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The OHBM COBIDAS MEEG report
The neuroimaging community, like many other scientific com-
munities, is actively engaged in open science practices designed 
to improve reproducibility and replicability1 of scientific findings. 
The OHBM, through its Committees on Best Practices in Data 
Analysis and Sharing (COBIDAS; https://www.humanbrainmap-
ping.org/i4a/pages/index.cfm?pageid=3728), promotes and distrib-
utes commonly agreed-on practices formalizing their terminology, 
in consensus with other organizations. OHBM has developed the 
COBIDAS reports2,3 to present best practices for specific neuro-
imaging methods, propose a standardized scientific language for 
reporting and promote effective sharing of data and methods. The 
reports are useful to (i) researchers preparing manuscripts and 
grant proposals of their work, (ii) editors and reviewers, (iii) neuro-
imaging educators and (iv) those with expertise in one neuroimag-
ing technique who seek to become familiar with another.

In this Perspective, we focus on the COBIDAS MEEG3 report, 
highlighting some of the main issues and ensuing recommenda-
tions generated by the committee. Our purpose is to provide a better 
understanding of how some acquisition parameters, design, analysis 
and reporting choices can influence reproducibility. Beyond these, 
many other issues have also found their way in the recommenda-
tions (Boxes 1 and 2 and Tables 1–3). As such, these recommenda-
tions represent the minimal requirements to be reported to ensure 
reproducible MEG and EEG (MEEG) studies, and full details for 
each recommendation can be found in the COBIDAS report itself. 
At the same time, many of these seemingly basic pieces of advice 
are contentious. A great deal of discussion has been spent on ter-
minology, and our proposal is a consensus that adopts and extends 
the terminology used in the Brain Imaging Data Structure (BIDS; 

https://bids.neuroimaging.io/) that enables better data sharing 
(initially for MRI4 and now also for neurophysiological data with 
MEG-BIDS5, EEG-BIDS6 and invasive EEG (iEEG)-BIDS7). It also 
follows nomenclature of the International Federation for Clinical 
Neurophysiology’s (IFCN; https://www.ifcn.info/) current clinical 
guidelines, thus integrating research and clinical practices. It is also 
clear to us that there is no single best analysis workflow (even if 
some general principles exist) or best statistical approach; there are 
only optimal solutions to a given problem—and this is why report-
ing context, acquisition and analysis details are so important.

The MEEG community has always been proactive in discuss-
ing good practices and reporting, evidenced by the long history 
of published guidelines8–15. Some aspects of these guidelines have 
remained current despite the rapidly changing developments 
in MEEG hardware, software and methods. While the OHBM 
COBIDAS MEEG report follows this tradition, it differs from previ-
ous guidelines in three important respects. First, it has a focus on 
practices that specifically aid with reproducibility and data sharing. 
Second, the COBIDAS MEEG report exists as a living document in 
the format of a WordPress blog that invites feedback and comments 
(https://cobidasmeeg.wordpress.com/), with version-controlled 
preprint releases on the Open Science Framework (https://osf.io/
a8dhx/). We invite readers to refer to this document3 when prepar-
ing scientific material. There has been exponential growth in the 
MEG and EEG literature in the 21st century (Fig. 1a). A dynamic 
guideline is important, as there have been many updates of acquisi-
tion and analysis methods, and the implementation of new tech-
nologies needs also to be integrated while keeping a coherent set 
of recommendations. For instance, portable EEG devices, portable 
MEG devices operating at room temperature, and brain–computer 
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interfaces have not been considered, as these are still emerging tech-
nologies (Fig. 1b,c). Yet as these become more extensively used and 
available, experience will grow and best practices for their use will 
need development. Additionally, COBIDAS MEEG has not consid-
ered invasive EEG recordings, despite their long history and recent 
renewed interest. In the future, these might be integrated under a 
more general ‘COBIDAS Neurophysiology’ document. Third, the 
target population for the COBIDAS MEEG guidelines is consid-
erably broader and larger than that served by previous guidelines, 
which traditionally were targeted to members of neurophysiologi-
cal societies or interest groups concerned with one specific imaging 
modality (EEG or MEG), analytical method (event-related potien-
tial (ERP), spectrum, source, etc.) or practice (research or clinic).

Terminology and reporting recommendations
To promote reproducible experimentation, one must share a com-
mon language. Some terms are common across imaging modalities, 
but can have slightly different usages. The COBIDAS MEEG termi-
nology for describing task parameters and data acquisition follows 
those of COBIDAS MRI and BIDS (Box 1). Of particular interest to 
MEEG researchers, we recommend using ‘run’ rather than ‘block’, 
which are used interchangeably in MEEG, but clearly differ for 
PET or MRI. Also, we recommend explicitly reporting the space 
in which data processing (i.e., statistical analyses and modeling) 
is taking place: sensor vs source. This is important, as certain ana-
lytical methods may not be suitable for use in sensor space. While 
other data spaces have been reported in the literature, for example,  

Box 1 | Specific MEEG terminology and definitions with respect to data acquisition

Session. A logical grouping of neuroimaging and behavioral data 
collected consistently across participants. A session includes the 
time involved in completing all experimental tasks. This begins 
when a participant enters the research environment and contin-
ues until he or she leaves. This would typically start with informed 
consent procedures, followed by participant preparation (i.e., elec-
trode placement and impedance check for EEG; fiducial and other 
sensor placement for MEG). It would end when the electrodes are 
removed (for EEG) or the participant exits the MEG room, but 
could potentially also include a number of pre- or post-MEEG ob-
servations and measurements (for example, anatomical MRI, ad-
ditional behavioral or clinical testing, questionnaires), even on dif-
ferent days. Defining multiple sessions is appropriate when several 
identical or similar data acquisitions are planned and performed 
on all (or most) participants, often in the case of some interven-
tion between sessions (for example, training or therapeutics) or for 
longitudinal studies.

Run. An uninterrupted period of continuous data acquisition 
without operator involvement. Note that continuous data need 
not be saved continuously; in some paradigms, especially with 
long inter-trial intervals, only a segment of the data (before and 
after the stimulus of interest) are saved. In the MEEG literature, 
this is also sometimes referred to as a block. (Note the difference 
with the ‘block’ term in COBIDAS MRI, where multiple stimuli in 
one condition can be presented over a prolonged and continuous 
period of time.)

Event. An isolated occurrence of a presented stimulus, or a 
participant response recorded during a task. In addition to the 
identity of the events, it is essential to have exact timing information 
synchronized to the MEEG signals. For this, a digital trigger channel 
with specific marker values or a text file with marker values and 
timing information can be used. (The term ‘event’ has been defined 
here in a more narrow and explicit sense than that for COBIDAS 
MRI, mainly because of the specialized requirements surrounding 
the high temporal resolution acquisition of MEEG data.)

Trial. A period of time that includes a sequence of one or more 
events with a prescribed order and timing, which is the basic, 
repeating element of an experiment. For example, a trial may 
consist of a cue followed, after some time, by a stimulus, followed 
by a response, followed by feedback. An experimental condition is 
a functional unit defined by the design and usually includes many 
trials of the same type. Critical events within trials are usually 
represented as time-stamps or ‘triggers’ stored in the MEEG data 
file, or documented in a marker file.

Epoch. In the MEEG literature, the term ‘epoch’ designates the 
outcome of a data segmentation process. Typically, epochs in 
event-related designs (for analysis of event-related potentials 
or event-related spectral perturbations) are time-locked to a 
particular event (such as a stimulus or a response). Epochs can 
also include an entire trial, made up of multiple events to suit the 
data analysis plan. (This terminology is not used in the COBIDAS 
MRI specification.)

Sensors. Sensors are the physical objects or transducers that are 
used to perform the analog recording, i.e., EEG electrodes and 
MEG magnetometers or gradiometers. Sensors are connected 
to amplifiers, which not only amplify but also filter the MEEG 
activity.

Channels. Channels refer to the digital signals that have been 
recorded by the amplifiers. It is thus important to distinguish them 
from sensors. A ‘bad channel’ refers to a channel that is producing 
a consistently artifactual or low-quality signal.

Fiducials. Fiducials are markers placed within a well-defined 
location and which are used to facilitate the localization and 
co-registration of sensors with other spatial data (for example, 
the participant’s own anatomical MRI image, an anatomical 
MRI template or a spherical model). Some examples are 
vitamin-E markers, reflective disks, felt-tip marker dots placed 
on the participant’s face, or sometimes even the EEG electrodes 
themselves. Fiducials are typically placed at a known location 
relative to or overlying anatomical landmarks.

Anatomical landmarks. These are well-known, easily identifiable 
physical locations on the head (for example, nasion at the bridge 
of the nose; inion at the bony protrusion on the midline occipital 
scalp) acknowledged to be of practical use in the field. Fiducials 
are typically placed at anatomical landmarks to aid localization of 
sensors relative to geometric data.

Sensor space. Sensor space refers to a representation of the MEEG 
data at the level of the original sensors, where each of the signals 
maps onto the spatial location of one of the sensors.

Source space. Source space refers to MEEG data reconstructed 
at the level of inferred neural sources that presumably gave rise 
to the measured signals (according to an assumed biophysical 
model). Each signal maps onto a spatial location that is readily 
interpretable in relation to the individual, or a template-based, 
brain anatomy.
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Box 2 | Specific MEEG terminology and definitions with respect to data analysis

Event-related response component vs deflection. For time do-
main MEEG data, ‘component’ traditionally refers to a functional 
brain process that has a characteristic spatial distribution and 
canonical latency8. Because of this loaded meaning for the term 
‘component’, the term ‘deflection’ is a useful alternative.

Event-related response nomenclature. For EEG, event-related 
response components are named using a convention, where 
(EEG) response polarity and its nominal latency form the name 
(for example, N100, N170, P300, N400, etc.), preferably adding 
the recording site. This was first published in the IFCN guidelines 
in 1983 (and updated in 1999), and advocated for in reporting of 
clinical data11, based on original nomenclature8. For MEG, the 
analogous components are referred to by two conventions: (i) an 
‘m’ added to the component name (for example, N100m, N170m) 
or (ii) referred to as M100, M170, etc.

Specialized MEEG event-related component nomenclature. 
Certain MEEG responses for example, mismatch negativity 
(MMN), contingent negative variation (CNV) and error-related 
negativity (ERN), among others, refer to specific responses elicited 
in particular types of paradigm or to presumed mental states (for 
example, error detection).

Other nomenclature. Early studies often refer to event-related 
components by successive EEG waveform deflections (for 
example, P1, N1, P2, N2 etc.). However, this nomenclature is no 
longer recommended. That said, there is an established literature 

on some later ERP components such as P3a and P3b (also known 
as P300 or the late positive component (LPC) in the literature). In 
these cases, referring to their well-established names (or adapted 
names, for example, P300a, P300b) could be more appropriate, 
ideally citing the original article describing the component. In the 
auditory literature, brain-stem evoked responses were originally 
labeled, and today are still known, by Roman numerals I to VII.

Canonical MEEG frequency bands:

•	 infra-slow: < 0.1 Hz
•	 delta: 0.1 to < 4 Hz;
•	 theta: 4 to < 8 Hz;
•	 alpha: 8 to < 13 Hz;
•	 beta: 13 to 30 Hz;
•	 gamma: > 30 to 80 Hz.

Gamma band signals may occur at frequencies higher than  
80 Hz87, but the majority of MEEG studies use the lower (original) 
values of the range, as above. For MEG the gamma band can 
extend out to 1 kHz88, so statistical analysis of gamma activity may 
identify ranges of activity within this very broad frequency band89. 
Therefore, reporting specific values of frequencies of interest 
within the gamma band may be more useful.

Oscillation. This term is specific to a spectral peak within a 
frequency band of interest and not a general increase in MEEG 
power within a canonical frequency band90. The oscillation is 
defined by its peak frequency, bandwidth and power.

Table 1 | Recommendations for basic experimental attributes to include in an article, along with suggested supplementary materials 
for increasing reproducibility

 Experimental attribute Reporting Supplementary materials

Participant selection - Population
- Recruitment
- Sampling strategy
- Demographics
- Medications
- Consent

Individual demographics and questionnaires

Experimental set-up - Recording environment
- Seated or lying down
- Anesthetic agent, if any, with dosage and administration method

Experimental task information - Instructions
- Number of runs and sessions
- Stimuli origin and properties
- Software (type, version and operating system) and hardware used 
for stimulus presentation
- Conditions and stimuli order and timing
- How task-relevant events are determined

Scripts and stimuli

Task-free recordings - Eyes open vs closed
- If eyes open, fixation point or not

Behavioral measures - Nature of the response
- Acquisition device (product name, model, manufacturer, recording 
parameters)
- interface with MEEG data and calibration procedures
- errors and outliers handling
- statistical analyses

Individual response logs with scripts for 
behavioral data analysis
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Table 2 | Overview of data preprocessing steps, parameters that should be reported and their impact on reproducibility

Step Parameters Impact

Sensor removal - Detection method and criteria
- Interpolation parameters if performed at this stage (for 
example, trilinear, spline (+ order))

For low-density coverage and/or clusters of sensors, 
in sensor space, effects can be missed on the scalp; 
in source space, source locations and effects can be 
spurious

Artifact removal - Method used and the range of parameters (for example, EEG 
data with a range >75 μV)
- For signal–noise separation methods (linear projection, spatial 
filtering techniques such as ICA67–69), describe the algorithm and 
parameters used, report the number of ICs that were obtained, 
how non-brain ICs were identified and how back-projection was 
performed.

Can change or mask effects, create spurious effects

Physiological artifact removal - Types of features in the MEEG signal identified using which 
criteria
- How many (and where relative to event onset) segments were 
removed
- MEG-specific: if SSP70 methods are used, report ‘empty room’ 
measurements to estimate the topographic properties of the 
sensor noise and project it out from recordings containing 
brain activity. Related tools with a similar purpose include 
signal-space separation methods and their temporally extended 
variants71,72 that rely on the geometric separation of brain activity 
from noise signals in MEG data

Downsampling - Method used (for example, decimation, low-pass filter) Affects the precision of time-locked effect and can 
alter or remove spectral changes

Detrending - Detrending performed and the algorithm order (for example, 
linear first order, piecewise, etc.)

May affect connectivity metrics and statistical 
results

Filtering - Type of filter, cut-off frequency, filter order (or length), roll-off 
or transition bandwidth, pass-band ripple and stop-band 
attenuation, filter delay and causality, direction of computation 
(one-pass forward or reverse, or two-pass forward and reverse)
- for low-pass, consider sampling-rate setting, which should be 
at least 2 to 2.5 times greater than the intended low-pass cut-off 
frequency (Nyquist–Shannon sampling theorem + filter roll-off)

Consequences for estimating time-courses and 
phases73,74

Segmentation - Specify the length of segments Affects connectivity values, especially considering 
sensor vs source space75

Baseline correction - Assure equal baselines between conditions and groups
- Method used (absolute, relative, decibel, regression)

Affects signal-to-noise ratio, statistical type 1 errors 
and power76,77

Re-referencing - Method used (subtracting the values of another channel or 
weighted sum of channels)
- Interpolation parameters if performed at this stage (for 
example, trilinear, spline (+ order))
- For reference-free methods (e.g., CSD) the software and 
parameter settings (interpolation method at the channel level 
and algorithm of the transform) must be specified

Changes raw effect size values and statistical results

Normalization (for 
multivariate analyses)

- Describe whether this step was performed or not
- If performed, indicate the type: univariate normalization or 
for all channels together, i.e., multivariate normalization (or 
whitening)
- If multivariate normalization, specify the covariance estimation 
procedure

Affects source modelling and decoding 
performance78,79

Spectral transformation - Data acquisition rate must be at least twice (Nyquist theorem) 
the highest frequency of interest in the analyzed data
- An adequate prestimulus baseline should be specified for 
evoked MEEG data, i.e., the baseline duration should be equal to 
at least three cycles of the lowest frequency to be examined80

- Details of the transformation algorithm and associated 
parameters
- The required frequency resolution is defined as the minimum 
frequency interval that two distinct underlying oscillatory 
components need to have to be dissociated in the analysis81,82

Affects the precision of results

ICA, independent component analysis; IC, independent component; SSP, signal-space projection; CSD, current souce density.
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independent component space, these are only mathematical sub-
spaces of the more general categories mentioned here.

There is also a specific MEEG terminology to describe features 
in the data that do not exist for MRI-based studies. Our recommen-
dations (Box 2) are to follow conventions and common nomen-
clature16, consistent with IFCN guidelines. We propose additional 
considerations for reporting EEG results aimed at reducing con-
fusion in the literature as follows: (i) for reporting evoked data in 
sensor space, recording site(s) should be noted (for example, vertex 
N100), as response polarity can vary by either original or post hoc 
scalp reference electrode and underlying cortical folding; and (ii) 
latency windows used to quantify event-related components should 
be explicitly mentioned. For reporting spontaneous or resting-state 
MEEG data, especially for spectral analyses, we advocate explicitly 
reporting boundaries of different frequency bands. There is con-
fusion in the literature caused by inconsistencies in designating 
‘canonical’ frequency bands14,17 (for example, delta, theta, alpha, 
beta, gamma). Here, we considered IFCN guidelines14 for delin-
eating canonical MEEG frequency bands, as these remain close to 
those originally proposed in the late 1920s by Berger18 and in the 
1930s by Walter19, as well as by Jasper and Andrews20, and align with 
the main clinical textbook in the field21. That said, due to inconsis-
tencies across literatures, we made a slight adjustment to the transi-
tion between alpha and beta ranges to guide results description for 
time–frequency analyses.

Which essential data-acquisition parameters and 
experimental design attributes should always be reported?
When investigators report scientific findings or share data, a sur-
prising number of important parameters are often omitted, ham-
pering both reproducibility and replicability. To overcome these 
omissions, the COBIDAS MEEG report3 contains a substantial 
Appendix of Tables listing desirable parameters to be reported. We 
do not discuss these in detail here; however, Table 1 here provides 
a selected list of important basic descriptors of experimental para-
digms, participants and measured behaviors. We have specifically 
highlighted these parameters because many of these are among 
those most commonly omitted, either in already published manu-
scripts or in new manuscripts being submitted to journals. Here we 

also touch on why their omission creates ongoing problems for rep-
lications and for meta-analyses.

Issue 1: Basic hardware, software and acquisition parameters. 
Many published papers omit basic data acquisition details: acquisi-
tion system type, number of sensors and their spatial layout, and 
acquisition type: continuous vs epoched, sampling rate and analog 
filter bandwidth (low-pass and high-pass). The latter in particular 
is most often omitted, yet during data acquisition all MEEG record-
ing systems use filter circuitry (potentially as defaults that are not 
always obvious to the user) which inherently limit what is mea-
sured. Low-frequency artifacts due to respiration or skin conduc-
tance responses can be present, and on the higher-frequency end, 
other artifacts might be aliased if they have not been filtered out 
(and therefore undersampled). Conversely, effects of interest in 
the EEG might have inadvertently been filtered out by inappropri-
ately applied filter settings at data acquisition. There is no way to 
assess for these possibilities if the filter characteristics have not been 
reported.

Issue 2: EEG reference electrodes and impedances. A key aspect of 
EEG is that measurements are differential voltages made relative to 
a reference electrode. A ground electrode serves as a way to reduce 
non-common mode signals in the EEG, for example, line noise or 
electrical stimulation artifacts. The reference and ground electrode 
locations must therefore always be reported.

Note that physically linked earlobe or mastoid electrodes during 
acquisition are not recommended, as they are not a neutral reference, 
can introduce distortions in the data and make modelling intrac-
table22. This cannot be corrected with subsequent re-referencing or 
data analysis. Recording quality should also be homogenous across 
the scalp, and therefore the impedance measurement procedure 
and impedance values, for passive EEG electrode systems, should 
be reported. (For active electrode systems this may not always be 
possible). Optimal electrode impedances vary relative to an ampli-
fier’s input impedance and, to a lesser extent, with electrode type 
(passive or active) and ambient noise level. A statement on accept-
able electrode impedances (for example, manufacturer’s recommen-
dation) for the specific setup, as well as actual values (on average or 

Table 3 | Necessary parameters to report in MEEG connectivity modeling to ensure reproduction of the method used

Specifications Parameters

Analysis - Specify type: effective (causal) or functional (correlational)
- Specify exact method used

Network estimation - Approach: data-driven (for example, ICA, time–frequency analysis based) or anatomically or model-driven?
- Native space vs template space?56,83

- If data-driven, specify methods and parameters (for example, time–frequency decomposition method)
- If anatomically driven, specify parcellation approach and parameters
- Graph theoretical measures: motivation of metrics84, specify whether the network is directed or undirected, define nodes and 
edges, specify thresholding criteria

Network metrics - Consider effects of epoch length75

- For dynamic connectivity measures, describe all temporal parameters85 (for example, window size, overlap, wavelet frequency 
and scale)
- For spectral coherence and synchrony measures: specify exact formulation (or reference) and any subtraction or normalization 
with respect to an experimental condition or mathematical criterion; note whether the measure is debiased or not
- For partial coherence and multiple coherence measures: describe all variables, specify exact variables used and note whether 
data are partialized, marginalized, conditioned or orthogonalized
- for DCM86, specify model type (event-related potential, canonical microcircuit); describe full space of considered functional 
architectures; connectivity matrices present or modulated (forward, backward, lateral, if intrinsic); vector of between-trial effects, 
the number of modes, the temporal window modeled and the priors on source locations; statistical approach: at the level of 
models or the family of models (fixed-effects (FFX) or random-effects (RFX)); connectivity parameters (frequentist vs Bayesian, 
Bayesian model averaging (BMA) over all models or conditioned on the winning family or model
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an upper bound) and the time(s) when impedances were measured 
during the experiment (for example, start, middle, end) should be 
provided. Reporting these procedures allows a reader to make a 
judgment on the quality of the data.

Issue 3: Statistical power. When null hypothesis testing is the sta-
tistical method used, reporting on a priori statistical power is rec-
ommended as a good practice. The probability that a study detects 
an effect when there is an effect is, however, a difficult problem in 
the context of EEG and MEG because it depends on the complex 
balance between number of trials and participants, itself a func-
tion of the experimental design (within vs between participants23), 
on chosen statistical method and on the MEEG features of inter-
est, including their locations, orientations and distance from sen-
sors24. We recommend defining the main data feature(s) of interest 
and then estimating the minimal effect size to determine power. 
A minimal effect size is the smallest effect relevant for a given 
hypothesis. Effect size should be determined using estimates from 
independent data, existing literature and/or pilot data. The latter 
should not be part of the final sample. If no electrophysiological 
data are available, behavioral data can be used as a minimal esti-
mate of required sample size. In any case, be aware that errors in 
calculating effect size and statistical power can occur from small 
sample sizes (i.e., pilot data25). This is because (i) effect sizes of 
many neural effects (as measured with MEEG studies) are often 
smaller than those of behavioral reaction times and (ii) some trials 
or epochs are rejected due to artifacts, thus diminishing the num-
ber of trials or epochs available for statistical analyses, imposing 
lower bounds on how many trials and participants are needed26 to 
achieve high statistical power. Therefore, more events and partici-
pants than has traditionally been common practice are more often 
required than not.

Critical considerations for MEEG data pre-processing
We define data preprocessing as any manipulation and transforma-
tion of the data. Preprocessing order influences both the qualita-
tive (for example, SNR) and quantitative (for example, deflection 
and spectral amplitude) properties of the data, and thus it directly 
impacts replicability (Table 2). As parameter and algorithm com-
plexity grow for MEEG data analysis, providing details about all 
computations is mandatory, as minor changes can lead to large dif-
ferences27 in analyzed output. Figure 2 outlines one typical work-
flow or sequence of preprocessing steps; specific recommendations 
for each step are available in the COBIDAS report). For specific 
analyses, or due to specific data characteristics, the processing order 
can vary, but the order should be clearly justified and described in 
detail in accordance with our recommendations.

Source modelling. Source modelling and reconstruction is a major 
processing pipeline step before statistical analyses and/or modeling 
that must be reported fully (Fig. 3). Neural source reconstruction 
aims at explaining the spatiotemporal pattern of observed sensor 
space MEEG data in terms of the underlying neuronal generators. 
This is known as solving the inverse problem, which has no unique 
solution (i.e., it is mathematically ill-posed). Models used to solve 
this problem are thus constrained by various assumptions, two 
important ones being the volume conduction model of the head 
and the source model itself. Since both affect result accuracy and 
reliability28–30, details on the forward model (head model, numeri-
cal method (boundary or finite element), and conductivity), source 
model (distributed or focal) and the source localization method 
with parameters used (for example, the regularization parameter) 
must be reported along with the software used (and which version) 
for a complete and reproducible report. Information on reconstruc-
tion quality is also crucial. For both MEG and EEG, since there 
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are multiple methods to estimate sources, the expected accuracy, 
errors and robustness (as described in the literature) of the chosen 
method should, at minimum, be described. Resampling techniques 
can also be used to provide further information (bias, spatial con-
fidence intervals, etc.) on the reconstruction performed with the 
data at hand. The source reconstruction of low-density (fewer than 
128 channels) datasets should be fully justified and interpreted with 
caution, given that the number of sensors impact localization accu-
racy30–32 and estimation of connectivity33. Different source modelling 
methods can be advantageous for particular applications, so report-
ing the rationale for choosing a source model is also important.

Critical considerations for MEEG data processing. We define data 
processing as mathematical procedures that do not change the data, 
i.e., statistical analysis and statistical modeling. There are many 
valid methods to analyze MEEG data. The chosen method should 
best answer the posed scientific question34, and a rationale for its 
use should always be provided. Here we briefly examine some of 
the main data processing issues discussed in the COBIDAS MEEG 
report.

Region-of-interest-based analyses. Selecting specific channels or 
source-level regions of interest (ROI) based on grand average differ-
ences between conditions and/or groups and then performing sta-
tistical tests on these has, at times, been seen in the MEEG literature. 
This, however, creates estimation biases (i.e., ‘double-dipping’)35,36, 
irrespective of whether one works in sensor or source space. ROI 
analyses in time, frequency or space (peak analysis, window aver-
age, etc.) while legitimate, should be justified a priori based on prior 
literature or independent data or statistical contrasts.

Mass univariate statistical modelling. More recently, analyses 
tend to be performed at the participant and group levels, using a 
hierarchical or mixed model approach for the whole data volume 
(three-dimensional source space) and/or the spatiotemporal sen-
sor space37,38. These types of analyses (and those that follow in the 

subsequent sections below) have become more common and have 
not typically been addressed in previous guidelines. Compared to 
tomographic methods, MEEG can have missing data (for example, 
bad channels or transient intervals with artifacts), so reporting on 
how missing data have been treated is crucial. Results must be cor-
rected for multiple testing and comparisons (for example, full-brain 
analyses or multiple feature and component maxima), but both 
a priori and a posteriori thresholds39 cannot adequately control the 
Type 1 family-wise error and should be avoided40. Special attention 
must also be given to data smoothness when using random field 
theory41. This is in contrast to a posteriori thresholds using null 
distributions (bootstrap and permutations), which control well for 
Type 1 family-wise error rates42,43.

Multivariate statistical inference. Multivariate statistical tests 
(for example, MANOVA, linear discriminant analysis) are typi-
cally performed in space, time or frequency, thus also leading to a 
multiple-comparisons problem that needs to be properly addressed. 
The problem of not correcting adequately for multiple comparisons 
remains a common omission for such data analyses.

Multivariate pattern classification. Decoding approaches should 
strive to minimize bias and unrealistically high classification rates, 
commonly referred to as ‘overfitting’. To avoid overfitting, a nested 
cross-validation procedure should be used, where independent sub-
sets of the data are used to estimate the parameters, fit the classifica-
tion model and estimate performance metrics. It is also important 
to justify the data-split choice, as some approaches can give biased 
estimates (for example, leave-one-out on correlated data44).

Connectivity. The term ‘connectivity’ is an umbrella term often 
used to refer to multiple methods, which may create some confu-
sion in the literature45,46. In the MEEG context, it generally refers 
to analyses that aim to detect coupling between two or more chan-
nels or sources. We recommend explicitly referring to functional 
(correlational) or effective (causal) connectivity47 and to describe 
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Fig. 2 | Standard MEEG preprocessing steps. Each step affects the data in the space (red boxes), time (blue boxes) and/or frequency (green boxes) 
domains. Deviations from the proposed order are possible, given the experimental set-up and/or MEEG feature(s) investigated, but should be justified.
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the specific method used (for example, effective Granger connec-
tivity, partial coherence, dynamic causal modelling (DCM), etc.). 
Table 3 outlines different approaches in connectivity analyses and 
lists important variables to report. With respect to the computed 
metrics48, it is essential to report all parameters, as they have a major 
effect on analytic outputs30,33. Statistical dependence measures in 
either sensor or source space should be specified (for example, cor-
relation, phase coupling, amplitude coupling, spectral coherence, 
entropy, DCM, Granger causality), as well as analysis assumptions 
(for example, linear vs unspecified; directional vs non-directional). 
For cross-frequency coupling (CFC)-based analyses, coupling 
type49 should be explicitly noted. CFC occurs when activity at lower 
frequencies modulates higher frequency amplitude, phase or fre-
quency. Since even one type of CFC can be extracted using multiple 
methods50–52, analysis methods and all associated parameters, such 
as filtering, must also be specified in detail.

Connectivity from MEG or EEG can be obtained from sensor 
or source space measures, and many discussions on the validity or 
utility of those measures exist53. Our view is that while statistical 
metrics of dependency can be calculated at the channel level (which 
can be useful for, for example, biomarking), these are not measures 
of neural connectivity48,54 and therefore cannot be used for causal 
inference55. Neural connectivity can only be obtained after biophys-
ical modeling (assuming it is accurate enough), considering volume 
conduction (for example, spatial leakage of source signals56) and 
spurious connections due to unobserved common sources.

Results reporting and display items
The COBIDAS MEEG report3 discusses results reporting and fig-
ures in considerable detail. In what follows we highlight some of 
the more common problematic aspects, where even previously 
published neurophysiological studies have omitted some important 
data characteristics.

Issue 1: Figures. In figures depicting neurophysiological waveforms, 
we advocate the inclusion of variability measures (for example, 
confidence intervals) and clearly annotated scales for all displayed 
data attributes. Moreover, since MEEG activity is characterized by 
its topography, it is recommended that waveforms or spectra of the 

full set of channels are shown (either in the main document or in 
supplementary materials).

Issue 2: Using frequency band names across the lifespan. 
Considerable ambiguities and confusion exist in the spontaneous 
or resting-state MEEG literature, due to inconsistent use of termi-
nology and failure to assess a particular cortical rhythm’s reactiv-
ity16. The well-known posterior alpha rhythm characteristically 
occurs following eye closure and diminishes greatly on eye open-
ing. Importantly, posterior alpha changes peak frequency as people 
develop and age: in infants (3–4 months of age) a reactive posterior 
rhythm first appears at ~4 Hz, increasing to ~6 Hz at 12 months 
of age and to ~8 Hz at 36 months, reaching adult frequencies of 
~10 Hz by 6–12 years57 and slowing again with normal aging21. 
Specifying the frequency and distribution of the activity and noting 
its reactivity is therefore important when studying aging. To reduce 
confusion, terms such as ‘baby alpha’ should be avoided, as central 
or mu (previously referred to as rolandic) rhythms (see COBIDAS 
MEEG report for other issues related to mu rhythms) can develop in 
infants before the posterior reactive rhythm that ultimately becomes 
fully fledged ‘alpha’ is seen. Currently, it is difficult to perform 
meta-analyses because of the variability of use of various frequency 
band names in the literature.

Issue 3: Underspecifying results of statistical analyses. For group 
or experimental condition differences, the test statistic (for exam-
ple, F-values, t-values, Bayes factors) must be displayed. Reporting 
model assumptions (for example, in linear models this includes 
Gaussianity of residuals) and effect size (for example, Cohen’s d, 
percentage difference and/or raw magnitude) are also encouraged. 
It is also good practice to report the explained model variance and 
data fit (both R-squared and root-mean-square error (RMSE)), as 
well as parameters deriving from the model(s) (for example, weight 
estimates, maximum statistical values). For predictive models, 
decoding accuracy (classification), R-squared or RMSE (regression) 
are the measures of choice, and chance level should be included58. 
The area under a receiver operating characteristic (ROC) curve can 
also be used when doing binary classification. Whichever method is 
used, each (expected) effect should be reported, whether it is signif-
icant or not, allowing readers to evaluate the dataset. This permits 
comparison with similar studies, facilitates informed power analy-
ses for planning future studies and will enable developments of a 
quantitative, more reproducible, view of brain dynamics59.

For mass-univariate and multivariate analyses, statistical maps 
of the space tested are usually displayed, with corresponding wave-
forms and topographic maps. While statistical significance matters, 
providing only thresholded maps limits reproducibility. We recom-
mend displaying thresholded maps in manuscripts (with descrip-
tion of thresholding method), while providing raw maps for all 
channels and time or frequency frames in supplementary materi-
als (ideally as a data matrix in a repository and not just a figure). 
To allow the reader to evaluate observed effects, both the time 
course of the model parameters and the underlying data should 
be made available. Consideration should be given to what figures 
should appear in the main manuscript versus those appearing in the 
Supplementary Materials section.

The evolution of COBIDAS, data sharing and future 
neuroimaging studies
The current COBIDAS MEEG recommendations correspond to 
best practices in 2019 and 2020. Reporting data using these criteria 
should improve the generation of reproducible and replicable find-
ings. As MEEG analysis pipelines become increasingly more com-
plex, more methodological details will likely need to be reported, 
challenging current views on good writing practice and journal 
policies. In anticipation of and to facilitate this process, COBIDAS 
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Volume grid

Dipole fit

Fig. 3 | Illustration of source modelling approaches. To find active neural 
sources, a forward model must first be used to determine the scalp 
distribution of the EEG potential or MEG magnetic field for a (set of) known 
source(s). These models vary according to how sources are defined (either 
on the cortical surface or on a volumetric grid) and the volume conduction 
model, which simulates effects on the tissues in the head on propagation 
of activity to MEEG sensors (spherical head model vs MRI derived models, 
here showing bone (green), cerebrospinal fluid (red), gray and white 
matter (blue) tissues). Information from the forward model is then inverted 
to attribute active sources to the measured MEEG signals.
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MEEG is a ‘living’ document (https://cobidasmeeg.wordpress.
com/) that will have periodic updates to include best practices for 
new methods as they become more established.

We also encourage the MEEG community to share raw and 
derived data using BIDS, together with data processing scripts60. 
Sharing data and scripts fosters reproducibility, and script re-usage 
encourages replicability across laboratories, promoting benefits to 
research training and education. A huge challenge to MEEG rep-
licability is the large data space and variety of methods. Sharing 
derived MEEG data (as with functional MRI data, where statistical 
maps are shared) would allow direct comparisons, replications and 
aggregations of results across studies (for example, meta-analysis). 
In an era of electronic publishing, sharing derived data is straight-
forward (for example, grand average ERPs between two conditions 
consist of a file of a few kilobytes that can be added as supplemen-
tary material or posted in a data repository).

Sharing original data is not always feasible, as participant con-
sent is required and issues of confidentiality may be a particular 
concern for clinical samples. Datasets with whole-head anatomical 
MRI data can be similarly problematic, as head models cannot be 
reconstructed if T1-weighted images are defaced or skull-stripped. 
Even without structural MRI, functional imaging data, includ-
ing MEEG61, could be indirectly identifiable. Confidentiality is 
currently a worldwide discussion point, with cross-continental 
data-sharing initiatives posing some challenges62. We strongly 
encourage seeking ethical clearance from participants regarding 
data sharing before commencing any study (see open brain consent 
form examples (https://open-brain-consent.readthedocs.io/) for 
easy-to-follow templates).

Exciting technical developments in MEEG (Fig. 1) will require 
updating of the COBIDAS report to include best, modern practices 
for these new methods, in particular for machine learning algo-
rithms that will likely play an increasingly prominent role in years to 
come63,64. Similarly, new-generation room-temperature MEG mea-
surement sensors (or optically pumped magnetometers) are emerg-
ing, allowing previously unavailable flexible configurations of MEG 
sensor arrays65,66. As we also progress toward ‘putting the brain back 
into the body’, multimodal integration of MEEG data with other 
technologies such as the simultaneous recording of movements or 
autonomic nervous responses will create new challenges in best 
practices, as cognitive and systems neuroscience moves out of the 
laboratory, to more ecologically valid scenarios and ‘into the wild’.

Conclusions
The first COBIDAS MEEG report was completed with prolonged 
and extensive collaboration and consultation within the neuro-
imaging community. We aimed to compile best practices for data 
gathering, analysis and sharing, to improve scientific reproducibil-
ity and replicability. These guidelines were constructed not only for 
preparation of manuscripts and grants, but also for scientists serv-
ing in editing and review roles, as well as for education and research 
training of future scientists. Like the COBIDAS MRI report, we see 
the COBIDAS MEEG report as a living document, designed to keep 
pace with ever-changing scientific and methodological develop-
ments in the field. OHBM will continue its efforts in defining best 
practices for brain imaging and welcomes all to participate and con-
tribute to this endeavor.
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