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2CIBM-SP, École polytechnique fédérale de Lausanne, Switzerland

3Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
4School of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland

5Institute for Biomedical Engineering, UZH/ETH Zürich, 8092 Zürich, Switzerland
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Abstract: In this paper we introduce a new reconstruction algorithm
for X-ray differential phase-contrast Imaging (DPCI). Our approach is
based on 1) a variational formulation with a weighted data term and 2) a
variable-splitting scheme that allows for fast convergence while reducing
reconstruction artifacts. In order to improve the quality of the reconstruction
we take advantage of higher-order total-variation regularization. In addition,
the prior information on the support and positivity of the refractive index is
considered, which yields significant improvement. We test our method in
two reconstruction experiments involving real data; our results demonstrate
its potential for in-vivo and medical imaging.
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1. Introduction

X-ray differential phase-contrast imaging (DPCI) is a tomographic technique that was first
proposed by David et al. [1] and Momose et al. [2]. Among its advantages are its compatibility
with regular laboratory X-ray sources and its high sensitivity.

The data provided by DPCI corresponds to the first derivative of the Radon transform of the
refractive index of a sample. Thus, in practical applications, the common reconstruction scheme
for DPCI is based on a variant of the filtered back-projection (FBP) algorithm. While FBP is a
fast (non-iterative) method, it typically requires a large number of projections to achieve a good
reconstruction quality [3]. This implies long exposure times which could damage the specimen.

Recently, several authors have proposed iterative techniques that exploit prior knowledge on
the specimen to significantly reduce the number of required projections [4–7]. Their approaches
are all based on a penalized maximum-likelihood formulation, with a standard `2-norm data-
fidelity term. In this paper, we aim at further reducing the number of projections by proposing
an improved iterative reconstruction algorithm for DPCI. The contributions of this paper are
summarized as follows:

1. Formulation of the reconstruction as a variational problem using a weighted norm for the
data term that ensures that the iteration matrix is well-conditioned and which speeds-up
the algorithm considerably.

2. Use of a non-quadratic `1 regularization that consists either of total variation (TV) for
piecewise-constant images or a higher-order extension that is better matched to biological
specimens.

3. Inclusion of support and positivity constraints in the reconstruction algorithm.

4. Design of a novel variable-splitting scheme for the constrained optimization problem,
which improves the reconstruction quality compared to [4]. As a result, the last step
of every iteration is a denoising operation, which is beneficial for suppressing artifacts.
Furthermore, this splitting is inherently matched to our preconditioner, leading to a fast-
converging numerical scheme.

Finally, we conduct experiments on real data to evaluate the proposed method. A preliminary
version of this paper has been presented at ISBI 2013 [8]. The overlap is only the use of a
weighted norm (item 1), but the presented algorithm and the other refinements (items 2-4) are
specific to this paper.

The remainder of the paper is organized as follows: In Section 2, we review the continuous-
domain formulation of the DPCI forward model and state an important relationship between
the reconstruction and the measurements. In Section 3, we describe the discretization scheme
of the forward model. We propose there a novel formulation of the reconstruction. In addition,
the details of the algorithm are discussed. We evaluate the proposed reconstruction scheme in
two experiments involving real data in Section 4. We summarize and conclude the paper in
Section 5.
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2. Continuous-domain forward model

Let f denote the 2D distribution of the refractive-index of the object. In DPCI, the measurement
g is the first derivative of the Radon transform (FDRT) of this function, with

g(y,θ) = R(1){ f}(y,θ) = ∂R{ f}(y,θ)
∂y

, (1)

where R{ f}(y,θ)=
∫
R f (yuuuθ +tvvvθ ) dt and (uuuθ ,vvvθ ) are orthonormal vectors that form an angle

θ with some reference coordinate system. An important property of the continuous-domain
FDRT is that it can be inverted formally using a 1D convolution operator followed by the
adjoint of FDRT. This leads to

f = R(1)∗{h∗y g}. (2)

Here ∗y denotes a 1D convolution with respect to the variable y. The frequency response of the
convolution kernel h is given by ĥ(ω) = 1/|ω|.

3. Model discretization and image reconstruction

3.1. Model discretization

In order to discretize the forward model (1), we expand f as

f (xxx) = ∑
kkk

ckkk β
n(xxx− kkk), (3)

where β n is a tensor-product polynomial B-spline of degree n. In practice, the domain of f
is bounded. Therefore, we are only interested in a finite number of expansion coefficients ckkk,
which we gather in a vector c.

The measurement g is only known at discrete locations and we collect the corresponding
values in a vector g. Then, in the absence of noise, (1) implies the linear relationship g = Hc,
where H is a matrix that represents the discretized FDRT in the B-spline basis [4].

3.2. Image reconstruction

We formulate the reconstruction as a constrained optimization problem with a generalized
weighted `2-norm data term. Specifically, we aim at finding the vector c0 such that

c0 = argmin
c∈C

{
J(c), 1

2 ‖Hc−g‖2
W +λ1Ψ1(c)+λ2Ψ2(c)

}
, (4)

where g is an (M× 1) data vector, H is an (M×N) forward projection matrix, ‖·‖2
W is the

weighted norm which is defined as 〈W·, ·〉, and C is a convex set that enforces support and
positivity constraints. Since reconstruction with a limited number of projections is an ill-posed
problem, we introduce regularization terms to take advantage of the prior information. The
regularizations Ψ1(c) and Ψ2(c) are smooth and non-smooth, respectively. The parameters
λ1,λ2 ∈ R control the strength of the regularization.

For rapid convergence, our proposal is to use a weighting matrix which is the discrete coun-
terpart of the convolution operator h in (2), with a slight modification to the frequency-domain
singularity at zero. We modify it with the frequency response 1

|ω|+β
, where β is an appropriate

positive parameter; it is a positive-definite operator.
We solve the nonlinear regularized problem while defining an axillary variable u and using

an augmented-Lagrangian (AL) scheme.
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This in turn is equivalent to finding critical point of the augmented Lagrangian (AL)

Lµ(c,u,ααα) =
1
2
‖Hu−g‖2

W +λ1Ψ1(u)+λ2Ψ2(c)

+ααα
T (u− c)+

µ

2
‖u− c‖2

2 , (5)

where ααα is a vector of Lagrange multipliers that imposes the constraint u = c. The classical AL
scheme alternates between a joint minimization step and an update step, so that (ck+1,uk+1)← argmin

c∈C ,u
Lµ(c,u,αααk)

ααα
k+1← ααα

k +µ(uk+1− ck+1). (6)

Moreover, we use alternating direction method of multipliers (ADMM) [9] to separate the joint
minimization into the succession of simpler partial problems


uk+1← argmin

u
Lµ(ck,u,αααk) (Step 1)

ck+1← argmin
c∈C

Lµ(c,uk+1,αααk) (Step 2)

ααα
k+1← ααα

k +µ(uk+1− ck+1). (Step 3) (7)

Since the zero frequency is in the null-space of the forward operator, we use Tikhonov regular-
ization term Ψ1(u) = 1/2‖u‖2.

In Step 1, ck and αααk are fixed, therefore Lµ(ck,u,αααk) is a quadratic function of u whose
gradient is

∇∇∇Lµ(ck,u,αααk) =
(
HT WH+(µ +λ1)I

)
u

−
(

HT Wg−
(

ααα
k−µck

))
. (8)

We use the conjugate-gradient (CG) method to solve this step. Since the condition number of
the matrix HT WH+(µ +λ1)I is quite small, the corresponding iterative algorithm converges
rapidly.

Step 2 of ADMM, which minimizes Lµ(c,uk,αααk) with respect to c, is the constrained de-
noising problem

argmin
c∈C

{Lµ(c,uk+1,αααk), ααα
kT
(uk+1− c)+

µ

2

∥∥∥uk+1− c
∥∥∥2

2
+λ2ψ2(c)}

= argmin
c∈C

{
1
2

∥∥∥∥uk+1 +
αααk

µ
− c
∥∥∥∥2

2
+

λ2

µ
Ψ2(c)

}
. (9)

The common expression for the regularizer is

Ψ2(c) = ‖Rc‖ , (10)

where ‖·‖ is a non-quadratic norm and R : RN → R(NK) is the regularization operator (e.g.,
gradient with K = 2 or Hessian with K = 2×2). For the identity regularization operator, R = I,
(9) typically admits a direct threshold-based solution.

For the general case of regularization operator, we aim at solving the denoising problem,
which is equivalent to the proximal map

prox‖·‖,λ ,PC
(z) = argmin

c∈C

{
1
2
‖z− c‖2

2 +λ ‖Rc‖
}
, (11)
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where PC is the convex projection that corresponds to the constraint. In order to find the
solution of (11), we use Fenchel duality to rewrite the regularization term as

‖Rc‖= max
p∈B

〈
RT p,uuu

〉
, (12)

where RT : R(NK) → RN is the adjoint of the operator R, p ∈ R(NK) and B := {p ∈
R(NK)|‖p‖∗ ≤ 1} with ‖·‖∗ the dual norm.

It can be shown that the solution of (11) is PC (z−λRT p∗), where

p∗ = argmin
p

f (p)+1B , (13)

with ∇∇∇ f (p) =−λRPC (z−λRT p). We apply fast iterative shrinkage-thresholding algorithm
(FISTA) [10] to solve (13). The step size is constrained by the Lipschitz constant L of ∇∇∇ f (p)
that depends on the regularization operator R. The other important component is the orthog-
onal projection onto the set B that is specified by the chosen norm. Let us denote it by PB .
Algorithm 1 describes the denoising algorithm.

Input: z, λ , τ ≤ L−1, PB , PC

Output: c (optimal solution of (11))
initialization p0, t1 = 1;
while stopping criterion is not satisfied do

pk←PB(yk + τλRPC (z−λRT pk));

tk+1←
1+
√

1+4t2
k

2 ;

yk+1← pk +
(

tk−1
tk+1

)
(pk−pk−1);

k← k+1;
end
return c = PC (z−λRT p).

Algorithm 1: DENOISING ALGORITHM

The benefits of the proposed splitting are: 1) the transformation of a complex reconstruction
problem into a sequence of simpler optimizations where the constraint is applied as simple
projection in each iteration of the denoising step; 2) any regularization term can be handled by
knowing its corresponding denoising function; 3) the output of the algorithm is the solution of
the denoising step that results in an improved quality of reconstruction.

The reconstruction method is summarized in Algorithm 2. Here, the starting point of each
inner CG iteration is the outcome of the previous CG iteration called as warm initialization.

As for the regularization, we consider two distinct options
1) Our first option is the use of a total-variation (TV) regularization term to enhance the

edges in the reconstructed image. Therefore, we set

Ψ2(c) = ‖Lc‖1,1 (14)

with ‖Lc‖1,1 = ∑i ‖{Lc}i‖1, where the sum is computed on all B-spline coefficients and
{Lc}i ∈ R2 is the gradient vector of the image at position i. The discrete gradient operator
L : RN → RN×2 is computed according to proposition 2 in [4].

Here, the regularization operator is the discrete gradient operator and the mixed `1−`1 norm
is chosen as the potential function. As the dual norm of the `1 norm is `∞, the dual ball is defined
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Input: g, H, λ1, λ2, PC

Output: ( f (xxx) reconstructed image)
set λ1, λ2, µ , and B-spline degree m;
initialization c0, u0 and ααα0;
while stopping criterion is not satisfied do

uk+1← argmin
u

Lµ(ck,u,αααk), using CG method with initial estimate uk (“warm

initialization”);
ck+1← prox

‖·‖, λ2
µ
,PC

(uk+1 +αααk/µ);

αααk+1← αααk +µ(uk+1− ck+1);
k← k+1;

end
return f (xxx) = ∑kkk ckkkβ m(xxx− kkk)

Algorithm 2: DPCI-CONSTRAINED REGULARIZED RECONSTRUCTION WITH
WEIGHTED NORM (CRWN).

as

B∞,∞ = {p = [pT
1 ,p

T
2 , ...,p

T
N ]

T ∈ RN×2 :
‖pi‖∞

≤ 1, ∀i = 1,2, ...,N} . (15)

Therefore, the orthogonal projection of y ∈ RN×2 = [yT
1 ,y

T
2 , ...,y

T
N ]

T onto this ball is ỹ =
PB∞,∞(y) with

[ỹi] j = sgn([yi] j)min(|[yi] j|,1),
∀i = 1,2, ...,N, j = 1,2 , (16)

where [·] j is the j-th entry of the corresponding vector and ỹ = [ỹT
1 , ỹ

T
2 , ..., ỹ

T
N ]

T . This regular-
ization is well-matched to piecewise-constant images.

2) Owing to the fact that biological and medical specimens consist mostly of filament-like
and complicated structures, we investigate higher-order extensions of total variation. We apply
Hessian Schatten-norm regularization (HS) as our second option. It can eliminate the staircase
effect of TV regularization and results in piecewise-smooth variations of intensity in the recon-
structed image. We set

Ψ2(c) = ‖Hc‖1,S1
, (17)

where H : RN → RN×2×2 is the discrete Hessian operator and ‖Hc‖1,S1
is the mixed of `1

and nuclear norm. The norm can be computed with ‖Hc‖1,S1
= ∑i(σ1,i +σ2,i), where σ1,i and

σ2,i are the singular values of the Hessian matrix at position i. Therefore, the corresponding
unit-norm dual ball is defined as

B∞,S∞
= {p = [pT

1 ,p
T
2 , ...,p

T
N ]

T ∈ RN×2×2 :
‖pi‖S∞

≤ 1, ∀i = 1,2, ...,N} , (18)

where ‖·‖S∞
is the `∞-norm of the singular values of the corresponding matrix (for more details,

we refer the reader to [11]).

3.3. Parameter setting

The proposed algorithm has several parameters. We adjust them as follows:
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• parameters λ1 and λ2: we use the approach proposed in [4]; λ1 = 10−5 and λ2 = 10−4 ‖g‖.
The experimental results suggest that this choice of parameters yields the optimal perfor-
mance.

• parameter µ: this parameter affects the convergence speed of ADMM. Since the algo-
rithm is not too sensitive to it, we use a fixed value (µ = 1).

• parameter λ : this is a parameter of the proximal map operator in Eq. 11. Since the second
step of ADMM is solving Eq. 9, we have λ = λ2/µ .

• Lipschitz constant L: the Lipschitz constant of ∇∇∇ f (p) =−λRPC (z−λRT p) is approx-
imated by the Lipschitz constant of the same operator without the convex projection PC

since the projection on the convex set is firmly non-expansive. Thus,

L≈ λ
2×λmax(RRT ) , (19)

where λmax(A) is the maximum eigenvalue of the matrix A. For our regularization
scheme λmax(RRT )≤ γ where γ = 8 for the TV regularization for two-dimensional prob-
lems, and its value is 64 for the HS regularization as computed in [11].

• parameter τ: we set it to τ = 1/10×L−1.

4. Experimental results

We compared the proposed algorithm to FBP and to ADMM-PCG, which appears to be the
current state of the art for the reconstruction of X-ray-DPCI tomograms [4].

(a) (b)

Fig. 1. Two reference samples (a) and (b).

All experiments involved real data acquired at the TOMCAT beam line of the Swiss Light
Source at the Paul Scherrer Institute in Villigen, Switzerland. The common approach for these
experiments is to use a reconstruction from a large number of projections as a reference for eval-
uating results obtained with significantly fewer projections. In addition, the convex constraints
that we apply are the positivity of the refractive index combined with the support-related con-
straint that the solution should be zero outside the tube that contains the specimen.

In order to identify the benefits of the proposed algorithm (CRWN), we first tested the al-
gorithms under extreme conditions: We used only 72 projections as input, while the reference
was reconstructed from 1,200 projections. For this first experiment we used a phantom that was
composed of a tube and three cylinders containing liquids with different refractive indices as
shown in Fig. 1(a).
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The proposed algorithm (CRWN)

Constrained Unconstrained

TV HS TV [8] HS ADMM-PCG [4] FBP

Phantom
SNR(dB) 27.49 23.91 25.89 21.82 17.62 2.177

SSIM 0.509 0.369 0.339 0.196 0.145 0.07
Scaffold

SNR(dB) 25.34 25.58 22.91 22.25 20.09 6.45
SSIM 0.673 0.699 0.574 0.566 0.512 0.186

Scaffold ROI
SNR(dB) 26.51 27.05 23.78 23.75 23.58 23.09

SSIM 0.968 0.974 0.944 0.958 0.852 0.516

Table 1. Performance of different reconstruction techniques which have been applied on
Phantom and Scaffold samples.

SNR 20.09 dBSNR 23.61 dB
SSIM .889

SNR 25.58 dBSNR 27.05 dB
SSIM .9739

SNR 25.34 dBSNR 26.51 dB
SSIM .9686

SSIM .512

SSIM .699 SSIM .673

SNR 6.45 dBSNR 23.09 dB
SSIM .882 SSIM .186

(a) (b)

(c) (d)

Fig. 2. Scaffold reconstruction with 250 projections using (a) FBP, (b) ADMM-PCG, (c)
CRWN with HS regularization and (d) CRWN with TV regularization.

The performance of different algorithms are compared in Table 1. Clearly, the new method
outperforms ADMM-PCG [4]. Applying the convex constraint improves the signal-to-noise
ratio (SNR) and structural similarity index measure (SSIM) [12] even further. The result of the

#199990 - $15.00 USD Received 23 Oct 2013; revised 6 Dec 2013; accepted 8 Dec 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032340 | OPTICS EXPRESS  32347



(a) (b)
0 2 4 6 8

0

100

200

300

400

500

600

700

800

900

1000

1100

Time (m)

C
os

t f
un

ct
io

n

 

 

FISTA
Splitting−based FISTA, 2 Inner Iteration
Splitting−based FISTA, 3 Inner Iteration
Splitting−based FISTA, 4 Inner Iteration

CRWN-TV, 2 inner iterations
CRWN-TV, 3 inner iterations
CRWN-TV, 4 inner iterations

2000 1000 500 250
10

20

30

35

Number of views

SN
R

 (d
B)

 

 

FBP
ADMM−PCG
CRWN−TV
CRWN−HS

[8]

Fig. 3. The reconstruction performances concerning speed and quality is shown in (a) and
(b), respectively.

algorithm proposed in [8] is the same as CRWN-TV without CC, but it is slower since it uses
FISTA. As expected, owing to the piecewise-constant structure of the sample, TV outperforms
HS regularization.

We conducted another experiment with a coronal section of a scaffold that is used for surgery.
The reference image was built from 2,000 projections as depicted in Fig. 1(b). The algorithms
were then benchmarked on a subset of 250 projections. Although these conditions are less
severe, FBP still produces high-frequency patterns that are visible in Fig. 2(a). ADMM-PCG
almost completely suppresses these artifacts, at the expense of light smoothing as shown in
Fig. 2(b). Overall, CRWN yields sharper images Fig. 2(c) and 2(d), which are also reflected by
the quality metrics. In addition, Hessian type regularization eliminates the staircase effect of
TV which is more visible in the selected region of interest.

It is seen in Fig. 3(a) that CRWN is significantly faster at minimizing the cost functional
than the standard FISTA algorithm. In addition, it appears that the convergence speed is not
very sensitive to the number of inner iterations as we use warm initialization. We illustrate in
Fig. 3(b) the robustness of CRWN with respect to the number of projections in terms of SNR.
Owing to the poor performance of FBP in reconstructing boundaries, we compute the SNR for
the specified region with dashed circle shown in Fig. 1(b).

5. Conclusion

We have proposed a new iterative method for the reconstruction of X-ray-DPCI tomograms,
whose experimental performance exceeds that of recent algorithms. We showed that side infor-
mation such as the support-related constraints and positivity of the refractive index can signif-
icantly improve the quality of reconstruction. We interpreted this side information as a convex
constraint in a variational formulation. In addition, we took advantage of Hessian-type regular-
ization to reduce the staircase effect of TV and enhance the quality of higher-order structures
in the sample. Our results demonstrated its potential for in-vivo and medical imaging.
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