithm, we first
conduct a calibration experiment by choosing an empty field
of view (that is, o(x) = 1). The corresponding measurement is
g(x) =1+ 2 cos({w,,x)). After suppressing the constant, the

r(x)

local orientation map of r(x) is estimated by adopting the
structure-tensor approach described in Subsection 6.C. Let
the estimated orientation be denoted by é(x). The correspond-
ing complex signal is obtained according to the directional
Hilbert-transform method, wherein the orientation at each
point is chosen to be orthogonal to that specified by 8(x):

Taas(X) = 7(x) +Hp {rx)}, @27

where the subscript das indicates that it is a directional ana-
lytic signal. The directional Hilbert transform is related to the
Riesz transform by virtue of the property stated in Eq. (20).
Therefore, we have

Taas(®) = 7(x) + j Re{ePORy(x)} ~ 2e(@e) (28)

where the error is of the order of (6 - 9)2 [from the Taylor
series approximation of the cosine roll-off in Eq. (22)]. The
structure-tensor approach gives accurate orientation esti-
mates for plane waves, and therefore the error is negligible.
Similarly, the directional analytic signal corresponding to

f (x) is computed as
jd%(x) =.f(x) +J Re{e’jé(x)'Rf(x)} ~ 2qe (@ x) (29)

For constant o(x), the orientations associated with f(x) and
r(x) are the same. Therefore, the constant-valued object wave
is demodulated as

fdas(x)

‘= ’rdas(x) .

(30)

B. Slowly Varying o(x) and 6(x)
In this case, we invoke the quasi-eigenfunction property (see
Section 3) to specify the Riesz transform of o(x)e/#®):

R{0 ()"0} (x) = 0(x)* Do (V) (x). (31

By applying the quasi-eigenfunction property to o(x)e7*® we
have that

R{0(-)e 7O} (x) ~ 0(x)e D g (-V ) (x). (32)
Combining Egs. (31) and (32) yields the following:

R{o(-) cos p()}(x) =je" VDo) sin p(x),  (33)
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where y is the phase angle associated with the Riesz transfer
function (see Subsection 6.A). Equation (33) is then rear-
ranged as follows:

—Je VP R{0() cos ()} (x) = o(x) sin $(x). (39
v

Note that the left-hand side of Eq. (34) is exactly equivalent to
the so-called vortex operator of Larkin et al. [11,12], denoted
by V acting on o(x) cos ¢(x). Effectively, the vortex operator
does the job of computing the Riesz transform and then com-
pensating for the fringe orientation (which is equivalent to a
directional Hilbert transform). The net effect is that the vortex
operator is oriented along the local direction that is estimated
from the reference using the structure tensor. It also changes
the polarity of the spectral lobes associated with the localized
fringe pattern, the effect of which is to convert a cosine
pattern to a sine pattern. Thus, the key equation in the con-
struction of 2D quadratures is the following:

Vi{o(:) cos ¢(-)}(x) = o(x) sin ¢(x). (35)

To make an analogy, the vortex operator is to 2D fringes what
the Hilbert transform is to modulated 1D functions.

The quadrature corresponding to the case with o(x) =1
may be derived from Eq. (35). The directional analytic signal
corresponding to o(x) cos ¢(x) is

Saas(®) = 0(x) cos p(x) +jV{0(-) cos $()}(x) = 0(x)e®
(36)

and that corresponding to 7(x) is
Taas(X) = cos p(x) +jV{cos ¢(-)}(x) =W, (37)

The object wave is demodulated as follows:

S aas®)

T das (x ) '

o(x) (38)

The analogy between the 1D and 2D demodulation
procedures is illustrated in Fig. 9. Note that taking the
modulus of fdas(x) to obtain the AM is not suitable for
holography since we are interested in complex-valued o(x).
A summary of the proposed methodology is as follows.

1. Calibration

(a) Estimation of local orientation map 6(x) of the refer-
ence hologram as specified in Eq. (25).

(b) Compute the local directional Hilbert transform and
associated directional analytic signal at every x (using the
operator V) according to Eq. (37).

2. Hologram Demodulation

(a) From the hologram i(x), suppress the zero-order terms
either by bandpass filtering or by subtracting the holograms
corresponding to 7(x) = 0 and o(x) = 0 [as explained after
Eq. (26)].

(b) Compute the directional Hilbert transform Eq. (36)
based on the directionality information stored in the orienta-
tion map of step 1.
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o(x) cos ¢(x)

H {cos ¢(x)} ~ sin ¢(z)
1-D demodulation

(a)

Seelamantula et al.

Orientation
map

V{cos ¢(x)} ~ sin ¢(x)

2-D demodulation

(b)

Fig. 9. Analogy between 1D and 2D demodulation: (a) Hilbert-transform-based demodulation of 1D signals and (b) Riesz-transform-based de-
modulation of 2D fringes. I, in-phase channel; @, quadrature-phase channel (standard terminology in communication/modulation literature).

(¢) Compute the complex object wave according
to Eq. (38).

Next, the object wave is subjected to Fresnel propagation in
order to bring the object into focus. This step is standard and
is executed as in the case of standard Fourier reconstruction
algorithms. Note that the main ingredient that allows for hand-
ling of local phase aberrations is the vortex operator VV whose
orientation is controlled adaptively using the reference orien-
tation map.

C. Simulation Results

To validate the demodulation technique, we consider the mod-
ulation of the image “Peppers” on a constant-frequency plane
wave. The results are shown in Fig. 10. We use apodization
(windowing) for all images, which is a standard practice in

(d)

(b)

(e)

holography mainly to mitigate the ripple at the boundaries
of the image arising out of fast Fourier transform implementa-
tions (which implicitly assume a periodic image). The modu-
lated image and the carrier are the inputs to the Riesz
demodulator. The demodulated image and the Riesz structure-
tensor-based orientation map are also shown in the figure. The
orientation is nearly constant, which is what we would expect
to have. The difference between the original image and the
demodulated image is displayed in Fig. 10(f). When comparing
the result with the original image, we observe that the recon-
struction error is small. The smooth regions are generally well
reproduced, while some errors appear at the edges. This an
expected phenomenon because edges are discontinuities that
contain high-frequency components. In such regions, a clear
separation between the modulation and the carrier is lacking,

N\
N

NN

7

NN

Fig. 10. Simulation results for linear-frequency modulation. (a) Original image, (b) carrier wave, (c¢) modulated image, (d) reconstructed image,
(e) orientation map, and (f) reconstruction error. The orientation map is estimated with a Gaussian kernel of standard deviation ¢ = 5.
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and hence the modulation model, strictly speaking, is not
valid. Apart from that, the quality of demodulation is quite
accurate.

We next repeated the experiment with a circular carrier
wave of radially constant frequency. The results are displayed
in Fig. 11. We observe that the Riesz demodulator is quite
efficient at handling the curvature of the fringes because it
effectively compensates for the orientation of the fringes
and straightens them out, resulting in high-quality demodula-
tion. The orientation map derived by the Riesz structure ten-
sor is also quite accurate and globally smooth in spite of the
fact that it is computed only locally.

8. EXPERIMENTS ON REAL HOLOGRAMS

We next validate the performance of the Riesz demodulator
on real holograms of Caenorhabditis elegans (C. elegans).
Brief descriptions of the specimen and the experimental setup
follow.

A. Specimen—C. elegans

C. elegans is a multicellular eukaryotic organism that is stu-
died as a model for a variety of reasons. Strains of C. elegans
are inexpensive to breed and are suitable for long-term
storage. C. elegans is transparent, facilitating the study of
cellular differentiation and other developmental processes.
C. elegans is one of the simplest organisms with a nervous
system, whose connectivity pattern has been completely
mapped. In particular, C. elegans is useful in the study of
meiosis. It is also the first multicellular organism to have
its genome completely sequenced. Fascinating pictures of
C. elegans and information are available on the WORMATLAS
(http:/www.wormatlas.org/).
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B. Experimental Setup

Since the fixed C. elegans specimen is transparent, the mea-
surements were taken using a standard transmission holo-
graphic microscope [19]. The microscope objective has a
magnification factor of 20 and a numerical aperture of 0.45.
The laser diode light source employed has a wavelength of
668 nm. A Basler A102f camera with a pixel size of 6.45 pm
is employed for recording the holograms, with an exposure
time of approximately 8 ms. The holograms are of size 1024 x
1024 pixels. We measured a reference hologram and a holo-
gram with the sample. The reconstruction distance is approxi-
mately 7 cm.

To validate the demodulation approach on curved fringes,
we introduce a curvature mismatch between the reference
and object beams by simply changing the position of a lens in
the reference arm. The experimental results corresponding to
the standard off-axis configuration are shown in Fig. 12,
where the fringe curvature is barely identifiable due to the
strong modulation; the results corresponding to the off-axis
configuration with a small angle, sufficient to separate the
imaging orders, are shown in Fig. 13, where the wavefront
curvature mismatch can be identified in the fringe curvature
and chirp. In both cases, the Riesz demodulator produces
good-quality amplitude- and phase-contrast images. The phase
image is particularly important because C. elegans gives rise
to sharp phase-contrast images. Because of the nature of the
specimen, the effect on the hologram generation consists in a
local modification of the fringe orientation from the phase
part of the signal, as can be seen particularly in Fig. 13(c).

One can appreciate the efficiency of the reconstruction in
the flatness of the phase images [see Figs. 12(f) and 13(f)], as
imprecisions in demodulation would readily induce visible
changes in the phase profile. Furthermore, the phase-contrast

\\\if\\\\\

(11}

\

1«

)

11

Fig. 11. Simulation results for circular-frequency modulation. (a) Original image, (b) carrier wave, (c) modulated image, (d) reconstructed image,
(e) orientation map, and (f) reconstruction error. The orientation map is estimated with a Gaussian kernel of standard deviation ¢ = 5.
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(d) ©)
Fig. 12. Riesz demodulation performance on C. elegans holograms. (a) Hologram of C. elegans, (b) reference hologram, (c¢) zoomed-in part of the
hologram (approximately 1/16th the size of the hologram from the lower left corner), (d) zoomed-in part of the reference hologram (approximately
1/16th the size of the reference hologram from the lower left corner, (e) amplitude-contrast image, and (f) phase-contrast image (wrapped phase).
The orientation map is estimated with a Gaussian kernel of standard deviation ¢ = 5.

(b)

(d) ()

Fig. 13. Riesz demodulation performance on C. elegans holograms. (a) Hologram of C. elegans, (b) reference hologram, (c) zoomed-in part of the
hologram (approximately 1/16th the size of the hologram from the lower left corner), (d) zoomed-in part of the reference hologram (approximately
1/16 the size of the reference hologram from the lower left corner), (e) amplitude-contrast image , and (f) phase-contrast image (wrapped phase).
The orientation map is estimated with a Gaussian kernel of standard deviation ¢ = 5.
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images obtained are shown to be consistent in terms of quan-
titative values, as it has been possible to focus the wavefronts
through digital propagation (d = 7 cm), leading to the pre-
sented results. The fine structures in the specimen can be
identified both in amplitude and phase, with a spatial resolu-
tion that is consistent with the aperture of the employed
optical system.

9. CONCLUSIONS

We addressed the problem of hologram demodulation for the
general case of nonplanar fringes. We first considered the 1D
demodulation problem and then systematically developed a
2D counterpart by employing the complex Riesz transform,
which is a steerable extension of the Hilbert transform in high-
er dimensions. The interesting aspect is the link between the
Riesz transform and the directional Hilbert transform. By
invoking quasi-eigenfunction approximations, we showed
how quadratures may be derived from the Riesz transform.
The ability of the Riesz transform to yield quadratures by
compensating for the local changes of orientation is crucial
to the success of demodulation. Interestingly, the proposed
framework is self-sufficient because the orientation also
can be estimated using the complex Riesz transform. The
proposed approach requires a onetime calibration to obtain
a reference hologram, which corresponds to an empty field
of view in the object arm. Experiments on simulated as well
as real holograms of C. elegans showed that the proposed
technique effectively handles nonplanar fringes.
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