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Abstract: Phase retrieval from unidirectional radiographic differential
phase contrast images requires integration of noisy data. A method is
presented, which aims to suppress stripe artifacts arising from direct image
integration. It is purely algorithmic and therefore, compared to alternative
approaches, neither additional alignment nor an increased scan time is
required. We report on the theory of this method and present results using
numerical as well as experimental data. The method shows significant
improvements on the phase retrieval accuracy and enhances contrast in the
phase image. Due to its general applicability, the proposed method provides
a valuable tool for various 2D imaging applications using differential data.
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U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela, “Trends in synchrotron-based tomographic imag-
ing: The SLS experience,” Proc. SPIE 6318, 63180M (2006).

36. C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of
diffraction gratings for hard X-ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).

37. P. Hansen, “Analysis of Discrete Ill-Posed Problems by Means of the L-Curve,” SIAM Rev. 34, 561–580 (1992).

1. Introduction

X-ray radiography is a standard method of imaging in a variety of applications including medi-
cal diagnostics, biological in-situ studies, and materials science. The interaction of X-rays with
matter can be described by the complex index of refraction n = 1−δ + iβ , where δ character-
izes the phase shift and β the attenuation properties of the material. In the diagnostic energy
range of X-rays (10− 100keV), δ is typically three orders of magnitude larger than β . The
consequently high interaction cross section makes the phase shift measurement a favorable
imaging modality. It has been demonstrated that phase images can provide higher contrast than
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absorption-based images and contain complementary information about the sample [1, 2].
In the past, a variety of phase contrast techniques have been reported. They can be divided

into propagation based methods [3–5], interferometric methods [6, 7] and crystal analyzer based
methods [8–12]. Among these methods, phase contrast is provided either by the acquisition of
the projected phase profile (φ ), its first spatial derivative (∇φ ) or its second derivative (∇2φ ).
Many of the reported methods require highly coherent X-rays, only available at synchrotron
sources. A recently developed technique based on grating interferometry has established itself
as a suitable technique for phase contrast imaging on synchrotron sources [13, 14] as well as on
conventional X-ray tubes [15, 16]. The setup consists of an X-ray source, a grating interferome-
ter of two gratings and an X-ray detector. This technique allows the simultaneous measurement
of an absorption, a differential phase and a darkfield signal [17]. Due to the acquisition of
the differential phase (∇φ ), the method is also referred to as differential phase contrast (DPC)
imaging. Grating interferometry has mainly been demonstrated in unidirectional mode, where
the gratings have a periodic line pattern and the phase gradient can only be measured in the
perpendicular direction to these lines. In bidirectional grating interferometry, “checkerboard”
and “mesh” like grating patterns are used, and the DPC acquisition can be extended to both
directions [18].

Compared to conventional absorption imaging, the retrieval of the phase from the raw data
is in general not trivial. Paganin et al. derived a general framework for the phase retrieval in
coherent imaging systems [19]. Depending on the measured representation of the phase signal
(φ , ∇ϕ , ∇2ϕ), further post processing (integration filter) is necessary to retrieve the quantitative
phase signal φ . Phase retrieval from the second derivative has mainly been discussed in associ-
ation with propagation based methods [20, 21]. A huge variety of methods exist for differential
phase techniques, where the phase is available in the first derivative. A bidirectional phase gra-
dient acquisition has been performed on a scanning transmission X-ray microscope (STXM)
using an annular quadrant detector [22], and a complex filter [23] was used for the quantitative
phase retrieval. Also using an STXM, Hornberger et al. [24, 25] quantitatively retrieved the
phase by deconvolving the contrast transfer function. Further, Thibault et al. [26] developed
a method called scanning diffraction X-ray microscopy (SDXM), which is a combination of
STXM and coherent diffractive imaging (CDI) and allows the reconstruction of the complex
transfer function of an object by using an iterative algorithm.

For unidirectional grating interferometry, the phase is typically retrieved by a one-
dimensional, direct integration. An integration in the image domain is equivalent to dividing
by spatial frequency in the Fourier domain, which acts as low-pass filter. Therefore, along the
direction of integration, the image undergoes a smoothing operation. However, in the perpen-
dicular direction, high frequencies are unfiltered and amplify the noise. This leads to severe
stripe artifacts in the image along the direction of integration. The resulting poor quantitative
phase recovery is characterized by a low contrast-to-noise ratio (CNR) in the phase image, often
impeding the subsequent analysis of the radiograph.

Kottler et al. also discussed this issue and proposed a bidirectional scanning approach [27]
with unidirectional gratings. Two scans are performed, one with horizontally-, the other with
vertically-oriented gratings. This yields a two-dimensional phase gradient of the sample and
the phase can be retrieved with a complex filter. The method has shown to be well-suited for re-
ducing stripe artifacts. However, it requires further alignment of the gratings or the sample and
likewise increases scan time and dose by a factor of two. Stripe removal by acquiring the bidi-
rectional phase gradient has further been demonstrated with a two-dimensional grating inter-
ferometer [18]. Similarly, this approach requires a two-dimensional stepping scheme and thus
quadratically increases scan-time and dose compared to the unidirectional case. For diffraction
enhanced imaging (DEI) and multiple image radiography (MIR), a linear least squares approach
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Fig. 1. (a) DPC setup for a parallel beam configuration. The phase grating generates an
interference pattern (beam splitter). A sample in front of the phase grating causes a lat-
eral (x-direction) shift of the interference fringes at the position of the absorption grating.
The absorption grating is used to analyze the interference fringes and determine this shift,
which corresponds to the DPC signal. (b) Reference (blue) and object (light red) phase
stepping curve (PSC). From these curves, the absorption, phase and a scattering signal can
be calculated.

for the reduction of stripe artifacts has been reported [28].
Here, an iterative method for solving the problem of stripe artifacts from direct integration

in unidirectional DPC images is proposed. The method is based on non-linear constrained op-
timization and is purely algorithmic. It works on the raw, noisy DPC measurements and thus
does not need longer exposure times. Apart from an initial grating alignment, no further adjust-
ments of the setup hardware or the sample are required. The stripes from the integration can
be suppressed and the visibility of image details is enhanced. The performance of the method
is evaluated by calculating the root mean squared error (RMSE) of the images compared to a
simulated ground-truth image for phantom data and the image CNR using numerical and exper-
imental datasets. The significant increase in CNR and the improved quantitative phase recovery
makes this method a valuable tool in differential phase contrast radiography.

2. Methods

2.1. Experimental setup and phase retrieval

Figure 1 shows a typical grating interferometer setup for parallel beam geometry. The first grat-
ing of the interferometer is a phase grating, acting as a beam splitter by introducing a periodic
phase shift of zero or π to the wavefront. This generates an interference pattern downstream,
with maximum intensity differences at fractional Talbot distances, given by dm = mg2

1/8λ ,
where m is an odd integer, g1 the period of the phase grating and λ the wavelength [29].

A sample positioned in front of the phase grating introduces a phase shift in the wavefront,
generating a phase projection profile φ(x,y), which is given by the line integral

φ(x,y) =
2π
λ

∫
δ (x,y,z)dz. (1)

In this equation, λ is the wavelength and δ (x,y,z) is the refractive index decrement, associated
to the real part of the complex index of refraction n = 1−δ + iβ . The partial derivative of the
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phase profile with respect to x is proportional to the beam refraction angle α [29]:

α(x,y) =
λ
2π

∂φ(x,y)
∂x

. (2)

Beam refraction causes a shift of the interference pattern in x-direction (see Fig. 1). This fringe
shift, measured in radians with respect to the fringe period g2, corresponds to the DPC signal
and is given by

ϕ(x,y) = 2π
d
g2

α(x,y) =
λd
g2

∂φ(x,y)
∂x

. (3)

Here, d is the propagation distance downstream of the phase grating and Eq. (2) was used to
obtain the right part of Eq. (3). The fringe period g2 is typically a few microns and therefore,
the interference pattern cannot generally be resolved sufficiently by the X-ray detector. For the
determination of ϕ , an absorption grating, having the same period as the fringes (g2) and acting
as an analyzer mask, is positioned at a fractional Talbot order distance. The acquisition protocol
consists in a so called “phase stepping scan”, moving the absorption grating in equidistant
steps in x direction and acquiring an image at each position [29]. This is done in a reference
(without sample) and an object phase stepping scan (Fig. 1(b)), respectively, to account for an
inhomogeneous detector illumination. From the phase stepping curves (PSC), available in each
pixel, the absorption (a), the differential phase (ϕ), and a scattering signal (v) can be calculated
by a Fourier analysis:

a =
a0,obj

a0,ref
(4a)

ϕ = ϕ1,obj −ϕ1,ref (4b)

v =
a1,obj

a0,obj
· a0,ref

a1,ref
=

Vobj

Vref
, (4c)

where ai is the magnitude and ϕi is the phase of the i-th Fourier component of the PSC. Signals
from reference and object scan are labeled by “obj” and “ref”, respectively. The scattering
signal v corresponds to the reduced fringe visibility Vobj/Vref.

In this paper, we focus on the recovery of the phase signal from the DPC measurement
ϕ . According to Eq. (3), the retrieval of the phase image φ(x,y) requires a one-dimensional
integration in x-direction, given by

φ(x,y) =
g2

λd

∫ x

0
ϕ(x′,y)dx′. (5)

Due to noise in the DPC image, this integration accumulates the errors and therefore the noise
variance. The typical result are strong stripe artifacts, reducing image contrast and impeding an
exact phase retrieval. Figure 2 shows a noisy DPC image generated from the modified Shepp-
Logan phantom [30] and the phase retrieval obtained from an integration in the horizontal
direction. Prior to the integration step, the mean value was removed in every line of the DPC
image to enforce a cumulative sum of zero. However, this simple correction approach could not
remove strong horizontal stripe artifacts which still appear across the image.

2.2. Measurement and noise model

The method described in the next section is an algorithmic approach for the suppression of the
aforementioned stripe artifacts arising from direct integration. It is based on constrained opti-
mization and thus requires a measurement and a noise model, respectively. The DPC measure-
ment model is a standard linear regression model, which can be written in operator notation,
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(a) (b) (c)

Fig. 2. Simulation of the integration of noisy DPC data using the modified Shepp-Logan
phantom. a) Original data (some low-pass filtering applied), b) noisy DPC measurement,
c) phase retrieval by direct integration

�
�

x

y

given by
ϕ = Dxφ +w. (6)

Dx is a forward operator which models the relation between φ and ϕ in absence of noise and w
is a random image modelling the noise in measured data. The noise standard deviation derived
by Engel et al. [31] (Eq. 25) is given by

σDPC ∝
1

V ·√N
, (7)

where V is the visibility and N is the number of photons in the measurement.
Equation (6) is the discretization of Eq. (3), whereas the constant of proportionality ( g2

λd ) has
been omitted for the sake of simplicity. Dx models the first derivative and can be implemented
as a finite differences transform operator, given by

Dxφ(i, j) =

{
φ(i+1, j)−φ(i, j) if 1 ≤ i < Ni

0 if x = Nj,
(8)

where i and j are now discrete coordinates (pixel coordinates) and Ni is the image size in x-
direction.

2.3. Regularized image integration method

A direct inversion of Eq. (6) by integrating the noisy measurement ϕ causes the typical horizon-
tal stripe artifacts. The phase retrieval can be improved by solving a constrained optimization
problem. While maintaining consistency with the measured DPC data, the solution is retrieved
by minimizing a cost function. The constrained optimization problem for the above model can
be written as

minimize ‖Dy f‖�p

subject to: ‖W (Dx f −ϕ)‖�2 < ε. (9)

Essentially, this optimization problem seeks for the minimal �p norm of Dy f for any f being
consistent with the measurement data ϕ in a least squares sense. W is a weighting operator,
multiplying each pixel with its inverse noise standard deviation (1/σ ) to account for the noise
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model. This approach is also known under the name penalized weighted least squares (PWLS)
[32]. Dx and Dy are finite differences transforms in the x- and y-direction, respectively, f is
the solution of the optimization problem and ε is a boundary for the noise. The �p norm of an
image is defined as

‖a‖�p =

(
Ni

∑
i=1

Nj

∑
j=1

|a(i, j)|p
)1/p

. (10)

For instance, the most often used �2 norm corresponds to the Euclidean norm. In this case,
problem (9) is linear and an explicit inversion for f exists. Here, we focus on the use of the
�1 norm, which is the sum of the magnitude of all pixel values. The �1 norm minimization of
the finite differences transform is well-known in denoising applications and often referred to as
total variation denoising (two-dimensional finite differences) [33]. The �1 norm minimization
typically shows strong edge preserving characteristics and causes less blurring than the �2 norm.
The better performance comes at the expense of a non-linear optimization problem, having no
explicit inversion formula.

For the solution of (9) with p= 1, the problem is first reformulated to an unconstrained form:

minimize F( f ) = ‖W (Dx f −ϕ)‖2
�2
+λ‖Dy f‖�p . (11)

The data consistency constraint and the optimization function are now expressed in a single ob-
jective function F( f ). A Lagrange multiplier λ (regularization parameter) is used for weight-
ing the two terms. The parameter ε from Eq. (9) is now implicitly chosen by adjusting λ .
This parameter is strongly data-dependent and in general difficult to determine. Here, it will be
determined by evaluating well-known image quality metrics.

Equation (11) can further be generalized to hold multiple regularization terms. The problem
formulation is then given by

minimize F( f ) = ‖W (Dx f −ϕ)‖2
�2
+λ1‖T1 f‖p1

�p1
+ (12)

+λ2‖T2 f‖p2
�p2

+ ...

In principle, this allows for any number of regularization terms to be added, which is partic-
ularly useful if more a-priori knowledge about the sample is available. Minimum norm con-
straints with any norm number p and for any linear transform T f can be added. An example
for regularized integration using two regularization terms will be given in the next section.

For the numerical solution of the unconstrained optimization problem, a non-linear Conju-
gate Gradient (NLCG) algorithm [34] has been used. NLCG is characterized by a fast conver-
gence for the inversion of large-scale linear systems. Moreover, this algorithm can handle both,
the linear (p = 2) and the non-linear (p = 1) case and thus provides a convenient way for a
comparison. The implementation was done in Matlab (MathWorks, Version R2010a) and run
on a 64-bit Linux machine (Intel Xeon 2.83GHz processor).

3. Results

3.1. Numerical data

Numerical phantom data have been used for the theoretical assessment of the method. The data
were generated according to Eq. (6), where φ was the known (ground-truth) image, i.e. the
Shepp-Logan phantom, representing the line integral of δ (real part of the refractive index)
through an object. Noise has been generated by using the previously discussed model for DPC
measurements (Eq. (7)). The calculation of a noise standard deviation map required the simula-
tion of a transmission and a visibility image. For the transmission image, we assumed a constant

#154748 - $15.00 USD Received 16 Sep 2011; revised 3 Nov 2011; accepted 16 Nov 2011; published 30 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  25551



(a) (b) (c)

Fig. 3. Simulation of (a) the transmission image and (b) the visibility map of the Shepp-
Logan phantom. (c) noise standard deviation map (normalized), obtained by combining (a)
and (b) according to Eq. (7).

ratio δ/β = 10 (β is the imaginary part of the refractive index), yielding the transmission image
directly from the known phase image. For the visibility image, a high scattering signal at strong
edges of the object was assumed and small angle scattering was neglected. Therefore, an edge
enhanced image was generated by applying a discrete two-dimensional Laplace filter to the
phantom image, from which the visibility map was determined. Figure 3 shows the simulated
transmission and visibility image and the combined noise standard deviation map. Using the
noise standard deviation map, noisy DPC data, as shown in Fig. 2(b), was generated as input
for the regularized image integration.

In the following, regularized and direct integration are evaluated in terms of well known
image metrics, including root mean squared error (RMSE) compared to the ground-truth image,
contrast-to-noise ratio (CNR) and the noise pattern standard deviation. The ground-truth image
is defined as the radiographic phase image of the sample in absence of errors (e.g., noise,
material imperfections or measurement errors). RMSE and CNR are computed as a function
of the regularization parameter λ . First, this allows a direct comparison of regularized and
conventional direct integration and second, it provides support for the choice of an optimal λ ,
although this is of course dependent on the chosen metric. In order to compare the the non-
linear �1 and the linear �2 norm minimization, the simulations are performed for p ∈ {1,2}. For
all simulations, the same convergence criterion in the NLCG algorithm is applied.

Figure 4(a) shows the phase image obtained by direct integration and Fig. 4(b) displays the
optimal result of the regularized integration in terms of the RMSE. The RSME of two images
f1 and f2 is defined as

RMSE( f1, f2) =
‖ f1 − f2‖�2√

NiNj
, (13)

where Ni and Nj are the horizontal and vertical image sizes, respectively. Figure 4(e) displays
the RMSE as a function of the regularization parameter λ and with p ∈ {1,2}, for regularized
integration (RI), and the RMSE for direct integration (DI). For all values of λ within the inves-
tigated range, a smaller RMSE could be measured for regularized integration. The minimum
was achieved with the �1 norm minimization at λRMSE = 5 ·10−3, yielding the optimal solution
(displayed in Fig. 4(b)).

Regularized image integration changes the noise pattern of the images. Apparently, direct
integration introduces a horizontally oriented stripe pattern, as shown in Fig. 4(c). After reg-
ularization, the pattern is stripe-free and more homogeneous (Fig. 4(d)), although a few new
artifacts, mainly at strong horizontal edges of the sample (top and bottom of phantom skull),
have been introduced. Artifacts at horizontal edges appear due to the low DPC signal at these

#154748 - $15.00 USD Received 16 Sep 2011; revised 3 Nov 2011; accepted 16 Nov 2011; published 30 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  25552



10
−4

10
−3

10
−2

10
−10.02

0.04

0.06

0.08

0.1

R
M

S
E

λ

(e)

RMSE(DI,GT)

RMSE(RI �2,GT)

RMSE(RI �1,GT)

λ
RMSE

10
−4

10
−3

10
−2

10
−10

10

20

30

40

50

C
N

R

λ

(f)

CNR(DI)
CNR(RI �2)

CNR(RI �1)

λ
CNR

0 64 128 192 256

0

0.5

1

(g)

 

 

integration

regularized

ground truth

0 64 128 192 256

0

0.5

1

(h)

 

 

integration

regularized

ground truth

Fig. 4. On the left side, simulation results on the Shepp-Logan phantom are shown. (a)
Direct integration of the numerical phantom data of Fig. 2(b), causing the typical stripe ar-
tifacts. (b) Regularized image integration with p = 1 and λ = 5 ·10−3, containing no stripe
artifacts. (c) noise pattern for the direct integration and (d) for the regularized integration,
respectively, calculated by subtracting the output image from the ground-truth image. The
noise standard deviations are displayed on the images. The right side of the figure shows
the evaluation of (e) the RMSE and (f) the CNR as a function of the regularization param-
eter and for p ∈ {1,2}. The red boxes in (a) show the regions used for the calculation of
the CNR. The optimal regularization parameter for both metrics is indicated with a verti-
cal line (λRMSE and λCNR). Figure (g) and (h) show vertical and horizontal line profiles,
respectively, through the images in (a), (b) and the ground-truth image. The locations of
the extracted line profiles are indicated with the dashed line in (b). In these profiles, the
reduction of high vertical variations and the improved quantitative phase recovery in the
x-direction compared to direct integration is clearly visible.

(a) (b)

(c) (d)

σ = 0.083 σ = 0.023

locations, which is a result of the unidirectional sensitivity (horizontal direction) of the grating
interferometer. The standard deviation of the noise patterns, indicated by σ in Fig. 4(c) and (d),
is smaller for the regularized integration, confirming the improved image quality.

The RMSE metric requires the knowledge of a ground-truth image for the computation,
which is in practice unknown. Therefore, the method has further been evaluated using the image
CNR, which represents a well-known metric for the quantification of the image contrast and is
independent of ground-truth data. CNR is defined as

CNR = 2
|Sobj −Sbg|
σobj +σbg

, (14)

where S and σ are the mean value and the standard deviation, respectively, within a region-
of-interest (ROI) of the object (obj) and the background (bg). Figure 4(f) shows the CNR as a
function of λ , calculated by using the object and background regions marked with the red boxes
in Fig. 4(a). The �1 norm minimization again performed better than the �2 norm and the optimal
regularization parameter is λCNR = 4 ·10−2, which is almost an order of magnitude larger than
the optimal value in terms of RMSE. This is mainly because high regularization parameters
significantly suppress noise, resulting in a higher CNR. On the other hand, a high λ can smooth
the image and reduce edged sharpness. For this reason, optimizing the CNR is not always the
best approach and may lead to an overestimation of λ .

The previous results showed that regularized image integration outperformed direct integra-
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tion of differential phase contrast data in terms of RMSE, CNR and noise variance. The vertical
and horizontal line profiles through the image of Fig. 4(b), as shown in Fig. 4(g) and (h), further
illustrate how well the vertical variations could be suppressed and that the regularized image
is in significantly higher accordance with the ground-truth image. Moreover, the non-linear �1

norm minimization performed clearly better than the �2 norm for both metrics. For this reason,
in the examples of the following sections, only the �1 norm minimization will be used for the
regularized phase retrieval.

3.2. Experimental data

The method has further been tested with experimental DPC data. In order to investigate the
quantitative robustness of the stripe removal method also for experimental data, a phantom
made of materials with known indices of refraction was fabricated and imaged. The phantom
has been acquired with the DPC setup of the TOMCAT beamline at the Swiss Light Source [35].
The X-ray source is a 2.9T superbend bending magnet. A double crystal multilayer monochro-
mator delivers monochromatic radiation. The photon energy was set to 25keV and the grating
interferometer was designed for an inter-grating distance of the 3rd fractional Talbot order. The
source-to-phase grating distance was 25m, the inter-grating distance was d = 120mm and the
grating periods were g1 = 3.98 μm and g2 = 2.0 μm. The materials of the absorption and phase
grating were gold and silicon, respectively [36]. The total exposure time was 1.6 seconds, using
8 phase steps.

The phantom consists of three concentric rods, which are surrounded by a circular wall. The
wall is made of polymethylmetharcylate (PMMA) and the materials for the rods are polypropy-
len (PP), polystyrene (PS) and polyoxymethylene (POM), respectively. The space between the
rods and the wall was filled with de-ionized water. The complex refractive index n = 1−δ + iβ
at 25keV of each material was known (available at http://sergey.gmca.aps.anl.gov), allowing for
a calculation of the ground-truth image (calculated analytically by assuming a known sample
profile) .

Figure 5(a)-(d) shows the DPC, integrated, regularized and ground-truth image, respectively,
of a projection of the phantom and Fig. 5(e) shows the normalized horizontal profiles after
summing up the image rows in vertical direction. In this example, an additional image constraint
was applied to demonstrate the possibilities of the generalized problem formulation introduced
in the previous section. The additional constraint is based on a-priori knowledge about the
image boundaries, assuming a background signal of zero. This assumption holds because the
DPC image is flat-field corrected, essentially meaning that in a background pixel, the phase
signals of the object and the reference scan should be the same. The optimization problem,
consisting now of two regularization terms, is defined as:

minimize F( f ) = ‖W (Dx f −ϕ)‖2
�2
+λ1‖Dy f‖�1 +λ2‖M f‖2

�2
. (15)

In the second regularization term, the matrix M operates as a binary mask for the pixels in
the image f at the left and right edges. For the norm parameter, p = 2 was chosen, because
this constrains the image to have low energy at the edge pixels. While the first regularization
parameter λ1 was varied, the second regularization parameter was kept constant at λ2 = 10−2.
Since the second regularization term only constrains parts of the image, the phase retrieval
is not very sensitive to λ2, making an exact determination of an optimum for this parameter
unnecessary. There is a high certainty that a background signal of zero is a true assumption,
therefore the value should be kept high. On the other hand, in order to avoid a too strong
influence of this term to the result, λ2 should at the same time be kept small. The choice of
λ2 = 10−2 is purely empirical and does not represent a unique optimum.

Figure 5 shows the evaluation of the RMSE and the CNR for the regularized and the directly
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Fig. 5. Projection images of a phantom, acquired at 25keV at the DPC setup of the TOM-
CAT beamline at the Swiss Light Source. (a) DPC image, (b) direct integration, (c) regular-
ized integration using p1 = 1, λ1 = 6 ·10−4, p2 = 2 and λ2 = 10−2 (d) ground-truth image.
The colormaps of the images (b)-(d) all have the same minimum and maximum value. (e)
shows the evaluation of RMSE and CNR for DI and RI and (f) a normalized horizontal pro-
file after summing up the images in the vertical direction. CNR has been calculated using
the ROIs marked with the red boxes in (b).

(a) (b)

(c) (d)

(e) (f)

integrated phase recovery of the phantom. In this example, the optimal values for the regu-
larization parameter match exactly (λ1,RMSE = λ1,CNR = 5 · 10−4). Again, the suppression of
stripe artifacts in the regularized integration is clearly visible, if Fig. 5(b) and (c) are compared.
According to Fig. 5(e), the quantitative phase recovery could be improved over the whole inves-
tigated range of the regularization parameter, although a complete agreement to the calculated
ground-truth was not achieved (Fig. 5(f)). However, it is important to notice that the result of
Fig. 5(f) must be taken with care due to the following important facts: In this example, RI
was compared with DI after a vertical summation of the images, not by looking at line profiles
(as it was done in the simulations). This summation also smoothes out the stripe artifacts in
DI and therefore, the DI line in Fig. 5(f) would be expected to highly match the ground-truth
line, which is not the case. This inconsistency might result from several random effects, as for
example inhomogeneities in the material, inexact numbers for the material densities and the
refractive indeces or inconsistencies of the DPC measurements resulting from grating drift or
grating imperfections from the fabrication process. Due to these facts, it is impossible to state
that RI was indeed quantitatively more accurate than DI, simply because the ground-truth is ac-
tually unknown. On the other hand, due to the removal of the stripe artifacts, it is very likely that
a line profile from RI is quantitatively more accurate than a line profile (no vertical summation)
of DI.

Figure 6(a) shows a DPC image of a mouse (scanned within a sample holder). The scan was
taken on a grating interferometer setup using an X-ray tube source, operating at 40kV, 25mA.
The pixel size of the detector was 50× 50 μm2. The anode material of the tube is tungsten
and the spotsize is approximately 0.5mm. Due to the low spatial coherence of the beam, a
source grating was used [15]. 16 phase steps were acquired and the total exposure time was
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Fig. 6. (a) DPC image of a mouse taken at an X-ray tube setup (40kV, 25mA), (b) inte-
grated image, (c) regularized integration for λ = 4 · 10−3. In the zoomed area below, the
ribs of the mouse can clearly be identified in the regularized integration, while these details
vanished in the direct integration. The colormaps of the images in (b) and (c) with the same
zoom level have the same minimum and maximum value.

120 seconds. The full body of the mouse was scanned by stitching multiple scans together. The
total size of this image is 2360× 1200 pixels. The standard problem formulation of Eq. (11)
with p = 1 was used to retrieve the regularized phase image. According to a CNR analysis, the
optimal regularization parameter was λCNR = 4 · 10−3. The integrated and regularized images
are shown in Fig. 6(b) and 6(c), respectively. Significant improvements compared to direct
integration can be observed in the images. Features that are hidden in the directly-integrated
image become visible in the regularized integration (see ribs in zoomed area). Due to the large
image size, the algorithm took 450 iterations with a total run time of approximately 11 minutes.

4. Discussion

Non-linear, �1 regularized image integration can significantly improve the quality of phase im-
ages obtained from noisy, unidirectional DPC measurements without increasing the radiation
dose. Longer exposure times, additional phase steps, or bidirectional measurements can be
avoided. The method outperformed direct integration in the given examples in terms of RMSE
compared to ground-truth data, noise pattern and CNR. The improved RMSE promises more
accurate results for a quantitative data analysis, while a higher CNR will facilitate data post
processing as for instance image segmentation.
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The application of a regularization technique to a problem, which is in principle well-posed,
might seem a bit unusual at a first glance. However, since the integration of differential data
is highly sensitive to noise and generates strong image artifacts, regularization provides a con-
venient way to specify data fidelity. This is done using the regularization parameter, λ , being
the key parameter of the method. It determines the weighting between the data consistency and
the optimization function and can be interpreted as a tuning parameter for the resulting image
quality. If λ is chosen too high, overregularization occurs, generating new image artifacts. A
typical overregularization effect when using the �1 norm minimization of the finite differences
transform is the generation of piecewise constant areas in the image, looking similar to median
filtering. If λ is below its optimum, the regularization term is too weak and the stripe artifacts
will not vanish. Naturally, λ is data dependent and the optimum is not always trivial to deter-
mine. The evaluation of image metrics (CNR, RMSE) for the optimization of λ is one possible
approach amongst others. Another well known method is the L-curve analysis, where the data
constraint term and the minimization terms are evaluated after each iteration [37]. Different
methods usually yield different optima, and therefore, an objective optimum does usually not
exist. CNR and RMSE turned out to be convenient metrics for the image evaluation and the
results showed, that the regularized images have been superior to the directly integrated images
over a wide range of λ . Fortunately, this relaxes the requirement to exactly find an optimum
value for λ . Eventually, finding the optimum solution will remain a task dependent issue.

Another important parameter is the norm parameter p. It has been demonstrated, that for the
minimization of the finite differences transform, the �1 norm performed better than the �2 norm
in terms of the evaluated metrics. The �1 norm has also been subject to many investigations
in the field of tomographic image reconstruction, where an image is assumed to have a sparse
representation in a linear transform domain. The minimization of the �1 norm in such a domain
enforces sparsity and may improve image reconstruction. This concept is also consistent to our
problem, since the finite difference transform in the y-direction is expected to yield a sparse
image representation. The benefit of minimizing the �1 norm instead of the �2 norm comes
at the expense of a non-linear problem formulation. For the finite difference transform, the �1

norm has been shown to perform clearly better, however for other transform domains, the �2

norm may be a better choice.
The possibility of introducing theoretically any number of regularization terms improves

the flexibility of the method to handle many kinds of samples. In particular sample specific
constraints, which should be added if a-priori knowledge about the sample is available, are
expected to further improve the phase retrieval. For instance, if the sample is known to consist
mainly of piecewise constant parts, a total variation minimization would be appropriate. An-
other example, which is less sample specific but also often applicable, would be an “isolated
specimen” constraint, meaning that there is a zero background signal all around the sample.
Essentially, this would be an generalization of the proposed zero-background constraint, which
assumed the signal to be zero only at the left and right edges. In any case, the potential im-
provement always comes at the expense of an additional free regularization parameter and an
increased computational complexity. Additional regularization terms are certainly an important
subject for future investigations.

The iterative NLCG algorithm has proven to be a suitable method for solving the non-linear
optimization problem, even though the processing time can rapidly increase for very large im-
age sizes. Code optimization, which has not yet been performed, should lead to a significant
decrease in computational time.

It is important to point out that non-linear, regularized image integration provides a general
signal recovery method for unidirectional differential data. In this work, it has only been applied
to data obtained from grating interferometry, although other techniques as for example crystal
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analyzer based methods would likewise benefit from our approach.
We strongly believe that DPC radiography is a valuable imaging method for various applica-

tions in radiology. In order to effectively exploit the additional information obtained from this
technique, the proposed method provides an important tool for obtaining the quantitative phase
projection. This is crucial for improving the analysis of structures in the examined materials
(e.g., in medical images).
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