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Abstract: It is known that the sensitivity of X-ray phase-contrast grating
interferometry with regard to electron density variations present in the
sample is related to the minimum detectable refraction angle. In this
article a numerical framework is developed that allows for a realistic and
quantitative determination of the sensitivity. The framework is validated by
comparisons with experimental results and then used for the quantification
of several influences on the sensitivity, such as spatial coherence or the
number of phase step images. In particular, we identify the ideal inter-
grating distance with respect to the highest sensitivity for parallel beam
geometry. This knowledge will help to optimize existing synchrotron-based
grating interferometry setups.
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1. Introduction

A wide variety of phase-sensitive X-ray imaging techniques have been suggested in recent
years. For full-field imaging with parallel beam geometry several imaging methods may be
distinguished: crystal interferometry [1–3], phase propagation imaging [4–6], analyzer-based
imaging [7–11].

In addition, the grating interferometer (GI) is a recently established phase-sensitive X-ray
imaging technique [12–14] that provides particularly high sensitivity to variations of the re-
fractive index decrement within the sample [15], which is in turn proportional to the electron
density present within the sample [16]. Typically, the GI utilizes a phase and an absorption
grating in order to facilitate phase sensitivity. By applying a Fourier approach to data analysis it
is possible to independently extract the contributions of absorption, differential phase contrast
(DPC) and dark-field contrast [17, 18].

On the one hand, a major advantage offered by the GI is a low requirement for temporal beam
coherence. It has been demonstrated that the GI is nearly achromatic [14], which opens the
possibility to make use of a broad spectral width of the incident beam while preserving image
quality. On the other hand, the requirements for spatial coherence (i.e. the angular source size at
the position of the sample) are more demanding, but still allowing for an implementation of the
GI at X-ray microfocus tubes [19,20]. However, it has also been shown that imaging conditions
at X-ray tubes with larger source sizes can be used by including an additional source grating
into the experimental setup [21, 22].

For parallel beam geometry, spatial resolution of the GI is limited by either the pixel size of
the detector or the pitch of the absorption grating [14] and, thus, by the manufacturing process.
More generally speaking, the performance of the GI essentially depends on the quality of the
gratings. Thus, considerable effort is put in the optimization of the production process [12,23–
25]. The challenge is to manufacture grating structures with particularly high aspect ratio in
order to minimize residual transmission through the absorption grating. At the moment a pitch
of a few microns is feasible leading to a moderate resolution in the same order of magnitude.

The aim of this article is to develop and establish a simple yet realistic model of noise for
numerical simulations, whose applicability is not limited to the case of GI. This framework is
then used for the theoretical estimation of the sensitivity of the GI in parallel beam geometry in
terms of the minimum detectable refraction angle. As an application of this theoretical frame-
work, the optimum inter-grating distance with respect to the sensitivity is determined. Finally,
we show how this knowledge can be applied for the optimization of existing setups, which use
synchrotron radiation.

2. Elements of the imaging process

The GI consists of a phase and an absorption grating downstream of the sample (see Fig. 1).
It exploits Fresnel diffraction at periodic structures, which is related to the so-called Talbot
effect [26, 27]. For the following itemization of well established facts parallel beam geometry
is assumed. For cone beam geometry the appropriate adjustments apply [20], which are of
negligible impact on the following discussion if the magnification is close to unity.

The phase grating introduces a periodic phase modulation into the incident wave, which then
causes an observable periodic interference pattern at the so-called Lohmann distances [28]. For
a phase shift of π , the period of the interference pattern equals half of the period of the phase
grating g1 and the Lohmann distances dm are given by

dm =

(
m− 1

2

)
g1

2

4λ
, with m = 1,2, . . . (1)

with λ the wavelength and m the diffraction order. Different equations hold true for phase
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Fig. 1. Sketch of the grating interferometer. A phase grating and an absorption grating are
exploited in order to provide phase-sensitivity.

gratings realizing a π/2, 2π/3 or 4π/3 phase shift [28].
The absorption grating is positioned at the desired Lohmann distance and acts as analyzer of

the interference pattern. Its period matches the period of the interference pattern (i.e. g1 = 2g2).
By laterally scanning either the phase grating or the absorption grating over one period of g2,
an intensity distribution for each pixel in the detector is acquired, which is referred to as the
phase stepping curve (PSC; see Fig. 3).

In the experiment, a flat-field PSC f (x) without the sample, where x denotes the lateral
offset of the scanned grating, and a sample PSC s(x) is obtained. Then the following Fourier
component analysis [14,20] is applied to the PSCs in order to retrieve A, the absorption contrast

A = ŝ(q0)/ f̂ (q0), (2)

where the symbol “ ˆ ” denotes the Fourier transform with respect to x and q0 is the zeroth
Fourier component, ϕ the lateral fringe offset

ϕ = arg(ŝ(qn))− arg( f̂ (qn)), (3)

where qn denotes the nth harmonic Fourier component (corresponding to the number of periods
measured) and B, the so-called dark-field contrast

B =
∣∣(ŝ(qn) f̂ (q0)

)
/
(
ŝ(q0) f̂ (qn)

)∣∣ . (4)

Usually, an additional baseline normalization is applied to determined the fringe offset value φ
(i.e. subtracting the mean of φ over the field of view), in order to compensate for mechanical
drift during acquisition. Using the small-angle approximation (i.e. tanα ≈ α) the lateral fringe
offset ϕ is connected to the refraction angle α by

ϕ = 2π
dmα
g2

. (5)

However, if the lateral offset becomes larger than the period of the absorption grating, phase
wrapping occurs. This means that ϕ values outside of [−π,π] are falsely translated into this
interval, which may be taken into account by including the appropriate modulus

ϕ = mod

(
2π

dmα
g2

+π,2π
)
−π. (6)
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We like to point out that Eq. (6) will not be used for data analysis in this article.
In this context the values of ϕ are elements of the interval [−π,π]. According to Eq. (5) the

contrast and, thus, the signal-to-noise ratio (SNR) of ϕ generally increases with the inter-grating
distance dm. But since phase wrapping as well as the finite spatial coherence are associated
with loss of information, these effects essentially limit the accessibility of large inter-grating
distances.

3. Experimental implementation at TOMCAT

The GI was integrated into the beamline for TOmographic Microscopy and Coherent rAdiology
experimenTs (TOMCAT) of the Swiss Light Source [29] of the Paul Scherrer Institut (Villigen,
Switzerland). The experimental implementation was performed focussing on fast data acquisi-
tion and post-processing and is now available to external users.

A 2.9 T bending magnet is used as the X-ray source providing a comparatively high photon
flux at energies above 20 keV. In this energy range, the photon energy is selected by a W/Si dou-
ble multilayer monochromator approximately 7m from the source. The lines of the gratings are
vertically oriented. The horizontal source size is around 125 μm (full width at half maximum)
and the distance between source and phase grating amounts to 25m.

The phase grating as well as the absorption grating (period: 2 μm) were manufactured in-
house at the Laboratory for Micro- and Nanotechnology [23]. The x-ray beam is converted
to visible light by a YAG:Ce scintillator of 250 μm thickness and subsequently imaged to a
charged-coupled device (CCD). A pco.2000 (PCO AG, Kelheim, Germany) CCD camera is
used for the detection of the optical photons. It offers a theoretical dynamic range of ≈ 12 bit
with a pixel size of 7.4 μm. More details about the experimental implementation of grating
interferometry at the TOMCAT beamline can be found in [30].

4. Sensitivity of the grating interferometer

The performance of the GI is closely related to the spatial coherence provided by the X-ray
source. The goal of the following discussion is to identify the optimum inter-grating distance
in terms of sensitivity for a predetermined set of experimental conditions (i.e. the source size S
and the distance between source and phase grating z).

We will quantify the sensitivity of the GI in terms of the minimal detectable refraction angle
αmin, which is proportional to the minimal detectable electron density variation in the sample.
αmin corresponds directly to the signal-to-noise ratio (SNR) of radiographs and tomographic
reconstructions. It was already experimentally demonstrated that refraction angles as small as
αmin = 14 nrad are accessible with the GI [15].

However, due to the Fourier nature of the data analysis algorithm (Eq. (3)) an approach
to theoretically estimate αmin is not trivial. Thus, we propose a simple but reliable numerical
procedure for the estimation of αmin.

It is well-known that the influence of a finite source size leads to a blurring of the interference
pattern [34], which in turn will lead to a decreasing image quality. In order to quantify this effect
in general terms, we introduce the reduced inter-grating distance η as

η =
dS
zg2

, (7)

the dimensionless ratio between the projected source size Sd/z (d: inter-grating distance; z
distance between source and phase grating) and the period of the interference pattern g2.
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Fig. 2. (a) Ideal, rectangular-shaped interference pattern assumed for all inter-grating dis-
tances. (b) The interference pattern after convolution with the projected source distribution.

4.1. Numerical procedure

We have started with an ideal, rectangular-shaped interference pattern for all inter-grating dis-
tances d (Fig. 2(a)). Obviously, this does not represent an experimentally accessible situation
and implies a different photon energy and/or diffraction order according to Eq. (1) for each
inter-grating distance. However, this approach is appropriate for a general determination of the
optimum inter-grating distance for a given combination of source size, source distance and pitch
of the absorption grating g2. In order to experimentally realize a given inter-grating distance,
a phase grating has to be manufactured providing a phase shift of π at the determined photon
energy.

−3 −2 −1 0 1 2 3

I
max

I
min

phase step [rad]

in
te

ns
ity

 [a
rb

. u
ni

ts
]

Fig. 3. Phase stepping curve and a representation of additional Gaussian noise, which is
used in the numerical investigations. The calculations were performed with a reduced inter-
grating distance of η = 0.3 (Eq. (7)).

In the second step, the influence of finite source size was included by the convolution of
the projected source intensity distribution of Gaussian shape with the ideal interference pat-
tern [20]. Figure 2(b) shows the blurred interference pattern as a function of η . The phase
stepping curve (Fig. 3) was then calculated by a convolution of the interference pattern with the
periodical, rectangular transmission function of the absorption grating.

Upon detection, the intensity at the detector is mapped to gray values I. For the reason of
convenience we express gray values in terms of bit b with I = 2b throughout the article. In the
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numerical simulations the maximum intensity Imax was set to a pre-defined value, which may
reflect the experimental situation at hand or which may be taken as a free parameter. Gaussian
noise with a mean of μn = I(x) and a standard deviation of σn = χ√μn is added to the PSCs,
where the factor χ will be discussed below. Then the Fourier component analysis (Eq. (3)) with
arg(ŝ(qn))≡ 0 was applied to the resulting PSC yielding the fringe offset ϕk.

This was repeated for several thousand times and the standard deviation of the ϕk is taken
as the uncertainty Δϕ . For reliable distinction two ϕ-values must differ by more than Δϕ and,
thus, the uncertainty Δϕ equals the minimum detectable fringe offset. According to Eq. (5) Δϕ
directly relates to the minimum detectable refraction angle αmin by

αmin =
g2

2π d
Δϕ. (8)

The described numerical procedure delivers the minimum detectable refraction angle for a
given set of parameters, such as the reduced inter-grating distance η or the number of phase
steps M. By variation of the latter their impact on αmin can now be explored.

4.2. Modelization of noise

In the described model of the imaging process we assess that noise present in the experimen-
tal images essentially limits the accuracy of ϕ . Naturally, a realistic modelization of noise is
essential to the viability of quantitative results with the procedure described in the previous
subsection. Thus, we have established a simple yet realistic noise model that connects the noise
used in the numerical simulations, to the noise present in the experiment.

For the numerical simulations we have chosen a Gaussian distribution of noise with μn the
mean and σn the standard deviation [31]. However, μn and σn were not taken as independent
parameters, but the relation

χ =
σn√μn

(9)

was used in order to determine σn of the noise distribution. Thus, we assess that the variance
of the noise distribution (σ2

n ) increases linearly with the mean [32], which is justified by the
linearity of the detector and the domination of photon shot noise (see further validation below).
The factor χ takes into account the value mapping from number of photons to gray value during
the process of detection. Thus, the χ value depends also on the gain of the detector and a gain
larger than one results in χ values smaller than one [32].

In order to ensure a realistic modelization of noise, μn and χ were determined experimentally.
For this purpose a series of 1000 flat-field images were taken at the position of maximum
intensity of the PSC (see Fig. 3) at 25 keV with 121 mm inter-grating distance (m= 2 in Eq. (1))
and an exposure time of 450 ms. The following noise analysis was performed on a pixel basis,
which means that all quantities were first determined for each pixel and with respect to the
flat-field series . The values in the text represent the subsequently calculated mean and standard
deviations over the field of view.

Figure 4(a) shows the pixel-wise mean gray value of the flat-field series. The average over
the field of view was μn = (13.35±0.08) bit. While the horizontal stripes in the image are due
to surface roughness of the monochromator [33], vertical stripes are caused by imperfections
of the gratings. The factor χ (Eq. (9)) for each pixel is displayed in Fig. 4(b). An average of
χ = 0.97±0.25 was found. Here we point out that the exact value of μn has no influence on the
described numerical procedure, since the results of the Fourier component analysis (Eqs. (2)–
(4)) are invariant with respect to a scale factor of the PSCs. Only the ratio

√μn/χ is of interest,
since it determines the noise level in the numerical simulations.

We emphasize that we use an effective model of noise, which takes almost all possible con-
tributions of noise into account by fitting the parameters μn and χ to the experimental result.
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Fig. 4. For the determination of parameters and the validation of the noise model. (a) The
mean of 1000 flat-field images acquired at the phase step of maximum intensity (ref. Fig. 3).
While the horizontal stripes are due to surface roughness of the monochromator, the vertical
stripes are caused by inhomogeneities. (b) Pixel-wise factor χ (see Eq. (9)). (c) The signal-
to-noise ratio of the flat-field series (see Eq. (10)) over the field of view. Vibrations in the
monochromator lead to a movement of the stripes between flat-field images. This increases
the variance of gray values in the flat-field series for the affected pixel and, consequently,
reduces the SNR. (d) Pixel-wise correlation coefficient between the theoretical prediction
(see text) and the experimentally obtained gray value distribution in the flat-field series.

This is exemplified by the pixel-wise signal-to-noise ratio (SNR) with

SNR =
μn

σn
, (10)

of the flat-field series (Fig. 4(c)). Vibrations in the monochromator lead to a movement of the
stripes between flat-field images. This increases the variance of gray values in the flat-field
series and, consequently, reduces the SNR. Naturally, the distribution of this additional noise
source is different from photon shot noise, which results into an increased χ for the affected
pixels (Fig. 4(b)). However, the mean χ over the field of view is used in the numerical simula-
tions and, thus, the monochromator vibrations are accounted for. A similar reasoning holds true
for such additional noise sources as read-out or dark current noise. Due to the baseline normal-
ization in the analysis procedure (see Sec. 2), effects of mechanical drift of the experimental
setup are not taken into account.

We have validated the presented model of noise by using the determined parameter of the
Gaussian noise (i.e. χ = 0.97) for the prediction of the pixel-wise noise distribution of the
flat-field series. For this purpose pixel-wise histograms were calculated with 50 bins (i.e. an
average of 20 events per bin and pixel) around five times the standard deviation of the gray
values distribution within the pixel. The histogram was then correlated with the predicted noise
distribution and Fig. 4(d) shows the resulting correlation coefficient [31].
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As might be expected, the correlation coefficient is comparably low in regions, which are
most affected by beam fluctuations. However, the mean correlation coefficient over the field
of view was 0.97±0.03, which clearly validates the presented model of noise and its assump-
tions (e.g. Eq. (9)). Earlier, we have stated that the experimental noise is dominated by photon
shot noise. Since the utilized Gaussian noise model represents the case of ideal photon shot
noise, our statement is confirmed by the high correlation coefficient. Image areas of a reduced
correlation coefficient (Fig. 4(d)) are due to local deviations in the noise distribution from the
ideal Gaussian shape and maybe regarded as effects of the second order, which are caused by
background fluctuations.

4.3. Results with constant η
The numerical simulations in this subsection were performed with parameters that reflect the
typically experimental situation at TOMCAT (i.e. χ = 0.97 and η = 0.3).
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Fig. 5. Sensitivity of the GI as a function of M−1/2 with M the number of phase steps for
three different dynamic ranges, which are related to the noise level by Eq. (9). The lines
indicate the results of linear regression.

First of all, we have investigated the effect of total number of phase steps M on the sensitivity
αmin. Intuitive expectations suggest that αmin improves inversely with SNR if the exposure time
for each phase step is constant: αmin ∝ SNR−1. Poisson statistics then indicates that the SNR
improves with the square root of the number of phase step images M: SNR ∝ M1/2. Thus, the
sensitivity is expected to improve as αmin ∝ M−1/2 and Fig. 5 shows that this expectation is
met. The qualitative behavior is in total agreement with the published data [32, 38].

As a second example, the described procedure was used to determine the dependency of αmin

on the visibility v, which is a characterization of the amplitude of the PSC. v is given by the
ratio of the first and zeroth harmonic of the Fourier transform of the PSC

v = 2

∣∣∣∣ f̂ (q1)

f̂ (q0)

∣∣∣∣ . (11)

In addition to the blurring of the interference pattern caused by the finite source size, there are
several potential sources degrading the visibility, e.g. insufficient attenuation of the absorption
grating, polychromaticity of the X-ray beam, non-optimum manufacturing of the gratings or
surface roughness of the monochromator. Instead of taking each individual effect into account,
we use a variable transmission of the absorption grating to model the influence of decreased
visibility.
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Fig. 6. Sensitivity of the GI in terms of the minimal detectable refraction angle as a function
of the visibility for three different dynamic ranges, which are related to the noise level by
Eq. (9).

The results (Fig. 6) show that sensitivity in the sub-μrad range is well accessible at TOMCAT.
Furthermore, it is obvious that the visibility as well as the noise level have a dramatic impact
on αmin.
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Fig. 7. Impact of the duty cycle of the absorption grating on the sensitivity or three different
dynamic ranges, which are related to the noise level by Eq. (9). (a) Visibility (Eq. (11)) as
a function of the duty cycle. (b) Minimum detectable refraction angle per time unit.

As an additional example, we have investigated the dependency of αmin on the duty cycle of
the absorption grating. The duty cycle is defined as the ratio between the width of the transpar-
ent part of the grating structure and the pitch. Figure (7)a shows the visibility of the simulated
PSCs according to Eq. (11) as a function of the duty cycle. Since a decreasing duty cycle is
related to a finer sampling of the interference pattern, the visibility increases as the duty cycle
decreases.

However, the larger visibility does not imply the superiority of smaller duty cycles. With
increasing duty cycle the total number of acquired photons increases if the exposure time is
constant. But the quantity of interest is the minimum detectable refraction angle per time unit.
Thus, we have normalized the determined αmin by the duty cycle. The result is then the mini-
mum detectable refraction angle per time unit (Fig. 7(b)). The optimum was found for a duty
cycle of about 0.55.
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4.4. Comparison between theory and experiment
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Fig. 8. For the experimental determination of the minimum detectable refraction angle.
(a) The measured refraction angle of a polystyrene cylinder immersed in water. (b) The
corresponding pixel-wise standard deviation of ten repeated scans, which is equal to the
experimentally determined minimum detectable refraction angle.

Further validation of the presented numerical framework was performed by a comparison be-
tween theoretical prediction and experimental determination of the minimum detectable refrac-
tion angle. For the experiment a polystyrene (PS) cylinder of 10 mm diameter was immersed
in water and scanned 100 times with the phase stepping procedure as described in Sec. 2. The
number of phase steps was M = 6 over two PSC periods, the exposure time was 350 ms and the
other experimental parameters were the same as in the previous section.

Figure 8(a) shows the resulting refraction angle. The contrast between water (refractive in-
dex decrement: δ = 3.68 · 10−7) and PS (δ = 3.75 · 10−7) is comparably low. The pixel-wise
standard deviation of the 100 repeated scans (Fig. 8(b)) is taken as the minimum detectable
refraction angle. The mean over the field of view is αmin = (67±9) nrad.

Up to now, we have assumed a perfect manufacturing of the gratings in the numerical sim-
ulations. Naturally, the experimental reality deviates from this ideal. In particular, the utilized
phase grating has a non-ideal duty cycle of 0.59, which degrades the visibility of the PSCs.
Thus, the visibility of the simulated PSC was lowered by increasing the parasitic transmission
of the absorption grating (see also previous subsection) in order to match the visibility in exper-
iment (v= 0.2874). Additionally, the effective dynamic range (μn = 13.06) and, thus, implicitly
the noise level in the numerical simulation was matched to the experimental situation.

The numerical determination of the minimum detectable refraction angle (see Sec. 4.1)
yielded a theoretical prediction of αmin = 63 nrad, which is in excellent agreement with the
experimental result. Thus, we conclude that the presented framework makes accurate predic-
tions.

The residual discrepancy may be explained by two influences that were not accounted for in
the numerical framework. First, it was shown that the accuracy of the fringe offset ϕ depends
on higher harmonics of the PSC and, thus, on the exact shape of the PSC [35]. As already men-
tioned, we assumed perfectly rectangular gratings in the simulations and deviations from this
ideal case will act as an additional noise source. Secondly, the determination of the noise level
(see Sec. 4.2) was performed on a single phase step position. Thus, effects of phase stepping
jitter (i.e. an uncertainty of the position of the actuator used for the phase stepping) are not
included into the noise. Both effects overestimate the sensitivity in the numerical framework.
However, the agreement between simulations and experiment shows that these effects play a
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minor role.

4.5. Optimum inter-grating distance

Finally, we have determined the optimum reduced inter-grating distance that maximizes the
sensitivity for parallel beam geometry. Under otherwise optimal imaging conditions, two coun-
teracting effects have to be taken into account.
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Fig. 9. (a) Visibility (Eq. (11)) in dependency on the reduced inter-grating distance η , which
was numerically (see text) and analytically determined (Eq. (12)). (b) The corresponding
uncertainty of the fringe offset Δϕ for three different dynamic ranges, which are related to
the noise level by Eq. (9).

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

reduced inter−grating distance η

α m
in

 [n
ra

d]

 

 

M=3
M=6
M=9

Fig. 10. Minimum detectable refraction angle αmin as a function of the reduced inter-grating
distance η . M denotes the number of phase steps.

On the one hand, the finite source size increasingly blurs the interference pattern with in-
creasing η (Fig. 2(b)), which results in a decreased visibility and, thus, into an increased min-
imum detectable refraction angle (Fig. 6). The first harmonic visibility v in dependency on the
reduced inter-grating distance η is given by (see leading order term of Eq. (2.52) in [36])

v(η) =
8

π2 e−(1.887η)2 . (12)

Figure 9(a) shows v(η) as determined by Eq. (12) (unbroken green line) and as determined
from the numerical calculations (dashed blue line). For the latter the PSCs were calculated
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for any given η (see Sec. 4.1) and then analyzed with respect to Eq. (11). The corresponding
minimum detectable fringe offset Δϕ was determined by the numerical procedure described in
(see Sec. 4.1) corresponding the visibility in Fig. 9(a).

On the other hand, for a given refraction angle α the lateral shift of the interference pattern
increases linearly with η , and, thus, the value of the fringe offset ϕ increases linearly along with
the achieved contrast (Eq. (5)). Therefore, the contributions of increasing lateral fringe shift and
decreasing visibility to the total sensitivity counteract each other and an optimal inter-grating
distance maximizing the total sensitivity is expected.

The result of this investigation is presented in Fig. 10, where the optimum reduced inter-
grating distance was identified as

ηopt =
dopt S

zg2
≈ 0.4. (13)

While the quantitative values of αmin (i.e. the Y-axis) depend on the details of the experimental
setup (e.g. detector, coherence or quality of the gratings), the optimum reduced inter-grating
distance (i.e. the X-axis position of the minimum) does not depend on those details (ref. also to
the results in [32, 35, 38]). Thus, measuring at η = 0.4 maximizes the sensitivity of all setups
which employ a monochromatic, parallel beam geometry.

The identified optimum inter-grating distance is a prediction of the presented numerical
framework, which is based on established facts (e.g. shape of the phase stepping curves, effects
of coherence, etc.; see subsection 4.1) and an experimentally-confirmed noise model (subsec-
tion 4.2). Additionally, the numerical framework was validated for one point (subsection 4.4).
Therefore, it seems unlikely that experimental reality substantially differs from this theoretical
prediction.

5. Discussion

5.1. Optimization with existing gratings

Using the existing absorption grating at TOMCAT (i.e. g2 = 2 μm) the result η = 0.4 indicates
an optimum inter-grating distance of dopt = 170 mm with a minimum detectable refraction
angle of αmin = 40 nrad for 3 phase steps and ideal gratings. If a loss of 10% of sensitivity is
assumed to be insignificant an interval of (120-230) mm may be considered as optimal.

Grating interferometry is also used at the ID19 beamline of the European Synchrotron Radi-
ation Facility (Grenoble, France). At the ID19 the source distance is z = 150 m, the source size
S = 125 μm and absorption gratings with a pitch of g2 = 2.4 μm are employed [37]. According
to Eq. (13) this implies an optimum inter-grating distance of 1.1 m.

Furthermore, the identified minimum detectable refraction angle for ideal gratings deter-
mines an upper bound limit for the resolution of the phase stepping motor. For the TOMCAT
beamline the sensitivity of αmin = 40 nrad at an optimum inter-grating distance of 170 mm
corresponds to a lateral offset of the interference pattern of about 7 nm. Thus, the resolution
and reproducibility of the corresponding motor has to be equal or better than 7 nm.

5.2. Optimum absorption grating

Up to now, we have treated the inter-grating distance dm and the pitch of the absorption grating
g2 as independent parameters. However, for a given wavelength λ the two quantities are related
by Eq. (1) if g1 = 2g2 holds (i.e. parallel beam). Therefore, the optimum reduced inter-grating
distance determines the optimum pitch of the absorption grating by

(
m− 1

2

)
g2 = ηopt

zλ
S

= ηoptLcoh (14)
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with Lcoh the lateral coherence length. This result can now be used to optimize all existing GI
setups, which employ a parallel beam geomtry.

Equation (14) indicates that for a given wavelength λ an optimum combination of m and g2

exists. From the point of view of the manufacturing process, high aspect ratios of the absorbing
grating lines are the current limitation [23]. The choice m= 1 would be ideal since it maximizes
g2, thus, significantly simplifying the process. At the same time m = 1 affects the flexible
application of that particular absorption grating, since no smaller inter-grating distances can be
realized. An absorption grating that is optimized for m = 2 can also be used for an m = 1 setup,
which could avoid phase wrapping artifacts (see Eq. (6)) at the cost of non-optimal sensitivity.
In practice, these advantages and disadvantages have to be weighed against each other.

5.3. Relation to published results

The quantification of the sensitivity of GI has been of increasing interest in the recent years.
In the following, we relate the results of our investigation to the published data in works of
Yashiro et al. [38], Revol et al. [32] and Raupach et al. [35].

Most closely related to the presented investigation is the article by Yashiro et al.. The authors
identify the optimum experimental conditions for Talbot interferometry, which is a laboratory-
based setup with cone beam geometry and two absorption gratings. In such a setup the source
to detector distance R2 becomes an additional parameter to optimize. Assuming a constant total
beam intensity, the flux decreases with the square of R2, which in turn leads to a decreased
sensitivity for a fixed exposure time. This additional effect on the sensitivity is not applicable
for parallel beam geometry, which was discussed here. In fact, the main difference between
parallel and cone beam geometry with respect of optimizing the sensitivity is the occurrence of
the factor ηopt ≈ 0.4 in Eq. (14). Furthermore, in Yashiro et al. the sensitivity is numerically
determined by Monte Carlo simulations with up to 1014 photons/sr per phase step image. Al-
though the authors do not state the computation time, it is clear that our approach is much faster
and easier to implement. As an example the computation time for Fig. 5 was about 6 min on a
standard modern desktop computer.

Revol et al. derive analytical expressions for the sensitivity of the absorption, differential
phase and dark-field contrast under the assumption of sinusoidal PSCs. While this assumption
is valid for a laboratory-based setup with cone beam geometry, it does not hold true for the case
of a synchrotron beamline. Due to the superior coherence the interference pattern is much closer
to the ideal rectangular shape in the latter case. Thus, their results are not directly transferable
to parallel beam geometry. While the modelization of noise and the method of experimental
validation in Revol et al. was approximately similar to our investigations, they differ in the de-
tails. The analysis methods developed in Revol et al. assume a time-independent background
illumination, which is obviously not valid for the present case (cf. Fig. 4). Furthermore, Revol et
al. accounted for the additional noise source of phase stepping jitter, which we neglected. How-
ever, the authors reveal an interaction of sensitivities of the different contrasts. For example,
the uncertainty of the fringe offset ϕ increases if the absorption or dark-field signal increases.
In our investigations we implicitly assumed absent absorption and dark-field contrasts and we
expect a similar behavior for parallel beam geometry.

The aim of the article of Raupach et al. is to compare the noise transfer from the experimental
images to tomographic reconstruction for attenuation-based tomography and differential phase-
contrast tomography (PCT). They discover a resolution-dependent performance ratio between
the two techniques and identify a break-even point, which is given by the geometry and visibil-
ity of the PCT setup. The relevance of their investigation is the identification of the additional
uncertainty of the fringe offset ϕ due to the higher harmonics in the PSC or - equivalently -
the exact shape of the PSC. This effect (called “anatomical noise” in [35]) is taken into account
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in our theoretical investigations, since all harmonics were present in the PSCs that were used
as input for the numerical simulations. However, we assume ideal rectangular-shaped gratings
and, thus, the corresponding ideally shaped PSCs in the numerical simulations, which explained
the slight offset between theoretical prediction and experimental results in Sec. 4.4.

6. Conclusion

We have established a simple, fast yet reliable numerical procedure to quantify the sensitivity
of grating interferometry in terms of the minimum detectable refraction angle. We presented
and experimentally verified a noise model that accurately reflects major contributions of noise.

After confirming already published results concerning the dependency of the sensitivity on
several experimental parameters, we investigated the dependency of the sensitivity on the duty
cycle of the absorption grating. An optimum duty cycle of 0.55 was determined.

Further validation of the developed framework was performed by a comparison between
theoretical prediction and experimental results. The latter were obtained with the GI setup at
the TOMCAT beamline and for the specific experimental parameters a minimum detectable
refraction angle of αmin = (67±9) nrad was identified, which was in excellent agreement with
the theoretical prediction of αmin = 63 nrad.

Furthermore, the numerical framework was used for the optimization of the sensitivity of
GI in parallel beam geometry. We used the ratio of the period of the interference pattern and
the projected source size η as a general parameter for describing the partial coherence contri-
bution of finite source size. We identified the optimum reduced inter-grating distance, which
maximizes the sensitivity, as ηopt ≈ 0.4 for any beamline (see Eq. (13)).
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