Multimodal Magnetic Resonance Imaging Depicts Widespread and Subregion Specific Anomalies in the Thalamus of Early-Psychosis and Chronic Schizophrenia Patients

Yasser Alemán-Gómez1,2,* , Thomas Baumgartner3, Paul Klauser2,4, Martine Cleusix2, Raoul Jenni2, Patric Hagmann1 , Philippe Conus5, Kim Q. Do2, Meritxell Bach Cuadra6,1, Philipp S. Baumann5, and Pascal Steullet2,6

1Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 2Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Prilly, Switzerland; 3Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 4Department of Psychiatry, Service of Child and Adolescent Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 5Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; 6Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Switzerland

*To whom correspondence should be addressed; Centre de Recherche en Radiologie. Rue Centrale 7, CH-1003 Lausanne. Switzerland; tel: +41213241537, e-mail: yasseraleman@gmail.com

Background and Hypothesis: Although the thalamus has a central role in schizophrenia pathophysiology, contributing to sensory, cognitive, and sleep alterations, the nature and dynamics of the alterations occurring within this structure remain largely elusive. Using a multimodal magnetic resonance imaging (MRI) approach, we examined whether anomalies: (1) differ across thalamic subregions/nuclei, (2) are already present in the early phase of psychosis (EP), and (3) worsen in chronic schizophrenia (SCHZ).

Study Design: T1-weighted and diffusion-weighted images were analyzed to estimate gray matter concentration (GMC) and microstructural parameters obtained from the spherical mean technique (intra-neurite volume fraction [VF INTRA], intra-neurite diffusivity [DIFF INTRA], extra-neurite mean diffusivity [MD EXTRA], extra-neurite transversal diffusivity [TD EXTRA]) within 7 thalamic subregions.

Results: Compared to age-matched controls, the thalamus of EP patients displays previously unreported widespread microstructural alterations (VF INTRA decrease, TD EXTRA increase) that are associated with similar alterations in the whole brain white matter, suggesting altered integrity of white matter fiber tracts in the thalamus. In both patient groups, we also observed more localized and heterogeneous changes (either GMC decrease, MD EXTRA increase, or DIFF INTRA decrease) in mediodorsal, posterior, and ventral anterior parts of the thalamus in both patient groups, suggesting that the nature of the alterations varies across subregions. GMC and DIFF INTRA in the whole thalamus correlate with global functioning, while DIFF INTRA in the subregion encompassing the medial pulvinar is significantly associated with negative symptoms in SCHZ. Conclusion: Our data reveals both widespread and more localized thalamic anomalies that are already present in the early phase of psychosis.

Key words: MRI/thalamus/nuclei/microstructure/early-psychosis/schizophrenia

Introduction

The thalamus is a subcortical structure that relays sensory information to the cortex, but also orchestrates various synchronized cortical activities involved in cognitive processes and sleep. Composed of nuclei with distinct connectivity patterns, the thalamus is embedded within multiple brain networks. It constitutes an essential interface between sensory and motor systems, and plays a key role in cognitive and emotional processes. An extensive literature supports that thalamus-related anomalies contribute to the pathology of schizophrenia. Reduced thalamic volume, abnormal structural and functional connectivity with the cortex, striatum and cerebellum, and aberrant activation across high-order cognitive domains are reported in schizophrenia patients, but also in high-risk individuals. Both postmortem studies and magnetic resonance imaging (MRI) studies report abnormalities mostly in high-order thalamic nuclei. However, our knowledge about thalamic anomalies in different stages...
of the illness remains fragmented. Previous studies have typically investigated the thalamus using a single MRI modality in either high-risk, early psychosis, or chronic schizophrenia.11,20,21,30 Moreover, only a few studies have assessed the thalamus integrity at the subregion/nucleus level. Therefore, we sought to characterize the microstructural organization of the thalamus at the subregion level by using multimodal MRI data from psychotic patients at different stages (early-psychosis [EP], chronic schizophrenia [SCHZ]) to reveal novel features of the thalamic anomalies and their dynamic changes along the course of the disorder. We hypothesized that, unlike the loss of gray matter (GM) which is localized in some subregions, alterations of diffusion properties, revealing changes in the microstructure, would be more widespread, and occur early during the time course of the disease. Microstructural features were described using 4 diffusion MRI-derived metrics obtained from the spherical mean technique (SMT)31 and GM concentration (GMC) estimated from T1-weighted imaging. SMT is a two-compartment model for diffusion imaging to estimate microscopic characteristics separately within an intraneurite compartment (composed of fine processes like dendrites and axons) and an extraneurite compartment (composed of cell bodies, extracellular space), irrespective of fiber crossings and orientation dispersion. The intraneurite compartment is described by the intraneurite volume fraction (VF\textsubscript{INTRA}) and intra-neurite diffusivity (DIFF\textsubscript{INTRA}); the extraneurite compartment is depicted by the extra-neurite mean diffusivity (MD\textsubscript{EXTRA}) and extra-neurite transversal diffusivity (TD\textsubscript{EXTRA}). The SMT model has been validated in animal models31 and was selected over another widely used approach, NODDI (Neurite orientation dispersion and density imaging)32 for 2 reasons: (1) NODDI includes a compartment where the diffusion is considered isotropic and this assumption is not applicable to the thalamic anatomy; (2) NODDI arbitrarily sets the diffusivity values while SMT estimates them directly from the data.

GMC was assessed using a partial-volume technique33 highly sensitive to detect GM decrease in the thalamus of psychotic patients.27 Because of nonlinear effects of age (between 15 and 60 years old) on some of these MRI parameters,37 we compared each patient group with age-matched healthy subjects. We examined whether all diffusion- and GM-related anomalies are only restricted to specific subregions and similar within the affected subregions. Most importantly, we looked for abnormalities present during the early stages of the disease that could represent biomarkers. We further investigated whether alterations in GMC and diffusion-derived metrics are closely related and how their relationships are changed in EP and SCHZ compared to their respective control subjects. Moreover, we explored the relationship between diffusion-derived metrics within the thalamus and WM tracts because altered diffusion properties within the thalamus could reflect the altered integrity of fibers entering/exiting the thalamus. Finally, we looked for associations of MRI metrics with symptom’s severity and global functioning.

Methods

Participants

Chronic patients meeting DSM-IV criteria for schizophrenia or schizoaffective disorder were recruited from Lausanne University Hospital. Subjects in the early phase of psychosis (within 5 years of a first psychotic episode34) were recruited from the Treatment and Early Intervention in Psychosis Program (Lausanne University Hospital).35 Most patients were taking antipsychotic medication at the time of the study. The average medication was estimated in chlorpromazine equivalent dose (CPZ).36 Forty-two SCHZ and 97 EP, who completed a full MRI scanning session and fulfilled the inclusion criteria were included.

In addition, 139 healthy controls (HCs), recruited from similar geographic and sociodemographic areas, and assessed by the Diagnostic Interview for Genetic Studies (DIGS),37 were selected and automatically divided into 2 groups (42 HC\textsubscript{SCHZ} and 97 HC\textsubscript{EP}) in order to match with each of the patient groups (SCHZ and EP) for gender, age, and handedness (Supplementary Material, Supp.1). Participants provided written informed consents. The study was conducted in accordance with the Declaration of Helsinki and approved by the local Ethics Committee. Major mood, psychotic, or substance-use disorder, and having a first-degree relative with a psychotic disorder were exclusion criteria for HCs. Neurological disorders, severe head trauma, or mental retardation (IQ < 70) were exclusion criteria for all subjects. A subset of participants (23 SCHZ, 41 EP, and 69 HC) were included in a previous study on GM quantification within the thalamus.27

Clinical Assessments

Clinical symptoms were evaluated by a trained psychologist using the Positive And Negative Syndrome Scale (PANSS).38 Functional level was determined using the Global Assessment of Functioning (GAF) scale.39 Duration of illness was defined as the time between the onset of psychotic symptoms (assessed with the Comprehensive Assessment of At-Risk Mental States, CAARMS40) and MRI scanning.

MRI Acquisition

MRI sessions were performed during the same time period as the clinical assessments on 2 different 3-Tesla scanners (Magnetom TrioTim and PRISMA, Siemens Medical Solutions) equipped with a 32-channel head coil each. Each scanning session included a magnetization
prepared rapid acquisition gradient echo (MPRAGE) T1-weighted (T1w) sequence and a spin-echo echo-planar imaging (SE-EPI) diffusion spectrum imaging (DSI) sequence (for more details see Supp.1). Images were visually inspected to guarantee high quality of the dataset. This visual quality control includes exclusion criteria that take into account incidental findings and poor-quality images. Additionally, different quality metrics were computed from T1w41 and diffusion-weighted images (DWIs)42 to test if between-group differences in data quality could bias the results (Supp.1 and Supp.2).

Image Processing

Microstructure Maps Estimation

For each subject, an automatic quality-control and image correction workflow was implemented to its DWI data. The workflow employed Mrtrix33 and FSL44 processing suites for performing the following steps: Denoising, bias correction, intensity normalization, head motion correction, eddy current, and distortion correction using Advanced Normalization Tools (ANTS).	extsuperscript{45} The corrected dataset was used to obtain different scalar maps with the SMT.31 SMT models the diffusion signal measured inside the voxel as a linear combination of the diffusion signals coming from 2 different and independent tissue compartments (intra- and extra-neurite compartments). Throughout this approach, the intra-neurite volume fraction (VF\textsubscript{INTRA}), intra-neurite diffusivity (DIFF\textsubscript{INTRA}), extra-neurite mean diffusivity (MD\textsubscript{EXTRA}), and extra-neurite transversal diffusivity (TD\textsubscript{EXTRA}) maps were computed (figure S3).

Gray Matter Concentration Estimation

The T1w image was used to estimate GMC using NISEG, a partial-volume-based tissue segmentation algorithm.33 This method models the voxel intensity through the mixel model46 by adding the cerebrospinal fluid (CSF), GM (figure S3E) and white matter (WM) global characteristic intensities weighted by their respective local concentrations with a Gaussian noise with constant standard deviation across tissues.

Thalamic Parcellation

FreeSurfer (v6.0.1) was used to segment the thalamus47 that was further subdivided, using an atlas-based parcellation approach (figure S3),27 in 7 subregions (pulvinar [Pul], ventral anterior [VA], mediodorsal [MD], lateral posterior-ventral posterior group [LP-VP], medial pulvinar-centrolateral group [PuM-CL], ventrolateral [VL], ventral posterior-ventrolateral group [VP-VL]). Mean GMC and each SMT-derived metric were obtained for every thalamic subregion.

Statistical Harmonization

A statistical harmonization procedure (ComBat48) was applied over the computed measures to reduce the interscanner bias while preserving the intersubject biological variability (figures S4-S6). Age, gender, and disease status were added as covariates to the design matrix.

Statistics

Statistical analyses were performed with the Statistics and Machine Learning Toolbox in Matlab (v.R2020a). Normality of the distributions was checked with a Shapiro test.

Nonparametric Spearman ranks partial correlations were used to test the association with age (figure S7, table ST3) and chlorpromazine equivalents (figure S8, table ST4) and to identify confounders that should be included in the statistical model. To test for group differences in demographics and clinical variables (HC\textsubscript{EP} vs EP and HC\textsubscript{SCHZ} vs SCHZ), Student’s t-tests were used for continuous variables and χ^2 tests for discrete categorical variables.

The mean SMT-based metrics for each region of interest (whole thalamus and subregions) were corrected for age, gender, and its mean value in the WM using multiple regression analyses. The intracranial volume (ICV) was used as covariate for GMC. Unstandardized residuals were used in the main analyses. Thereafter, 4 inferential analyses were conducted.

First, Analyses of Variance (ANOVA) were performed to identify differences between groups for SMT-derived parameters and GMC within the whole thalamus and each subregion of both hemispheres. Post hoc tests (Mann–Whitney U or Student’s t-test depending on data normality) were then conducted to assess group differences between EP and HC\textsubscript{EP}, SCHZ and HC\textsubscript{SCHZ}, and EP with respect to SCHZ.

Second, Pearson correlation coefficients were computed between diffusion-derived metrics quantified inside the thalamus and within the global WM.

Third, Pearson partial correlation was performed to explore direct associations among GMC, VF\textsubscript{INTRA}, and TD\textsubscript{EXTRA} inside each region of interest. In this case, values were averaged across both hemispheres. These provided the correlation between each pair of variables while accounting for the effects of all remaining variables.

Finally, the MRI metrics with significant group differences were tested for correlation with the duration of illness, PANSS scores, and GAF in both EP and SCHZ using Pearson’s or Spearman’s correlation analysis depending on data normality.
A $P < .05$ (two-tailed) was considered significant after controlling for multiple comparisons using the False Discovery Rate (FDR) with $q = 0.05$ [64 comparisons for diffusion-based metrics (8 regions \times 2 hemispheres \times 4 metrics); 16 (8 regions \times 2 hemispheres) for GMC] were performed. For the partial correlation analysis, 24 comparisons (for each group: 8 regions \times 3 correlations) were carried out.

Results

Demographics and Clinical Assessment

Table 1 presents the demographic characteristics of the patient cohorts and their respective HCs (HC_{EP} and HC_{SCHZ}). No significant differences between patients and HCs were found for age, gender, or handedness. EP and SCHZ showed significantly lower GAF scores than their respective HCs.

Alterations of Diffusion-derived Parameters and GMC

We first compared microstructural features (VF_{INTRA}, DIFF_{INTRA}, MD_{EXTRA}, and TD_{EXTRA}) and GMC within the thalamus of EP and SCHZ, with their respective HCs. We found a significant bilateral decrease of VF_{INTRA} within the whole thalamus and each subregion in EP but not SCHZ (figure 1, table ST7).

A significant DIFF_{INTRA} decrease was limited to the left PuM-CL of EP, with no alterations in SCHZ (figure S9, table ST8). For MD_{EXTRA}, we observed a trend for a bilateral increase in the whole thalamus of EP but not SCHZ (figure S10, table ST9). In EP, bilateral VA and right LP-VP displayed a significant MD_{EXTRA} increase, while the other subregions (except VL and PuM-CL) showed a trend for MD_{EXTRA} increase. In SCHZ, only the right VA showed higher MD_{EXTRA} as compared to HC_{SCHZ}. Regarding TD_{EXTRA}, we observed a bilateral increase within the whole thalamus of EP (figure 1, table ST10). TD_{EXTRA} was significantly higher bilaterally in VA, MD, LP-VP, and VP-VL, and right pulvinar of EP as compared to HC_{EP}. In SCHZ, we found however no TD_{EXTRA} alterations. Noteworthy, SCHZ and EP showed similar values for every diffusion-derived metrics (tables ST12-ST13), indicating that the absence of differences between some of these diffusion-related parameters in SCHZ as compared to HC_{SCHZ} is not due to a recovery of the microstructural organization during the chronic stage.

A significant GMC decrease was found bilaterally in MD, right pulvinar and LP-VP of EP (figure 2, table ST11), and bilaterally in PuM-CL, right MD and LP-VP of SCHZ. However, as compared to EP, SCHZ displayed a trend for lower GMC (table ST14).

Table 1. Demographic and Clinical Variables of Early Psychosis (EP) and Chronic Schizophrenia (SCHZ) Patients, and Their Respective Healthy Controls (HC_{EP}, HC_{SCHZ})

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age mean (SD) [range]</td>
<td>24.9 (4.7) [16.2–38.2]</td>
<td>24.7 (5.0) [15.6–38.7]</td>
<td>$U = 0.4$ (P = .7)</td>
<td>36.7 (8.2) [24.5–59.1]</td>
<td>38.6 (8.9) [24.7–58.6]</td>
<td>$U = -0.9$ (P = .3)</td>
</tr>
<tr>
<td>Laterality (right/left/others)</td>
<td>82/13/2</td>
<td>859/3</td>
<td>$\chi^2 = 1.1$ (P = .6)</td>
<td>33/6/3</td>
<td>36/5/1</td>
<td>$\chi^2 = 1.2$ (P = .5)</td>
</tr>
<tr>
<td>Duration of illness* (days)</td>
<td>634.4 (808.1)</td>
<td>5072.2 (2452.4)</td>
<td>$U = 11.4$ (P < 10^-4)</td>
<td>83.7 (4.1)</td>
<td>54.3 (11.8)</td>
<td>$U = 7.0$ (P < 10^-4)</td>
</tr>
<tr>
<td>CPZ* equivalent</td>
<td>83.8 (4.4)</td>
<td>56.2 (11.9)</td>
<td>$U = 346.0$ (272.6)</td>
<td>346.2 (296.4)</td>
<td>3</td>
<td>$U = 0$ (P = 1)</td>
</tr>
<tr>
<td>Typical</td>
<td>2</td>
<td>75</td>
<td></td>
<td>33</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Atypical</td>
<td>3</td>
<td>17</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No medication/information</td>
<td>12.9 (4.2)</td>
<td>16.1 (5.9)</td>
<td>32.9 (8.7)</td>
<td>62.0 (15.9)</td>
<td>14.6 (4.5)</td>
<td>16.6 (5.5)</td>
</tr>
</tbody>
</table>

Note:

*Comparisons between groups were conducted using the nonparametric Mann–Whitney U test or the parametric Student’s t-test. The applied test was based on the normality of data as evaluated by a Shapiro–Wilk test.

*Duration of illness was defined as the time between date of onset of first positive symptoms and date of scan acquisition.

*GAF, Global Assessment of Functioning scale.

*CPZ, antipsychotic medication intake in chlorpromazine equivalents at time of scanning (in mg).

*PANSS, Positive and Negative Syndrome Scale.
In summary, VFINTRA was homogeneously lower across all thalamic subregions of EP as compared to HCEP. This was accompanied with a widespread increase in TDEXTRA within most subregions. Moreover, EP displayed other types of alterations localized in anterior, mediodorsal, and posterior parts (MD\textsubscript{EXTRA} increase in VA and LP-VP, DIFF\textsubscript{INTRA} decrease in PuM-CL, GMC decrease in pulvinar, MD and LP-VP). When compared to HCSCHZ, SCHZ showed further decreases in VFINTRA and increases in TDEXTRA in the anterior and posterior thalamic subregions.

Fig. 1. (A) Intra-neurite volume fraction (VFINTRA) and (B) extra-neurite transversal diffusivity (TDEXTRA) in whole thalamus and its subregions of early-psychosis (EP) (n = 97), SCHZ (n = 42), and their respective controls (HCEP, n = 97; HCSCHZ, n = 42). One or two asterisks indicate differences before (P < .05 two-tailed) and after False Discovery Rate (FDR) correction (q = 0.05) respectively.
Assessing Thalamic Microstructure in Psychosis

SCHZ also showed anomalies in anterior, mediodorsal, and posterior parts (MD EXTRA increased in VA, GMC decrease in PuM-CL, MD, and LP-VP). The lack of VFINTRA and TD EXTRA anomalies in SCHZ as compared to HCSCHZ does not however indicate a normalization of the underlying microstructural anomalies.

Relationships Between Diffusion-derived Parameters in Thalamus and WM

For all subject groups, we observed strong correlations between diffusion-derived parameters (VFINTRA, MD EXTRA, and TD EXTRA, but not DIFF INTRA) within the thalamus and the whole WM mask (figure S11, table ST15). In both thalamus and global WM, we detected a decrease of VFINTRA increase in TD EXTRA (figures 1, S11) and MD EXTRA (trend for the whole thalamus, figures S10, S11) in EP, but not SCHZ (table ST16). Thus, these metrics seem to depict alterations of microstructural features common to both thalamus and WM tracts. Despite the use of SMT-based mean values of the whole WM as covariates, VFINTRA decrease and TD EXTRA increase remained significant and widespread across the thalamus of EP. These suggest that VFINTRA and TD EXTRA alterations within the thalamus of EP reflect structural anomalies associated with the fiber tracts entering and/or projecting out of the thalamus. By contrast, the decrease of DIFF INTRA in PuM-CL of EP could indicate local alterations at the level of neurites that are unrelated to WM abnormalities.

Fig. 2. Gray matter concentration (GMC) in whole thalamus and its subregions of early-psychosis (EP) (n = 97), SCHZ (n = 42), and their respective controls (HC EP, n = 97; HCSCHZ, n = 42). One or two asterisks indicate differences before (P < .05 two-tailed) and after False Discovery Rate (FDR) correction (q = 0.05) respectively.

Relationships Between Diffusion-derived Parameters and GMC

We further explored the relationships between SMT-derived parameters (which capture the microstructure) and GMC (which provides an estimate of the relative proportion of thalamic GM). As expected, subregions (pulvinar, PuM-CL, MD) with the highest GMC had the lowest VFINTRA, while those with the lowest GMC (VP-VL, VA) displayed the highest VFINTRA (figures 1 and 2). However, the widespread VFINTRA decrease within the thalamus of EP, as compared to HC EP, was accompanied by a GMC decrease (and not increase) in several mediodorsal and posterior subregions. This suggests that relationships between diffusion-derived parameters and GMC are loose and may change with the nature of the tissue alterations. Therefore, we examined more finely the relationships between VFINTRA, TD EXTRA, and GMC within subregions by calculating the partial correlations between each of the above MRI parameters. In all groups, we observed significant partial negative
correlations between VF_{INTRA} and TD_{EXTRA} (except for PuM-CL in HC_{EP}), confirming that these diffusion-derived parameters are largely dependent on each other (figure 3). By contrast, we found hardly no partial correlations between diffusion-derived parameters and GMC in HC_{EP}, HC_{SCHZ}, and SCHZ (except for pulvinar in HC_{EP} and SCHZ, and PuM-CL in HC_{EP}). SCHZ and HC_{SCHZ} displayed overall similar partial correlations (except for a VF_{INTRA}/GMC correlation in pulvinar of SCHZ, and a trend for a weaker relationship between VF_{INTRA} and TD_{EXTRA} in many subregions of SCHZ, figure 3B, table 2). In contrast to the other groups, EP presented partial negative correlations between GMC and diffusion-derived parameters (either VF_{INTRA} or TD_{EXTRA}) within all subregions, except LP-VP and VP-VL (figure 3A). Thus, the relationship between

Fig. 3. Significant partial correlations between VF_{INTRA}, TD_{EXTRA}, and gray matter concentration (GMC) in whole thalamus and its subregions. (A) Results for early-psychosis (EP) patients and their matched control group ($n = 97$). (B) Relationship patterns for the groups of patients with chronic schizophrenia (SCHZ) and their respective controls ($n = 42$). Significance: $P < .05$ (two-tailed) after False Discovery Rate (FDR) correction ($q = 0.05$).
Assessing Thalamic Microstructure in Psychosis

diffusion-derived parameters and GMC diverged most remarkably between EP and HC_{EP}. Moreover, the changes in the relationship between VF_{INTRA}, TD_{EXTRA}, and GMC in EP as compared to HC_{EP} differed across subregions (figure 3A, see pulvinar versus PuM-CL versus mediodorsal).

In summary, the association patterns between metrics in EP are stronger compared to other groups, further suggesting that the nature of the alterations occurring during the first years of psychosis is dominant and varies between subregions (see figure 3 and table 2).

Correlations With Clinical Data

We finally checked for associations between SMT-derived metrics and clinical symptoms, global functioning, and illness duration. After correction for multiple comparisons, the following correlations survived. In EP but not SCHZ, duration of illness correlated negatively with GMC in the whole thalamus, pulvinar, MD, LP-VP, VL, and VP-VL (table ST17), suggesting a rapid GMC decrease during the first years of illness. In SCHZ, negative symptoms correlated with diffusion-derived parameters (MD_{EXTRA}, TD_{EXTRA}, DIFF_{INTRA}) in PuM-CL (table ST18), while GAF scores correlated with GMC in whole thalamus, MD, PuM-CL, LP-VP, and pulvinar (table ST19) and with DIFF_{INTRA} in all subregions (table ST20).

Discussion

To the best of our knowledge, this is the first study performing a multimodal assessment of thalamus integrity at the level of subregions in patients at the early and chronic stages of psychosis. This approach revealed that alterations of diffusion-related parameters and decreased GMC are already present in the early phase of psychosis and do not further worsen during the chronic stage. While our results confirm published data that the mediodorsal, posterior, and anterior regions are affected, our multimodal approach strongly suggests that the nature of the alterations varies across subregions.

Table 2. Summary of Alterations in EP and SCHZ Relative to Age-, Sex-Matched Healthy Controls (HC_{EP} and HC_{SCHZ})

<table>
<thead>
<tr>
<th>Healthy Controls vs Early Psychosis</th>
<th>Healthy Controls vs Schizophrenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Differences HC_{EP} vs EP</td>
<td>Differences in Partial</td>
</tr>
<tr>
<td>Correlations</td>
<td>Correlations</td>
</tr>
<tr>
<td>VF_{INTRA}</td>
<td>MD_{EXTRA}</td>
</tr>
<tr>
<td>Whole thalamus</td>
<td>↓</td>
</tr>
<tr>
<td>Pulvinar</td>
<td>↓</td>
</tr>
<tr>
<td>Ventral anterior</td>
<td>↓</td>
</tr>
<tr>
<td>Mediodorsal</td>
<td>↓</td>
</tr>
<tr>
<td>Lateral posterior-ventral posterior group</td>
<td>↓</td>
</tr>
<tr>
<td>Pulvinar medial-centrolateral group</td>
<td>↓</td>
</tr>
<tr>
<td>Ventrolateral</td>
<td>↓</td>
</tr>
<tr>
<td>Ventral posterior-ventrolateral group</td>
<td>↓</td>
</tr>
<tr>
<td>Group Differences HC_{SCHZ} vs SCHZ</td>
<td>Differences in Partial</td>
</tr>
<tr>
<td>Correlations</td>
<td>Correlations</td>
</tr>
<tr>
<td>VF_{INTRA}</td>
<td>MD_{EXTRA}</td>
</tr>
<tr>
<td>Whole thalamus</td>
<td>↑</td>
</tr>
<tr>
<td>Pulvinar</td>
<td>↑</td>
</tr>
<tr>
<td>Ventral anterior</td>
<td>↑</td>
</tr>
<tr>
<td>Mediodorsal</td>
<td>↓</td>
</tr>
<tr>
<td>Lateral posterior-ventral posterior group</td>
<td></td>
</tr>
<tr>
<td>Pulvinar medial-centrolateral group</td>
<td></td>
</tr>
<tr>
<td>Ventrolateral</td>
<td></td>
</tr>
<tr>
<td>Ventral posterior-ventrolateral group</td>
<td></td>
</tr>
</tbody>
</table>

Note: GMC, Gray matter concentration.

\(^{a}\)Significant differences after False Discovery Rate (FDR) correction (q = 0.05) are presented.

\(^{b}\)Healthy controls > Patients (↓) and Healthy controls < Patients (↑).

\(^{c}\)The differences between groups in absolute correlation values (r) that are bigger than 0.1 are presented.
We also discovered previously unreported widespread diffusion-related alterations across the whole thalamus in EP when compared with age-matched HCs. Finally, the observed correlations between global functioning and microstructural parameters within many thalamic subregions (mostly in mediodorsal and posterior subregions) in SCHZ highlight the potent contribution of thalamus-related anomalies to a wide range of dysfunction and symptoms impacting everyday life.

Although our study is cross-sectional, the prominent abnormalities of microstructural organization in the thalamus of EP compared to HC EP point towards aberrant changes occurring during the first years of psychosis or even before the transition to psychosis. While SCHZ tends to have lower GMC than EP, GMC decreases with the duration of illness in EP but not in SCHZ despite a much wider range of illness duration. These suggest that GMC undergoes a rapid decrease around the emergence and first years of psychosis. By contrast, the diffusion-related metrics that differ in EP as compared to HC EP in PuM-CL, but a GMC decrease in MD, LP-VP, and pulvinar in EP. Furthermore, changes in relationships between GMC and diffusion-derived metrics in EP as compared to HCs differ across subregions. This suggests that each subregion may undergo distinct patterns of microstructural alterations. The underlying histological and microstructural anomalies captured by diffusion-derived parameters and GMC remain however elusive. Postmortem studies report decreased neuronal and glial cell density, altered membrane phospholipid contents and oligodendrocyte metabolism in the thalamus of schizophrenia patients, inferring abnormal myelination, astrocytic function, energy metabolism, and cytoskeleton assembly. MRI-derived variables can be influenced positively and negatively by these types of alterations but also by the volume and composition of the extracellular space. Therefore, changes in diffusion-derived metrics and/or GMC cannot unequivocally be attributed to well-identified alterations of the tissue organization.

Finally, we found only a few relationships between MRI-derived variables in the thalamus and clinical data. In SCHZ, GAF correlates positively with GMC in mediodorsal, and posterior subregions and with DIFF EXTRA in all subregions. This supports that altered microstructural organization across many thalamic subregions have a broad functional impact in psychotic patients. At last in SCHZ, negative symptoms correlate negatively with every diffusion-derived parameters in PuM-CL which is mostly composed of the medial pulvinar. This nucleus is connected to prefrontal regions, insula, posterior cingulate, parietal, and temporal cortices whose activities were reported to be negatively correlated with negative symptoms. Moreover, some negative dimensions have been associated with emotional processing abnormalities dependent on the amygdala which receives afferents from the medial pulvinar. Thus, this subregion could play an instrumental role in the expression of negative symptoms. Contrary to SCHZ, GAF, and negative symptoms did not correlate with MRI-derived metrics in the thalamus of EP. The reasons for these findings might relate to the fact that these diffusion-derived metrics tend to differ between HC EP and HC SCHZ but not between EP and SCHZ.

VF INTRA and TD EXTRA may capture microstructural properties of the fiber tracts entering and/or projecting out of the thalamus as each of these metrics strongly correlates in the thalamus and WM. The difference in VF INTRA and TD EXTRA values between HC EP (mean age: 24.9 years) and HC SCHZ (mean age: 36.7 years) may thus relate to the dynamic quadratic changes in WM properties that occur in healthy subjects during the maturation (with a peak arising around the age of 30 years for most WM tracts) and throughout the adult lifespan. Therefore, our data suggest abnormal dynamic changes in properties/organization of fibers and/or neurites within the thalamus of psychotic patients that are linked to anomalies occurring during the maturation period. This is in line with the widespread WM abnormalities affecting thalamo-cortical tracts.

By contrast, GMC decrease and MD EXTRA increase are restricted respectively to the mediodorsal, posterior thalamus, and the VA. This corroborates previous findings that these subregions encompassing high-order nuclei display the most consistent abnormalities in terms of volume, shape, GMC, and diffusion-derived features. Alterations in high-order nuclei may be linked to specific developmental characteristics accounting for their vulnerability. First, neurons from sensory and nonsensory thalamic nuclei derive from distinct populations of progenitor cells, which display different developmental features. Second, loss of excessive neurons and synaptic pruning in the thalamus generally occur during postnatal development with connectivity remodeling within the mediodorsal and pulvinar nuclei during a period extending into early adulthood. Thus, the mediodorsal nuclei, which form reciprocal connections with the prefrontal cortex, contribute to the late maturation of prefrontal cortical circuits and may in turn undergo a prolonged period of synaptic refinement during early adulthood. The pulvinar is also subjected to remodeling of its connectivity with the cortex where some pulvinar nuclei are switching from primary sensory during early life to high-order nuclei in adulthood. Our multimodal study also revealed the novel finding that the nature of local anomalies varies from one subregion to another. Thus, we found a DIFF EXTRA decrease in PuM-CL, but a GMC decrease in MD, LP-VP, and pulvinar in EP. Furthermore, changes in relationships between GMC and diffusion-derived metrics in EP as compared to HCs differ across subregions. This suggests that each subregion may undergo distinct patterns of microstructural alterations. The underlying histological and microstructural anomalies captured by diffusion-derived parameters and GMC remain however elusive. Postmortem studies report decreased neuronal and glial cell density, altered membrane phospholipid contents and oligodendrocyte metabolism in the thalamus of schizophrenia patients, inferring abnormal myelination, astrocytic function, energy metabolism, and cytoskeleton assembly. MRI-derived variables can be influenced positively and negatively by these types of alterations but also by the volume and composition of the extracellular space. Therefore, changes in diffusion-derived metrics and/or GMC cannot unequivocally be attributed to well-identified alterations of the tissue organization.

Finally, we found only a few relationships between MRI-derived variables in the thalamus and clinical data. In SCHZ, GAF correlates positively with GMC in mediodorsal, and posterior subregions and with DIFF EXTRA in all subregions. This supports that altered microstructural organization across many thalamic subregions have a broad functional impact in psychotic patients. At last in SCHZ, negative symptoms correlate negatively with every diffusion-derived parameters in PuM-CL which is mostly composed of the medial pulvinar. This nucleus is connected to prefrontal regions, insula, posterior cingulate, parietal, and temporal cortices whose activities were reported to be negatively correlated with negative symptoms. Moreover, some negative dimensions have been associated with emotional processing abnormalities dependent on the amygdala which receives afferents from the medial pulvinar. Thus, this subregion could play an instrumental role in the expression of negative symptoms. Contrary to SCHZ, GAF, and negative symptoms did not correlate with MRI-derived metrics in the thalamus of EP. The reasons for these findings might relate to the fact that these diffusion-derived metrics tend to differ between HC EP and HC SCHZ but not between EP and SCHZ. VF INTRA and TD EXTRA may capture microstructural properties of the fiber tracts entering and/or projecting out of the thalamus as each of these metrics strongly correlates in the thalamus and WM. The difference in VF INTRA and TD EXTRA values between HC EP (mean age: 24.9 years) and HC SCHZ (mean age: 36.7 years) may thus relate to the dynamic quadratic changes in WM properties that occur in healthy subjects during the maturation (with a peak arising around the age of 30 years for most WM tracts) and throughout the adult lifespan. Therefore, our data suggest abnormal dynamic changes in properties/organization of fibers and/or neurites within the thalamus of psychotic patients that are linked to anomalies occurring during the maturation period. This is in line with the widespread WM abnormalities affecting thalamo-cortical tracts.
are unclear but may relate to the fast dynamic changes of thalamic microstructural organization around the first years of psychosis and to more fluctuating symptoms and global functioning in EP as compared to stable SCHZ. Moreover, the relationship between subtle microstructure alterations in one brain region and clinical symptoms are complex because the symptoms may arise from functional alterations within many large-scale brain networks and are accompanied with compensatory mechanisms.

To conclude, our multimodal MRI study reveals both widespread alterations in thalamus, and local, heterogeneous anomalies particularly in the mediodorsal and posterior parts. The study also suggests that thalamic abnormalities may emerge around the time of transition to psychosis and worsen during the very first years of psychosis without further significant degradation during the chronic stage of schizophrenia. Thus, the development of these thalamic alterations may relate to the abnormal functional thalamocortical connectivity which progresses during the prodromal stage with worsening of functional outcome and emergence of first psychotic episodes. Future longitudinal studies in high-risk subjects will determine whether some of the described anomalies are present before the development of psychosis and could represent neurobiological vulnerabilities and potential early imaging markers.

Supplementary Material

Supplementary material is available at https://academic.oup.com/schizophreniabulletin/.

Acknowledgments

This work was supported by the National Center of Competence in Research “SYNAPSY – “The Synaptic Bases of Mental Diseases” from the Swiss National Science Foundation (n°51AU40_125759), an interdisciplinary fund of the Faculty of Biology and Medicine of the Lausanne University, the Alamyia Foundation and Adrian & Simone Frutiger Foundation. We acknowledge access to the facilities and expertise of the CIBM Center for Biomedical Imaging, a Swiss research center of excellence founded and supported by Lausanne University Hospital, University of Lausanne, Ecole polytechnique fédérale de Lausanne, University of Geneva and Geneva University Hospital. The authors have declared that there are no conflicts of interest in relation to the subject of this study.

References

