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Multi‑view convolutional neural 
networks for automated ocular 
structure and tumor segmentation 
in retinoblastoma
Victor I. J. Strijbis1,2,6*, Christiaan M. de Bloeme1,6, Robin W. Jansen1, Hamza Kebiri3,4, 
Huu‑Giao Nguyen3, Marcus C. de Jong1, Annette C. Moll5, Merixtell Bach‑Cuadra3,4, 
Pim de Graaf1 & Martijn D. Steenwijk2

In retinoblastoma, accurate segmentation of ocular structure and tumor tissue is important when 
working towards personalized treatment. This retrospective study serves to evaluate the performance 
of multi‑view convolutional neural networks (MV‑CNNs) for automated eye and tumor segmentation 
on MRI in retinoblastoma patients. Forty retinoblastoma and 20 healthy‑eyes from 30 patients were 
included in a train/test (N = 29 retinoblastoma‑, 17 healthy‑eyes) and independent validation (N = 11 
retinoblastoma‑, 3 healthy‑eyes) set. Imaging was done using 3.0 T Fast Imaging Employing Steady‑
state Acquisition (FIESTA), T2‑weighted and contrast‑enhanced T1‑weighted sequences. Sclera, 
vitreous humour, lens, retinal detachment and tumor were manually delineated on FIESTA images 
to serve as a reference standard. Volumetric and spatial performance were assessed by calculating 
intra‑class correlation (ICC) and dice similarity coefficient (DSC). Additionally, the effects of multi‑
scale, sequences and data augmentation were explored. Optimal performance was obtained by using 
a three‑level pyramid MV‑CNN with FIESTA, T2 and T1c sequences and data augmentation. Eye and 
tumor volumetric ICC were 0.997 and 0.996, respectively. Median [Interquartile range] DSC for eye, 
sclera, vitreous, lens, retinal detachment and tumor were 0.965 [0.950–0.975], 0.847 [0.782–0.893], 
0.975 [0.930–0.986], 0.909 [0.847–0.951], 0.828 [0.458–0.962] and 0.914 [0.852–0.958], respectively. 
MV‑CNN can be used to obtain accurate ocular structure and tumor segmentations in retinoblastoma.

Retinoblastoma (RB) is the most common ocular cancer  worldwide1 and originates from immature retinal cells 
in children. In RB, magnetic resonance imaging (MRI) is routinely used to confirm the diagnosis and determine 
disease  extent2. In current practice, images of RB patients are assessed qualitatively to support diagnosis and 
gain insight into tumor extent and to assess metastatic risk  factors3–5. Related work in other cancers has shown 
that quantitative assessment of radiological features (i.e., radiomics) may provide additional insights into tumor 
characteristics and harbor predictive and prognostic  information6. MRI-based radiomic models have for instance 
been proposed for the head-and-neck  site7,8 and uveal melanoma (UM)9.

Current application of radiomics in RB is limited due to the time-consuming and subjective procedure of 
manual delineation that is necessary for obtaining tissue  segmentations10. In addition, automated segmentation of 
MR images in RB is challenging due to data scarcity, images being acquired under different conditions and large 
variability in terms of  pathology11. Regardless, some methods have been proposed for the automation of ocular 
structure and tumor  segmentation10–16. Traditionally, ocular structure and tumor segmentation is performed by 
using Active Shape Models (ASMs)12–15 in combination with 2D or 3D U-Nets11,14–16. Important limitations of 
ASM and sequential segmentation designs are the need for feature engineering and limited predictability of the 
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algorithm in the presence of tumor tissue. U-nets, on the other hand, have the disadvantage of a limited field 
of view (in the 2D-case)16 or do require an extraordinary amount of data (in the 3D-case)11 for proper training.

A one-step solution for segmentation of ocular and tumor structures would greatly simplify the use of radi-
omics in the clinic and research and, importantly, also has the potential of increasing accuracy. Therefore, 
the purpose of the current work is to evaluate the performance of multi-view convolutional neural networks 
(MV-CNN) in RB patients. MV-CNN has been successfully applied in other medical segmentation problems 
where relatively little data was available (e.g. MS  lesions17,18 lymph  nodes19) and is likely to be robust even in a 
longitudinal  manner20. In contrast to above-mentioned ASM-based models, MV-CNN allows for multi-class 
segmentation of healthy and pathological ocular regions in a single step, without the need for feature engineering. 
Specifically, we train the classifier to discriminate background, sclera, vitreous humour, lens, retinal detachment 
and tumor. Throughout this work, the retinal detachment is regarded as retina and sub-retinal fluid resulting 
from retinal detachment. We compared our results to an established ‘baseline’ model published in literature.

Results
Manually segmented volumes of healthy and RB eyes were on average 5.82 ± 1.22 mL and 5.46 ± 1.17 mL respec-
tively. Median [interquartile range (IQR)] manual tumor volume was 0.88 [0.53–1.61] mL. An overview of per-
formances for different MV-CNN model alterations is given in Supplementary Table S1. The MV-CNN model 
that used all sequences (Fast Imaging Employing Steady-state Acquisition; FIESTA, T2 and T1c) and multi-scale 
information showed the highest volumetric and spatial performance in 4 out of 6 classes. This MV-CNN con-
figuration was regarded as best performing model and is further reported below.

For the best performing MV-CNN model, healthy and RB eye volumes were on average 6.15 ± 1.27 mL and 
5.82 ± 1.22 mL, respectively, and the median [IQR] tumor volume was 0.97 [0.54–1.56] mL. Inference took at 
maximum 20 seconds per eye. Three example segmentations are shown in Fig. 2. Compared to the reference seg-
mentations, MV-CNN reached very high volumetric performance (ICC > 0.99 for both eye and tumor volume; see 
Table 1 and Fig. 3) and good spatial performance (mean ± sd, median [IQR] DSC of 0.97 ± 0.01, 0.97 [0.95–0.98] 
and 0.85 ± 0.23, 0.91 [0.85–0.96] for eye and tumor, respectively). Compared to the previously published state-
of-the-art baseline model, which relies on a sequential pipeline combining ASM and a 2D U-Net, MV-CNN 
showed better volumetric performance for both eye and tumor volume and spatial performance improved 
significantly for both eye and tumor segmentations (both p < 0.002; Table 1). Axial- and 3D-view networks dif-
fered significantly (both p < 0.01) from MV-CNN for the tumor case with DSCs of 0.78 ± 0.22, 0.84[0.78–0.89] 
and 0.78 ± 0.22, 0.83[0.79–0.88], respectively, and showed inferior performance for all classes and inferior or 
comparable performance for complete eye. Boxplots containing the complete segmentation distributions of all 
structures using multi-view, axial-view and 3D-view CNNs can be found in Supplementary Figs. S2 and S3.

Tumor size dependency. Terciles were used to group results into small (< 0.55  mL; N = 10), medium 
(> 0.55 mL and < 1.51 mL; N = 9) and large tumors (> 1.51 mL; N = 10). Analysis of these groups showed an aver-
age MV-CNN spatial performance of DSC = 0.72 ± 0.36, 0.90 ± 0.04 and 0.92 ± 0.02, respectively. Two very small 
tumors with a volume of < 0.1 mL were completely missed by the MV-CNN network.

Independent validation set. In the independent validation set, manually segmented healthy and RB eye 
volume were on average 5.30 ± 1.08 mL and 4.02 ± 0.87 mL, respectively. Median [IQR] manual tumor volume 
was 0.87 [0.27–1.04] mL. The MV-CNN model ICC reached 0.96 and 0.97 for eye and tumor volume, respec-
tively. Spatial performance for eye and tumor was on average DSC = 0.94 ± 0.04 and DSC = 0.78 ± 0.25, respec-
tively; see Table 1.

Table 1.  Overview of volumetric and spatial performance of the baseline and the proposed multi-view 
convolutional neural network models, and results of the Wilcoxon signed rank test comparing baseline with 
MV-CNN DSC. P-values were corrected for multiple comparisons. Small, medium and large columns refer 
to tumor size subgroups. ICC intra-class correlation; DSC dice similarity coefficient; MV-CNN multi-view 
convolutional neural network; VH vitreous humour; RD retinal detachment.

Structure Baseline

MV-CNN Baseline vs MV-CNN

Cross-validation
(N = 46)

MV-CNN
p-value

Independent validation
(N = 14)

ICC

Eye 0.92 0.997 0.96

Tumor 0.69 0.996 0.97

DSC

Eye 0.95 ± 0.02 0.97 ± 0.01  < 0.001 0.94 ± 0.04

Sclera 0.67 ± 0.05 0.84 ± 0.03  < 0.001 0.87 ± 0.04

VH 0.79 ± 0.22 0.93 ± 0.20 0.005 0.75 ± 0.33

Lens 0.94 ± 0.02 0.91 ± 0.02  < 0.001 0.86 ± 0.06

RD 0.50 ± 0.27 0.79 ± 0.17  < 0.001 0.64 ± 0.30

Tumor 0.66 ± 0.24 0.84 ± 0.23 0.002 0.78 ± 0.25
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Discussion
The purpose of the current work was to evaluate the performance of MV-CNN to provide a one-step solution 
for segmentation of ocular structures and tumor tissue on MR images in RB patients. MV-CNN displayed good 
volumetric and spatial performance of MV-CNN when compared to manual reference segmentations and an 
established automated segmentation methodology. These findings were confirmed in an independent valida-
tion sample, underlining the practical usability of the approach for automatic delineation and incorporation in 
a radiomics pipeline.

Our study demonstrated that MV-CNN provides tumor segmentations that have very high volumetric 
(ICC > 0.99) and spatial consistency (DSC > 0.8) compared with manual delineations. Comparing our tumor 
segmentation results to other publications should be done with care, since measured performance is highly 
dependent on the dataset and the reference used for validation. Factors known to influence segmentation per-
formance include the pulse-sequence used, construction of the reference dataset and overall burden. In addition, 
definition of anatomical regions can be an issue and some studies using other class definitions as compared to 
the current work. Taking these considerations into account, an overview of ocular segmentation literature is 
provided in Table 2. Bach Cuadra et al.21 achieved moderate to high sclera and lens segmentation performance 
using a parametric model on computed tomography (CT) and ultrasound (US) images of the eye to improve 
external beam radiotherapy (EBRT) planning for RB. Rüegsegger et al.13 used an ASM on adult head CT data 
to further improve segmentation of the eye and lens for RB EBRT planning. Comparing these works with our 
results is not straightforward for two reasons. First, they were done for the purpose of radiotherapy planning 
in which safety margins are used depending on the location of the tumor, and thus different boundary criteria 
and evaluation criteria may be used. Second, these studies used CT for segmentation which has less soft tissue 
contrast than MRI used in our study. More recent studies constructed segmentations on MRI, for example Ciller 
et al.12 and Nguyen et al.15 used ASM segmentation of healthy ocular structures (sclera, vitreous humour and 
lens average DSC = 0.949, 0.947 and 0.882, respectively).

Only four studies used deep learning methods based on CNN and U-Net architectures to segment healthy 
and tumor ocular tissue. First, Ciller et al. expanded their ASM method with an input for an 8-layer 3D CNN to 
also obtain tumor  tissue10. At the time, this method served as a new state-of-the-art because it resulted in tumor 
segmentation performances up to DSC = 0.62. A weak point of the method is however that it depended on two 
steps requiring feature engineering, as tumor-specific features are used as input for the CNN. Second, Nguyen 
et al.11 proposed a single-step 3D U-Net CNN to achieve a reported tumor DSC of 0.59. Third, De Graaf et al.14 
used an ASM as input for a 2D U-Net CNN to segment healthy ocular structures and tumor with DSC = 0.64, 
respectively. Fourth, Nguyen et al.16 explored a weakly supervised approach based on class activation maps to 
train a 2D U-Net CNN to segment UMs in 24 patients with on average DSC = 0.84. However, these methods still 
use post-processing  steps11, or need an ASM to provide prior knowledge of the inside eye  volume12–14.

Compared to the previously discussed methods, MV-CNN shows superior spatial performance in tumor 
segmentation, and similar performance in vitreous humour and lens segmentation. A comparison for sclera 
segmentation performance is unfortunately less straight forward, because in previous works it was common 
practice to define sclera as the sum of sclera and vitreous humour. This resulted in considerably larger sclera 
volumes which positively biased DSC as a performance  metric18. Considering that the size of the sclera segmenta-
tion volume in our definition is almost twice as small compared to the former papers, we argue that the average 
spatial performance of DSC = 0.84 in our work was very high.

To overcome the difficulties in comparing performance metrics between studies (e.g. due to differences in data 
set, manual segmentation quality, or class definition), we also compared our results with an established baseline 
 model12,15. This direct comparison demonstrated substantial increases of volumetric and spatial performance 

Table 2.  Literature overview of eye and tumor segmentation methods and performances. DSC dice similarity 
coefficient; VH vitreous humour; MV multi-view; CNN convolutional neural networks; MR magnetic 
resonance; ASM active shape model; CRF conditional random field; UM uveal melanoma; RB retinoblastoma; 
IR inversion recovery; TGE turbo gradient echo; CT computed tomography; US ultrasound; T1c T1 with 
gadolinium contrast. *Includes vitreous humour. + Includes child and adult scans.

Reference Model used Data set Pulse sequence

Performance (DSC)

Sclera VH Lens Tumor

Current MV-CNN MR, 29 RB 17 healthy eyes T1c, T1, T2, FIESTA 0.84 0.93 0.91 0.84

De Graaf  201914 ASM + 3D U-Net MR, 24 RB, 11 healthy eyes T2 0.90* – 0.81 0.65

Nguyen  201916 2D U-Net + ASM / CRF MR, 24 UM T1, T2 – – – 0.84

Nguyen  201815 3D ASM MR, 7 UM, 30 healthy eyes T1 0.95* 0.92 0.88 -

Nguyen  201811 3D U-Net MR, 32 RB eyes, 40 healthy 
 eyes+, multi-center T1, T2 0.95* – 0.87 0.59

Ciller  201710 3D ASM + 3D CNN MR, 16 RB eyes 3D T1c, T1, T2 0.95* 0.95 0.86 0.62

Ciller  201512 3D ASM MR, 24 healthy eyes 3D T1c 0.95* 0.95 0.85 –

Beenakker  201532 Topo-graphic map MR, 17 healthy eyes 3D IR TGE No DSC reported

Rüegsegger  201213 3D ASM CT, 17 healthy eyes Does not apply 0.95* – 0.91 –

Bach Cuadra  201021 3D parametric model US, CT, 3 RB eyes Does not apply 0.91* - 0.77 -
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for almost all tissue classes except lens. This ruled out the possibility that our data set or manual reference seg-
mentation biased the results.

Several factors may contribute to the superior performance of the MV-CNN network topology. First, the 
number of parameters versus the number of training samples is more efficient in a 2.5D versus 3D network, 
which can be beneficial in the presence of limited training data. Secondly, it is believed that the branched archi-
tecture of MV-CNN can more effectively learn and propagate higher-level features, when compared to a U-Net 
architecture. This is because during the down-sampling procedure, details specific to informative branches can 
vanish when mixed with less informative  branches18. Finally, MV-CNN uses a multi-scale pyramid representation 
to integrate contextual information in the segmentation verdict. This is important because it can be argued that 
anatomical information within the direct vicinity of a query voxel can be of great descriptive value, resolving local 
ambiguities (e.g. it is unlikely that tumor is detected in or near the lens)22. Integration of contextual information 
is therefore likely to enhance model performance.

During evaluation, we also noticed some issues that may be improved in future work. First, we observed 
that the ASM segmentations showed generally higher spatial agreement of the lens with the manual reference 
compared with the MV-CNN. This can probably be explained by the fact that the ASM is superior in dealing 
with structures that have little shape variability among subjects. Second, we observed that MV-CNN has the 
tendency of a slight, but systematic, over-estimate of the total eye volume (see Fig. 3). Post-hoc investigation 
of the segmentation masks showed that this phenomenon is most likely driven by overestimation of the sclera. 
Three explanations may account for this. First, the manual annotation protocol was very conservative in this 
area. This may have led to a less optimal ground truth at the edges of the eye. Second, the effect could have been 
caused by an interpolation artefact due to the 2.5D nature of our kernel. And third, the issue might have been 
caused by the fact that our loss function was non-weighted. Future studies may resolve the issue by using a 3D 
kernel at the border or class-weighting.

Our work also has a number of limitations. First, we used very high-quality data (e.g. both in terms of image 
quality and labels) from only a single scanner for training and evaluation. The current method would require 
training for every new scanner, which is not practical. Real world applications should be able to handle data 
from multiple sources, especially in a rare disease such as retinoblastoma. Future work should therefore invest in 
multi-center labelled data and methods that are able to handle real-world scanner diversity. Second, we did not 
extensively investigate the effects of class imbalance and loss function. Such class imbalance is intrinsically present 
in data where malignant tissue is one of the target classes, and may be handled better by other loss functions 
such as generalized dice or boundary  loss23,24. Future studies may investigate whether even better performance 
can be achieved by tuning these aspects. Finally, we did not investigate different network topologies within the 
MV-CNN branches themselves. It is known that the conventional double convolutional layer may be affected by 
loss of gradient. This is not the case with several other designs, such as  ResNet25. Future work may investigate 
whether alternative branch topologies lead to even better performance.

In conclusion, we validated a multi-view convolutional neural network for automated, single-step segmenta-
tion of ocular and pathological structures for MRI in RB, and compared its performance to the current state-of-
the-art. The MV-CNN model demonstrated superior performance when compared to the baseline model, both 
in terms of volumetric and spatial performance. In addition, we demonstrated the benefit of multi-view networks 
over axial-view and 3D-view networks for ocular structure and tumor segmentation in retinoblastoma. Our 
results indicate that MV-CNNs have great potential for further development towards automated segmentation 
for radiomics applications.

Materials and methods
Clinical dataset. The dataset consisted of N = 23 children (mean age 23.9 ± 20.7  months, range [0–75] 
months), with a total of 17 healthy and 29 RB eyes. MR imaging was performed on a 3.0T system (Discovery 
750, GE Medical Systems, Milwaukee, USA) with a 32-channel phased-array head coil. The standard care pro-
tocol included a 3D FIESTA (TR = 8.1 ms, TE = 3.5 ms, flip angle (FA) = 40°, Field-of-view (FOV) = 140 mm, 
0.27 × 0.27 × 0.30  mm3), a 2D T2-weighted (TR = 2980 ms, TE = 9.0 ms, FOV = 140 mm, 0.27 × 0.27 × 2.0  mm3) 
and a 2D gadolinium contrast-enhanced T1-weighted (T1c; TR = 747  ms, TE = 12.0  ms, FOV = 140  mm, 
0.14 × 0.14 × 2.0   mm3) sequence. 2D images were acquired in axial plane according to published imaging 
 guidelines2.

Manual reference segmentation. Reference segmentations of ocular structures (sclera, vitreous humour, 
lens, retinal detachment) and tumor were manually constructed on the 3D FIESTA images by one rater (CdB) 
using 3D Slicer (Version 4.10.1, MIT, USA)26. All reference segmentations were validated by a neuro-radiologist 
with 14 years of experience (PdG). Manual segmentations were carefully constructed in approximately 10 hours 
per eye and were considered as ground truth in the analyses.

Image preprocessing. Prior to automatic segmentation, images were automatically preprocessed using 
tools from the Insight Toolkit (ITK; https:// itk. org/) and FMRIB Software Library (FSL; https:// fsl. fmrib. ox. 
ac. uk/). First, a rough outline of the eye was constructed on each sequence by using the 3D Hough filtering 
approach implemented in  ITK27. These masks, extrapolated by a radius of 25 mm, were used as a region of inter-
est for co-registration of the images of a specific subject. The rigid transformations between high-resolution 
FIESTA and lower resolution T2 and T1c space were obtained using FSL FLIRT. Both transformation matrices 
were inverted to obtain all 2D sequences in 3D FIESTA space using spline interpolation. Finally, the intensities of 
each contrast were re-scaled such that image intensities had a mean and variance of 0 and 1, respectively, within 
the union of 5-mm masks of the left and right eye.

https://itk.org/
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/
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Baseline model. We have combined two state-of-the-art methods to act as reference model for comparison 
with the MV-CNN approach. In summary, the ASM approach previously  used12,15 was retrained on the FIESTA 
images to segment the sclera, lens and vitreous humour. Subsequently, adopting recent ocular tumor segmenta-
tion methods, a 2D U-Net architecture was trained to obtain tumor and retinal detachment masks using the 
combined FIESTA, T2 and contrast-enhanced T1 as  inputs14,16. We refer the reader to the Supplementary mate-
rial for details on 2D U-Net implementation and to Supplementary Fig. S1 online for a schematic representation 
of the baseline model.

These state-of-the art methods for healthy and pathological structures proceed to each structure segmentation 
separately and as such they need afterwards to combine their outputs to assign one class per voxel. Similarly to 
previous  studies11,13, tumor and retinal detachment predictions were constrained to be inside the eye as defined by 
ASM output of sclera. Moreover, lens was prioritized over retinal detachment and tumor, and retinal detachment 
was prioritized over tumor. Finally, as ASM segmentation is based on the structure outer contour, the output 
sclera and vitreous humour are converted to binary masks that include all voxels inside their fitted  contours14,15. 
Scleral segmentation is obtained by removing all other structures’ subsets, and finally vitreous humour is obtained 
by removing retinal detachment and tumor from the ASM segmentation.

Multi‑view convolutional neural network. MV-CNN is a network topology that combines informa-
tion from different views into fully connected layers to classify the voxel where the planes cross. The multi-view 
approach (see Fig. 1) can be considered as a 2.5D CNN given that it incorporates information from each image 
plane, but does not use the full 3D neighborhood of the queried voxel. This results in a lower computational 
complexity when compared to 3D-kernel methods. Multi-scale contextual information is incorporated from 
different scales λ in a pyramid representation of each patch. Increasing image scale beyond scale 3 was investi-
gated but did not improve segmentation accuracy as the field of view would simply fall outside of the region of 
interest. One MV-CNN block contains three equally structured network branches for each imaging plane. The 
input to each branch is a 32 × 32 patch from each MR sequence (FIESTA, T2, T1c; total number of sequences 
ch = 2 or 3), which are fed as channels, and scales 0, 1 and 2. Here, scale 0 refers to an unaltered patch with no 
larger-scale contextual information, where the considered scale’s reception field is widened by a factor of two for 
each subsequent pyramid level. Batch normalization is always applied before applying the activation function. 
Each branch contains two hidden convolutional layers (3 × 3 convolution kernel; activation function: rectified 
linear unit (ReLu)) with a max-pool layer (2 × 2 max-pool kernel) and a dropout layer (dropout proportion 
p = 0.25). This is followed by a dense layer with 32 output neurons (activation function: ReLu). The results from 
each anatomical plane are then concatenated and the procedure is repeated for each scale in parallel. In a similar 
fashion, results from each scale are then concatenated. Following, another dense layer with 32 output neurons 
(activation function: ReLu) is used with a dropout layer (p = 0.25). Finally, a dense layer (activation function: 
softmax) is used for voxel classification.

Experiments. FIESTA and T1c images were used as input for every experiment. In addition, we investigated 
the effects of the following alterations: (i) addition of T2 to the input; (ii) addition of multi-scale information 
(i.e., λ = 1,2); and (iii) random left–right mirroring of the input data to facilitate data-augmentation, resulting 

Figure 1.  Schematic representation of the multi-view convolutional neural network (MV-CNN) architecture. 
Three multi-view branches build up each anatomical plane within a scale block. The output of which is 
concatenated and used as input for the multi-scale branched architecture. Batch normalization is always applied 
before the non-linear activation function. Thickness of convolutional and dense blocks correspond with the 
number of filters used. ch number of channels; λ scale; BN batch normalization; ReLu rectified linear unit. Figure 
was generated with Adobe Illustrator (version 16.0.0; https:// www. adobe. com/ creat ivecl oud. html).

https://www.adobe.com/creativecloud.html
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in 8 configurations. Each sub-model was trained once for performing multi-class segmentation in one step. 
Performances were evaluated by leave-one-subject out cross-validating each possible configuration. To further 
demonstrate the benefits of MV-CNN, post-hoc analyses were done including axial-view and 3D-view networks. 
Here, the exact same settings and architecture were used as the proposed best MV-CNN sub-model (inclusion 
of T2, multi-scale (λ = 2), no left/right mirroring), but differed only at input-level (axial-view: one 32 × 32 view-
branch and three context branches; 3D: one 32 × 32 × 32 view-branch and three context branches).

Model training. MV-CNN training was done on a NVIDIA GeForce GTX 1080 TI graphics processor unit 
(GPU) using the GPU-version of TensorFlow version 1.9.0 with Cuda 9.0 and Python 3.6.9. TensorBoard (Ver-
sion 0.4.0) callback was used for tracking training and validation scores. Categorical cross-entropy was used as 
a loss function for multi-class segmentation:

Here, p(a) represents a reference distribution of a ∈ A given by the manual annotations, where q(a) is a 
query distribution and A is a set of observations. c ∈ [0, 1, . . . , C] denotes class indices. The loss function was 
minimized for 50 epochs (batch size = 64) using the ADAM  optimizer28. A random sub-set of 5% of all training 
voxels was sampled to reduce computational demand and thereby accelerate training, and random reshuffling 
of samples was done to allow for varied training. Dropout was switched off at test time.

Statistical analysis of model performance. The performance of each MV-CNN model and the base-
line were assessed using leave-one-subject-out cross-validation (i.e., K-fold cross-validation, where N = 23 sub-
jects). Performance was measured by quantifying volumetric and spatial agreement. Volumetric agreement was 
quantified by calculating the intra-class correlation coefficient (ICC; single measure and absolute  agreement29) 
and spatial agreement was quantified by calculating DSC:

where A and B are sets that refer to the manual reference and segmentation of interest, respectively. Because DSC 
measures were not normally distributed upon histogram inspection, differences in spatial performance were 
evaluated by a two-sided Wilcoxon rank signed test. Bonferroni correction was applied to account for multiple 
comparisons. Since the DSC spatial performance measure is dependent on size of the underlying  burden30, 
additionally, spatial performance was grouped according to tumor size.

Independent validation set. The MV-CNN model reaching best performance was additionally evalu-
ated in an independent validation set that consisted of 7 subjects (mean age: 16.0 ± 17.8 months, range [1–56] 
months), with 3 healthy and 11 RB eyes. The images of these subjects were acquired on the same scanner and 
using the same imaging protocols as specified above.

Figure generation. Figures  1 and 2 and Supplementary Fig.  S1 were generated using Adobe Illustrator 
(version 16.0.0; https:// www. adobe. com/ creat ivecl oud. html), and Fig. 3 and Supplementary Figs. S2 and S3 were 
generated using Python (version 3.6.9; https:// www. python. org) including the package Matplotlib (version 3.3.1; 
https:// matpl otlib. org/)31, by VIJS and RWJ.

Ethical approval. All experiments in this study were performed in accordance with ethical guidelines and 
regulations and have been approved by the medical ethical review committee of Amsterdam UMC, location 
VUmc. Informed consent was given by all participants’ legal guardians.
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Figure 2.  Example segmentations with relatively low (left), average (middle) and high (right) MV-CNN tumor 
spatial performance. Segmentation color coding: green: sclera, yellow: vitreous humour, brown: lens, blue: 
retinal detachment, red: tumor. FIESTA Fast Imaging Employing Steady-state Acquisition; DSC Dice’s Similarity 
Coefficient; MV-CNN multi-view convolutional neural network. Figure was generated with Adobe Illustrator 
(version 16.0.0; https:// www. adobe. com/ creat ivecl oud. html).

https://www.adobe.com/creativecloud.html


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14590  | https://doi.org/10.1038/s41598-021-93905-2

www.nature.com/scientificreports/

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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