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Abstract
Current research indicates deficits in cognitive function together with widespread changes in brain activity following long-
term cannabis use. In particular, cannabis use has been associated with excessive spectral power of the alpha rhythm (8–12 
Hz), which is also known to be modulated during attentional states. Recent neuroimaging studies have linked heavy cannabis 
use with structural and metabolic changes in the brain; however, the functional consequences of these changes are still not 
fully characterized. This study investigated the electrophysiological and behavioral correlates of cannabis dependence by 
comparing patients with a cannabis use disorder (CUD; N = 24) with cannabis nonuser controls (N = 24), using resting state 
electroencephalogram (EEG) source-imaging. In addition to evaluating mean differences between groups, we also explored 
whether particular EEG patterns were associated with individual cognitive-behavioral measures. First, we replicated historical 
findings of elevated levels of (relative) alpha rhythm in CUD patients compared with controls and located these abnormali-
ties to mainly prefrontal cortical regions. Importantly, we observed a significant negative correlation between alpha spectral 
power in several cortical regions and individual attentional performance in the Go/NoGo task. Because such relationship 
was absent in the nonuser control group, our results suggest that reduced prefrontal cortical activation (indexed by increased 
relative alpha power) could be partly responsible for the reported cognitive impairments in CUD. Our findings support the 
use of electroencephalography as a noninvasive and cost-effective tool for biomarker discovery in substance abuse and have 
the potential of directly informing future intervention strategies.

Keywords  Cannabis use disorder · Alpha oscillation · Cortical activation · Electroencephalography · Attentional 
performance

Introduction

Delta-9-tetrahydrocannabinol (THC), the principal con-
stituent of cannabis, binds to cannabinoid-type 1 receptors 
(CB1R), which are most abundant in the frontal cortex, hip-
pocampus, and cerebellum (Battisti et al., 2010). Repeated 
THC exposure alter CB1R functioning, with consequences 
on neural processes implemented in these brain regions. 
Consequently, cannabis users exhibits drug-induced synaptic 
plasticity on brain circuitry and changes in neuronal physiol-
ogy underlying maladaptive behaviors (Hyman & Malenka, 
2001; Kalivas & O'Brien, 2008; Solowij et al., 2009).

Animal studies report that THC disrupts the regulation 
of the endogenous cannabinoid system leading to patho-
logical changes in brain structure and function, including 
network connectivity (Batalla et al., 2013). By binding on 
CB1R, THC also indirectly induces functional alterations of 
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dopamine (DA) pathways. Within this framework, antago-
nistic interactions between CB1R and dopamine D2/3 recep-
tors (D2/3R) lead to DA hyperactivation and hypersensitiza-
tion of D2/3R in the striatum (Ginovart et al., 2012). Brain 
structural changes include decreases of cerebrospinal fluid 
and grey matter density (Block et al., 2000; Matochik et al., 
2005), while functionally there are decreases of cerebral 
blood flow and downregulation of CB1R (Hirvonen et al., 
2012; Lundqist et al., 2001). This is compatible with several 
human neuroimaging studies reporting a pattern of brain 
regions dysfunction, such as prefrontal, parietal, and limbic 
cortices, associated with worse outcome, indicating impacts 
of long-term cannabis use (Goldstein & Volkow, 2011; Lun-
dqvist, 2005). Although results remain inconsistent between 
studies, likely due to sociodemographic and drug use dif-
ferences (Batalla et al., 2013). Importantly, the relationship 
between cannabis-related changes and their impact on cogni-
tive performance remains to be elucidated.

To distangle this relationship and examine the subtle 
dysfunction characteristics of cannabis exposure, electro-
encephalography (EEG) provides a valuable electrophysi-
ological method for noninvasive exploration of high tempo-
ral resolution (i.e., millisecond) electrocortical fluctuations 
(Norberg et al., 2012).

In electrocortical profiles recorded by EEG,previous 
studies showed that cannabis exposure is associated with 
a unique topography of EEG activity, which includes an 
increased absolute and relative power of alpha “slow waves” 
over the bilateral frontal cortex (Struve et al., 1999; Struve 
et al., 2003). Importantly, alpha oscillations are known to be 
modulated by attention and display a negative correlation 
with cortical activation and metabolism (Conner et al., 2011).

At the behavioral level, cannabis use has been associated 
with a wide range of cognitive and executive deficits (Accordino 
et al., 2006; Solowij & Pesa, 2010). Impairments in attention are 
most commonly observed following cannabis abuse (Lundqvist, 
2005), whereas personality traits of impulsivity are widespread 
among chronic users (Ersche et al., 2010). A neurophysiologi-
cal origin for these impairments is supported by noninvasive 
imaging studies showing aberrant activation of intrinsic brain 
networks (Goldstein & Volkow, 2011). Other studies showed 
that increases in trial-by-trial alpha power predict failures to 
inhibit prepotent motor responses during a response inhibition 
task (Mazaheri et al., 2009; Mazaheri et al., 2011).

Elsewhere, several studies have linked cannabis use with 
altered DA function and brain connectivity, leading to cog-
nitive problems (Bloomfield et al., 2014; Coullaut-Valera 
et al., 2014). However, because the neurocognitive substrates 
of these changes remain poorly understood, a clearer inves-
tigation of the mechanisms associated with repeated canna-
bis use is needed. Notably, we sought to directly investigate 
potential associations between patients’ attentional deficits 
and abnormal EEG activity.

In the current study, we investigated in tandem the EEG 
and behavioral correlates of cannabis use disorder (CUD). 
This was achieved by examining the potential EEG abnor-
malities of CUD patients compared with nonusers and com-
paring measures of cognitive performance in the Go/NoGo 
task between CUD patients and nonusers controls.

We first hypothesized that patients with CUD exhibit sig-
nificant changes in EEG spectral profile and attentional defi-
cits compared with cannabis nonuser controls and that these 
brain-behavioral measures may be cross-correlated. Specifi-
cally, based on earlier work (Accordino et al., 2006; Kalivas 
& O'Brien, 2008; Lundqist et al., 2001), we expected CUD 
patients to demonstrate elevated EEG alpha power and defi-
cient attentional performance (i.e., lower accuracy).

Materials and Methods

Participants

A total of 48 participants were recruited, including 24 
patients with a diagnosis of CUD (mean age: 26; standard 
deviation [SD]: 5.39; 10 women, 14 men) and 24 age- and 
sex-matched healthy controls without history of cannabis 
use (mean age: 24.54; SD: 4.4; 11 women, 13 men).

A clinical screening interview was conducted with each 
potential participant to determine eligibility for the study. 
Participants with past or current psychiatric or neurologi-
cal disorders, past or current clinically significant medical 
condition and central nervous system disorder, addictive 
disorders (other than cannabis use in patients, and except 
tobacco), or current psychotropic treatment were excluded.

Control participants followed the same screening inter-
view as patients and were selected to match cannabis users on 
key demographics (i.e., sex, age, and educational experience). 
Demographics parameters differences between CUD patients 
and nonuser controls were not significant except degree of 
cannabis use as expected (Supplementary Table 1). All par-
ticipants gave their written, informed consent before partici-
pating in the study, which was approved by Geneva Ethics 
Committee and accorded with the declaration of Helsinki.

Screening

Cannabis consumption

To qualify as CUD, diagnosis was assessed using the DSM-5 
manual, which includes 11 diagnostic criteria and defines 
this disorder by the presence of at least 2 of them occurring 
in a 12-month period. The severity of cannabis consumption 
was evaluated by two variables: the frequency of cannabis 
consumption per week and the time to smoke a quantity of 
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1 g of cannabis. This is more accurate than subjective recall 
of the number of cannabis cigarettes, given the variability in 
dose and self-reported use (Bloomfield et al., 2014).

To characterize chronic use, we generally lack reliable 
information on the doses of THC that is commonly used 
by regular cannabis users (Norberg et al., 2012). As a con-
sequence, epidemiological studies have usually defined 
“heavy” or “regular” cannabis use as daily or near daily use, 
because this pattern of continued use over years predicts 
increased risks of adverse health effects (Hall & Pacula, 
2002). Accordingly, in our study we applied a combination 
of criteria, including weekly consumption and age at first 
use, to qualify participants as regular cannabis users. Fur-
thermore, in our sample, all patients reported consuming 
cannabis exclusively through cigarettes.

Detailed drug histories were obtained from participants 
using questionnaires to avoid other forms of addiction 
and comorbidities. Patients were assessed using the Alco-
hol, Smoking, and Substance Involvement Screening Test 
(ASSIST), a short screening questionnaire to evaluate the 
use of different substances (tobacco products, alcohol, can-
nabis, cocaine, amphetamine-type stimulants, sedatives and 
sleeping pills, hallucinogens, inhalants, opioids, and “other 
drugs”) and consequences associated (Humeniuk et al., 
2008; Khan et al., 2011). Finally, CUD participants were 
asked to stop their cannabis use 24 h before the screening to 
preclude any possible acute influence on measures.

Go/NoGo task

The Go/NoGo is a computerized task used to study sustained 
attention and inhibitory control as hallmarks of executive 
functioning, which is generally altered in substance-abuse 
disorders (Verbruggen & Logan, 2008). This task measures 
the capacity to inhibit a pre-potent response (i.e., dominant 
or automatic motor response). It consists in left- or right- 
pointing arrows appearing briefly on the screen, participants 
must select the corresponding on the keyboard as fast as pos-
sible (Go condition). Randomly on 20% of trials, the arrow 
color changes to blue, this represents the NoGo condition in 
which the motor response must be inhibited Fig. 1.

The parameters of the task were set as follows:

–	 Maximal reaction time: 1.0 s
–	 Intertrial interval: 0.25 s
–	 Initial signal delay: 0.250 s
–	 Numbers of experiment blocks: 2
–	 Delay between blocks: 30 s, with feedback on the perfor-

mance of each block.

The random list for signal presentation was organized 
with 10 Go stimuli and 2 NoGo stimuli (1/6 of the trials 
were NoGo trials). The task included 1 practice block, which 
contains 24 trials with 20 Go and 4 NoGo stimuli, and 2 
experimental blocks in which design was repeated 20 times. 

Fig. 1   Schematic display of the Go NoGo task paradigm (Gan et al., 2014)
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At the end of the task, the subject’s performance parameters 
were recorded, as the numbers of Go and No-Go responses 
for each condition: correct, incorrect on a NoGo, incorrect 
on a Go, and missed.

Results were analysed using the framework of Signal 
Detection theory (Macmillan & Creelman, 2005), which 
attributes responses to a combination of sensitivity (as 
detecting a signal, i.e., Go) and specificity (i.e., NoGo). 
Here, accuracy is represented by the Hit rate (success rate), 
i.e., the proportion of correct responses on Go trials (con-
versely known as omission errors) and was used as an index 
of attentional performance (Li et al., 2006; Saunders et al., 
2008). The proportion of incorrect responses on NoGo trials 
(i.e., commission error) was used as an index of inhibitory 
control (Li et al., 2006; Macmillan & Creelman, 2005).

EEG recording and processing

Quantitative EEGs were obtained after subjects passed 
screening examination. A multichannel EEG cap was used 
to measure whole-scalp activity in baseline recording, con-
sisted of resting state measurement of 3 minutes under eyes 
open and closed conditions. The scalp signals were recorded 
using a 19 Ag/AgCl electrodes cap (Electro-cap Interna-
tional, Inc. www.​elect​ro-​cap.​com) according to the 10-20 
international system. The ground electrode was placed on 
the scalp equidistant between Fpz and Fz. Electrical sig-
nals were amplified with the 21-channel Mitsar EEG sys-
tem (Mitsar-201, CE0537, Mitsar, Ltd. http://​www.​mitsar-​
medic​al.​com), and all electrode impedances was set below 
5 kOhm. For online recording, electrodes were referenced 
to linked earlobes, and then the common average reference 
was calculated offline before further analysis.EEG data were 
continuously recorded at a sampling rate of 250 Hz and then 
filtered with an offline bandpass filter of 0.5-50 Hz.

For offline processing, all EEG data were imported into 
the Matlab toolbox EEGLAB v12 (http://​sccn.​ucsd.​edu/​
eeglab/). We removed stereotypical eye movement artifacts, 
such as saccades or blinking, using Infomax ICA decom-
position (Jung et al., 2000). This provides a good artifact 
separation performance for most artifact types whilst ensur-
ing minimum information loss (Inuso et al., 2007). Record-
ings were further cleaned with an automated z-score based 
method, using the FASTER plugin (Nolan et al., 2010), 
rejecting 1-second epochs that deviated from the mean by 
more than 1.7 standard deviations.

Source‑space measures of EEG activity

Artifact-free EEG data were processed in Matlab with 
the Brainstorm Toolbox (http://​neuro​image.​usc.​edu/​brain​
storm/). In line with previous approaches using a similar 
EEG setup in clinical populations (Tokariev et al., 2019), 

we first computed a head model of the cortex surface for each 
EEG recording using overlapping spheres (OpenMEEG) and 
then estimated unconstrained cortical sources using the mini-
mum-norm sLORETA algorithm implemented in Brainstorm 
(Cosandier-Rimélé et al., 2017). To normalize sources across 
participants, we projected (warped) the sources from each par-
ticipant onto the MNI/Colin27 template brain (Holmes et al., 
1998). The 15,000 voxel source-space was then divided into 
68 cortical regions-of-interest (ROIs) according to the Desi-
kan–Killiany neuroanatomical atlas (Desikan et al., 2006). 
Temporal source-activities across all the voxels in each ROI 
were then averaged and band-pass filtered in the following 4 
frequency bands: delta 1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, 
beta 13-20 Hz. For every subject, each frequency band was 
quantified in Brainstorm to examine differences in spectral 
power between the patient and control groups.

Spectral power

Spectral subdivision into the basic EEG frequency bands 
was estimated with a standard FFT approach using Welch’s 
method (Matlab pwelch() function) and a Hanning window-
ing function (4 second epoch, 50% overlap). Based on the 
total number of collected and averaged epochs per subject, 
quantitative estimates of Absolute Power (amplitude, signal 
strength) was computed, and percent Relative Power (i.e., 
% power, amount, abundance) was calculated as the ratio of 
the mean power in a specific EEG band and the broadband 
power (1-45 Hz).

Statistical analyses

Source-space (voxel-wise) of band-limited surface spec-
tral power were export by using the Brainstorm Toolbox. 
Statistical comparisons between CUD patients and con-
trols were performed using Statistical Parametric Mapping 
toolbox (SPM12) via independent two-tailed t-tests with a 
p < 0.05 threshold across the four EEG bands. Individual 
attentional performance was measured by performance on 
the Go/NoGo task, using the Hit rate variable. Data from 
CUD group was subsequently used in a between-subject 
regression analysis (with a p < 0.05 threshold) using the 
SPM toolbox.

Between-group comparisons in inhibitory control (com-
mission errors) and attention (hit rate) in the Go/NoGo task 
were performed by using independent two-tailed t-tests with a 
probability of type I error (α) = 0.05. One control subject out-
lier was excluded from the analysis, because his EEG power 
measure was 2 standard deviations above the sample’s mean.

Considering the previous studies reporting alpha band 
abnormalities in CUD (Struve et al., 1999; Struve et al., 
2003), our main hypotheses were based on this band and 
hence multiple comparisons involving alpha spectral 

http://www.electro-cap.com
http://www.mitsar-medical.com
http://www.mitsar-medical.com
http://sccn.ucsd.edu/eeglab/
http://sccn.ucsd.edu/eeglab/
http://neuroimage.usc.edu/brainstorm/
http://neuroimage.usc.edu/brainstorm/
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power were performed without statistical correction. Com-
parisons involving delta, theta, and beta bands also were 
uncorrected but may be considered exploratory.

Results

Group spectral power in patients compared 
with healthy controls

An overview of the results obtained is provided in Table 1, 
as specifically shown in Fig 2 resting state EEG showed 
significant increases in spectral power for CUD patients 
compared with controls across all four frequency bands, 
albeit this effect was most distributed in the alpha band 
(Fig 2). To improve specificity, we tested for differences in 
relative (%) power, often used to normalize spectra under a 
constant value of broadband (1-40 Hz) power, and reflect-
ing the degree of spectral slowing (i.e., greater relative 
power in lower frequencies) or spectral acceleration (i.e., 
greater relative power in higher frequencies). As shown 
in Fig. 2, patients demonstrated regions of anatomically 
selective excess of slow-waves amplitude (alpha), in line 
with previous research (Kalivas & O'Brien, 2008). Specifi-
cally, relative alpha power was significantly more elevated 
in the cortex of patients relative compared with controls 
(Fig 3), with a statistical threshold of p < 0.05 at a t-values 
of t >1.67.

CUD was associated with relative alpha power increases 
within frontocentral regions, with a maximum in the sen-
sorimotor cortex (t = 2.11, p < 0.05). On the other hand, 
relative theta and beta power were reduced within the 
temporal lobe (t = −1.99, p < 0.05; t = −1.87, p < 0.05 
respectively). No significant differences were found in the 
delta band.

Brain‑behavioral correlates

There were no statistical differences in either commission 
errors (p > 0.05) or hit rate (p > 0.05) between CUD patients 
and controls, indicating that inhibitory control and sustained 
attention were similar between the two groups.

Our group-level analyses indicated anomalous spectral 
power pattern between patients and control subjects; how-
ever, they cannot be used to directly infer any potential links 
with attentional performance. To disentangle neurobehavio-
rally specific from nonspecific EEG power in CUD patients, 
we conducted regression analyses directly testing for any 
relationships between individual patients’ relative alpha 
source power and their attentional performance, as indexed 
by the Hit score (success rate) in the Go/NoGo task. As seen 
in Fig. 4, a significant negative correlation (t = −2.40, p < 
0.05) with attentional performance indicates that decrease 
Hit rate accuracy was predicted by increases in alpha power 
within a homologous set of nodes in somatosensory and 
motor Brodmann areas. This is consistent with the litera-
ture linking attention with frontal activity in healthy sub-
jects (Mazaheri et al., 2009), and reinforces the idea that 
the changes in alpha-band may be specifically related to dif-
ficulties in spatially directed attentional processing in CUD.

Conjunction analysis between group spectral power 
abnormalities and correlates of behavioral deficits

Finally, as shown in Fig.  5, we investigated whether 
abnormal spectral power seen at the group level was 
consistent with changes associated with interindividual 
differences in attentional performance. In other words, 
was there evidence for a selective disruption of alpha 
rhythm in cannabis addiction that impacted attentional 
function? Consequently, we performed a conjunction of 
tests (i.e., global null hypothesis) to identify the overlap, 
if any, between the statistically-significant (p < 0.05) 

Table 1   Overview of the statistical analyses and results obtained on the comparison between CUD patients and healthy controls. Comparisons of 
delta, theta, and beta bands were only exploratory

n.s. not significant

EEG and behavioral results Brain-behavioral correlates Conjunction analysis

Relative spectral power Delta n.s.
Theta t = −1.99; p < 0.05 in temporal 

lobes
Beta t = −1.87; p < 0.05 in temporal 

lobes
Alpha t = 2.11; p < 0.05 in sensori-

motor cortex
t = −2.40; p < 0.05 Negative 

correlation over sensorimotor 
cortex

t = 1.50; p < 0.05 over 
Statistical overlap on left 
sensorimotor and temporal 
regions

Go/NoGo task Hit rate n.s.

Commission errors n.s.
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group-level relative alpha power differences (Fig. 2) and 
the regression between relative alpha power and omission 
errors (Fig. 4).

Interestingly, we identified a statistically reliable over-
lap within alpha band and attentional performance in the 
left sensorimotor and temporal regions (Brodmann area 
4, 6, 20 with maximum (t = 1.50, p < 0.05)).

Discussion

The present study focused on the relationship between 
alpha oscillations and attention in adult cannabis users, 
using an experimental design with resting EEG and behav-
ioral task conditions. By examining the cortical dynam-
ics of CUD patients using EEG signals, and calculating 

Fig. 2   Relative spectral power, during eyes closed. p values of statistical differences in BrainNet viewer source-space between CUD patients and 
nonuser controls. Red indicates greater power for patients (p < 0.05); blue indicates greater power for controls (p < 0.05)
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spectral power profiles, our results indicate that: 1) CUD 
patients showed increased alpha power over frontal regions 
compared to controls, and 2) their attentional performance 
(hit accuracy) inversely correlates with individual levels of 
frontal alpha power in the sensorimotor cortex (Table 1).

Differences in EEG spectral power between cannabis 
users and controls

It has previously been reported that theta/alpha oscillations 
reflect modulations of neuronal processing within cortical 
circuits (Klimesch, 1999; Romei et al., 2008; Ros et al., 

2010). Specifically, suppression of alpha rhythms results 
in increased cortical excitability (Ros et al., 2010). Inter-
estingly, excess slow-wave spectral power appears to be a 
nonspecific marker of brain dysfunction (Ros et al., 2014). 
For example, patients with attentional-deficit disorder typi-
cally present significantly greater magnitudes of theta/alpha 
rhythms (Koehler et al., 2009), and their normalization (i.e., 
reduction) during treatment is related to improvements in 
attention (Clarke et al., 2002; Deiber et al., 2020; Geven-
sleben et al., 2009). Taken together, these results suggest 
that cannabis users may suffer from insufficient recruitment 
of frontal regions with a detrimental impact on attentional 
capacity.

Fig. 3   Relative spectral power of alpha band, during eyes closed. p values of statistical differences in BrainNet viewer source-space between 
CUD patients and controls. Red indicates greater power for patients (p < 0.05)

Fig. 4   Alpha (8-12 Hz) power as a function of hit rate score in the 
Go/NoGo task. Regression obtained using data from CUD group 
only. Blue values indicate statistically significant beta coefficients (p 
< 0.05)

Fig. 5   Alpha (8-12 Hz) power as a function of Hit rate score, con-
junction analysis using data from control and CUD group
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Specifically, in our study, patients’ cortical activation 
was reduced compared with control subjects, given that they 
exhibited an increase in slow-wave alpha power, peaking 
over the sensorimotor regions (p < 0.05). This excess of 
alpha rhythmicity may be associated with cortical inhibi-
tion or reduced information processing (Klimesch, 1999), 
and its location in frontal regions might be responsible for 
attentional impairments.

The spectral power results in our study are compatible with 
previous work reporting an alpha power increases in frontal 
regions of cannabis users (Struve et al., 1999). On the other 
hand, our results do not replicate studies showing significant 
reductions in delta power (Prashad et al., 2018; Struve et al., 
1999). These inconsistencies may stem from differences in the 
characterization of cannabis users, given the potentially wide 
range of cannabis abuse profiles in these studies.

Relationship between alpha power and attentional 
performance

Our analyses correlating EEG with behavioral measures 
demonstrated a significantly negative correlation between 
frontal alpha power and hit rates on the Go/NoGo task. This 
suggests that hypoactive frontal cortical networks could 
directly underpin attentional deficits in cannabis users. 
This account is supported by studies reporting a similar 
inverse correlation between alpha and sensory detection 
performance in healthy subjects and patients with ADHD 
(Deiber et al., 2020; Ergenoglu et al., 2004; Mazaheri et al., 
2014). Abnormal patterns of electrical oscillatory activity 
have been repeatedly described in adult ADHD (Poil et al., 
2014). In particular, the alpha rhythm (8–12 Hz), known to 
be modulated during attention, is affected in ADHD, as well 
as other neurological disorders associated with attentional 
deficits (Ros et al., 2022). These electrocortical impairments 
are commonly associated with reduced responses in the 
visual cortex to behaviourally relevant stimuli, poor motor 
planning, and impaired top-down control (Van Diepen et al., 
2019). Accordingly, in line with the literature on ADHD 
patients reporting a linkage between EEG alpha power and 
behavioral impairments (Lenartowicz et  al., 2018), our 
results add evidence to the notion that CUD patients may 
exhibit impaired attention and that this is mediated by anom-
alies in prefrontal activity. Further research should deepen 
our findings and examine any impact on other executive 
functions, e.g., by using other tasks specific for impulsivity.

These findings promisingly reveal a neurophysiological 
signature of cannabis abuse and indicate that EEG signals 
at specific frequencies may underpin distinctive behavio-
ral impairments, consistent with our hypothesis. However, 
contrary to our hypothesis, the group-average number of 
errors in the Go/NoGo task did not reveal any significant 
attentional deficit overall, even though this effect was 

found and linked to the EEG anomalies when consider-
ing individual measures. Further research should examine 
whether deficits can be observed at the group level with 
other measures of task performance, such as trial-by-trial 
variability or time-dependent effects. In addition, EEG 
anomalies were obtained during spontaneous resting state 
and could be modified during an active attentional task to 
support normal behavioral performance.

Limitations

The results of this study must be taken in the context of 
its limitations. Although the severity and ingestion of can-
nabis use was evaluated, in the absence of a standardized 
cannabis use unit we cannot control for the exact canna-
bis consumption and thus THC content (Hindocha et al., 
2018; Prince et al., 2018). Participants had to abstain from 
cannabis 24 hours before the scheduled session to avoid 
the effects of acute intoxication, which leaves open the 
question whether the current results reflect the changes 
resulting from this short-term abstinence or continuous 
change due to cannabis use. Future studies should exam-
ine the differences between abstinence states (long-term 
and short-term) and acute intoxication. This is particularly 
important given the persistence of changes in dependent 
alcohol and heroin users (Winterer et al., 2003).

Other potential limitations are reflective of the imag-
ing modality we used, i.e., EEG. Although EEG provides 
a direct measure of neural activity, it is most sensitive 
to sources within the cortical-mantle. Hence, our analy-
ses were restricted to cortical network dynamics and did 
not allow for reliable assessment of subcortical structures 
which may have an important role in the control of atten-
tion (Gitelman et al., 1999; Vuilleumier, 2013).

Nevertheless, the results suggest a significant influence 
of cannabis on electrophysiological signals. Finally, it is 
important to note that the study’s design is unable to deter-
mine whether this is a cause or consequence of cannabis 
use. Longitudinal studies therefore should be performed 
to confirm whether these electrophysiological signals are 
consequences of cannabis use and not a physiological pre-
disposition for its consumption.

Conclusions

The present study examined for the first time the potential 
association between the electrocortical profile of cannabis 
abusers (i.e., spectral power) and their cognitive-behavioral 
performance. We confirmed previous work showing that can-
nabis users display statistically reduced cortical activation, 
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indexed by excessive alpha power. This loss of “alpha 
desynchronization” suggests stronger inhibition of ongoing 
neuronal activity that may interrupt attentional processing. 
Importantly, we found that this abnormal EEG pattern pre-
dominates over frontal cortical regions and correlates with 
detection performance (i.e., hit rate) on an attentional task.

Thus, potentially treating cannabis abusers with therapies 
that decrease alpha rhythm production, such as neurofeed-
back, may be a promising approach for mitigating cognitive 
deficits and/or preventing drug relapse, as it is already used 
for improving attentional performance in ADHD (Ergenoglu 
et al., 2004).
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