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Abstract
MRI has evolved into an important diagnostic technique in medical imaging. However, reliability
of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and
automatic computer-aided diagnosis. This paper proposes a fully automatic method for measuring
image quality of 3D structural MRI. Quality measures are derived by analyzing the air background
of magnitude images and are capable of detecting image degradation from several sources,
including bulk motion, residual magnetization from incomplete spoiling, blurring, ghosting, etc.
The method has been validated on 749 3D T1-weighted 1.5 T and 3 T head scans acquired at 36
Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software
and hardware combinations. Results are compared against qualitative grades assigned by the
ADNI quality control center (taken as the reference standard). The derived quality indices are
independent of the MRI system used and agree with the reference standard quality ratings with
high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be
of great value for both research and routine clinical imaging. It could greatly improve workflow
through its ability to rule-out the need for a repeat scan while the patient is still in the magnet bore.
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Introduction
MR imaging quality can be affected by a wide variety of artifacts. They can be broadly
classified into two categories: those that are machine-specific and those that are related to
the patient. Some of the machine-specific artifacts are not visually obvious, yet can
potentially degrade images. This can cause inaccurate diagnosis or dramatically affect the
efficiency of automated quantitative image analysis algorithms that are increasingly used in
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clinical practice and research. These techniques offer promise for improved clinical
workflow including clinical research studies such as longitudinal monitoring of the
evolution and the treatment of degenerative and inflammatory diseases (e.g. dementias,
multiple sclerosis, Parkinson disease, etc.). In this context, recognizing artifacts becomes
fundamental.

Recently, various investigators have proposed standardized quality assurance (QA)
protocols and methodologies to test machine-related artifacts (1-3). These protocols are
often based on specially designed phantoms to analyze image quality-related system
parameters such as gradient linearity (4), geometric accuracy, high-contrast resolution, slice
thickness/position accuracy, image intensity uniformity (5-7), percent signal ghosting and
low-contrast object detectability (8,9). These QA tests are of high interest to monitor scanner
performance and retrospectively correct human images for drifts or discontinuities in
gradient calibration (10,11).

Although QA tests are performed as standard procedure during tune-up and service of MR
systems and are used in several clinical studies, very little has been reported about detecting
and analyzing patient-related artifacts. The importance of such quality control might have
been downplayed so far under the assumption that an experienced radiologist is able to
“read-through” artifacts. Nevertheless, this issue has been investigated (12,13) and some
studies demonstrated that a visual quality assessment of intentionally degraded MR images
was not as sensitive as an automated image analysis system to detect low MRI quality (14).

Signal-to-noise ratio (SNR) has traditionally been presented as an important index of image
quality in magnitude human MR images (5,15). SNR measures, however, are not necessarily
sensitive to patient-related artifacts. These latter ones often appear as signal intensity being
mis-mapped to an incorrect spatial location relative to tissues being imaged. Major types of
patient-related artifacts are: (a) edge artifacts (chemical shifts, ringing, ghosting from
motion), (b) flow artifacts, (c) aliasing artifacts (wraparound from improper patient
positioning and protocol planning, e.g., nose wrap) (16-19). Most of these artifactual signal
intensities propagate over the image and into the background (i.e. imaged air, whose
volume, in this study, typically corresponds to 40 % of the total 3D volume of a structural
MRI scan) and corrupt the expected noise distribution in affected regions. In this
investigation, we focus on a careful analysis of the background intensity distribution that in
most circumstances provides sufficient information to detect the presence of artifacts. It also
allows the derivation of two sensitive quality indices through model-based and model-free
approaches.

For verification and fine-tuning of the developed method, two quality indices were
calculated on 749 structural scans obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (www.loni.ucla.edu\ADNI). The ability of these two indices to
correctly differentiate low-quality from high-quality scans was compared against qualitative
grades assigned by an experienced reader from the ADNI MRI quality control center, which
were used as a reference (i.e. “gold”) standard. We compared the discriminative abilities
between our two quality indices over their ranges of possible cutoff points in order to
identify the preferred one. Transforming these indices to a low- vs. high-quality decision
requires specific cutoff points. We attempted to determine cutoff points for each quality
index but more detailed research could optimize and customize them for a specific
application.

The paper is organized as follows. Section 1 presents our automatic quality assessment
approach, based on the computation of two indices. The results provided in Section 2 and
discussed in Section 3 assess the value of our technique in routine clinical practice.
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1. Methods
The proposed automatic quality control method relies on investigation of the background
(air) region of the image. For the most relevant artifacts (ghosting, motion, flow, wrap-
around), artifactual signal intensity displacement into the background provides the means for
a sensitive quality assessment. The proposed approach is achieved in a three-step process
comprising: (1) background air region delineation, (2) computation of a model-free quality
index (QI1) and (3) computation of an additional quality index (QI2) that examines the noise
intensity distribution by fitting a noise model.

1.1. Processing steps
1.1.1. Step 1 – Background region segmentation—Figure 1 shows a schematic
flowchart of the method proposed to segment the background volume-of-interest (VOI). It
consists in the following steps: (a) Segmentation of the whole head and (b) Atlas-based
refinement of the VOI. Step a) is based on the establishment of the scalp/air boundary by
means of image gradient computation. This transition is quite sharp and is enhanced by a
preliminary anisotropic diffusion filtering. To exclude non-scalp/air boundary voxels, we
compute a threshold from the magnitude gradient image histogram, which is defined as the
intensity corresponding to 1% of the number of non-zero voxels in the image, i.e., an
empirically defined frequency threshold. Thresholding produces a set of voxels belonging to
the outer scalp boundary refined by a closing operation. Then a hole-filling process creates a
single volume containing the entire head. Because we aim to detect artifacts that cause
signal fluctuations in brain tissue (i.e. we are not interested in artifacts affecting the neck
region), we restrict background noise analysis to a VOI above the plane passing through the
nasion-to-posterior-of-the-cerebellum line and perpendicular to sagittal plane. This VOI is
codified in a home-built MRI T1-weighted template that is aligned to the subject scan with a
12-parameters affine transformation in step b). Finally, regions below this plane are
appended to the head mask resulting from step a) and a background image is obtained after
exclusive masking.

1.1.2. Step 2 – Quality index QI1: detection of artifactual voxels—Let us index N
image voxels belonging to the background with i Є S = {1,2,…,N} and denote the intensity
of voxel i by xi and the background intensity histogram by H (H plots the normalized
number of background voxels (vertical axis) for a given intensity in the magnitude image
(horizontal axis)). After background segmentation, the first step of the algorithm consists in
extracting artifactual voxels. Artifactual intensities overlap with true noise, so our primary
goal is to find an appropriate threshold to remove low-intensity noise in the background. The
intensity x1 at maximum amplitude of H gives an initial estimate of the range of artifactual
intensities. Thresholding produces a set of voxels described as Xt1 = {i Є S: xi>x1}. After
thresholding, the volume still contains voxels with intensity due to true noise that are
randomly scattered through the volume. Hence, a pure thresholding intensity-based method
would not be efficient to capture artifacts. To remove the remaining noise, we apply a
modified morphological opening operation (20,21), consisting in an erosion of Xt1, using a
3D cross structuring element, and a dilation, performed iteratively with the same kernel and
constrained to voxels intensity above x1. The result of this process is a natural definition of
artifact regions Xartifacts where statistics can be performed. We consider the proportion of
voxels with intensity corrupted by artifacts normalized by the background size as a first
quality index QI1:
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(1)

This quality measure ideally reflects the presence (QI1≠0) or absence (QI1=0) of artifacts
and relies on both artifacts delineation and clustered property of artifactual voxels. This
latter assumption is valid for most artifacts (e.g. edge, flow, etc.), but may be violated in
case of more subtle artifacts (e.g. blurring, intensity nonuniformities, etc.). Therefore, we
propose a second quality index that is complementary to the first one.

1.1.3. Step 3 – Quality index QI2: noise distribution analysis—Characteristics of
noise in a magnitude-reconstructed image obtained from single- or multiple-receiver unit
systems has been thoroughly studied (15,22,23). For individual images, the magnitude
operation transforms a complex Gaussian (normal) variate to a Rician variate. When
component coil images from an array are combined as the sum-of-square magnitudes, the
distribution is described by a modified Bessel function of the first kind (or chi function). Let
us index N′ image voxels belonging to the background from which the region Xartifacts
delineated in Step 2 has been removed with j (X00404) S′ = {1,2,…,N′}, the intensity of
voxel j by yj and its distribution H′. For an array of n coil elements, yj follows a probability
density function (pdf) defined by:

(2)

where σ is the standard deviation of the true noise (i.e. Gaussian noise in the real and
imaginary images). Using single-receiver system, the pdf follows a Rayleigh distribution
while the use of more receiver units produces a more symmetric pdf. Figure 2 shows
background noise distributions of phantom scans obtained with various receiver unit
configurations. These distributions are in excellent agreement with Constantinides' modeling
(22).

We propose to fit the above-outlined model to H′ using maximum likelihood estimation
(24). As shown on Figure 3, the presence of artifacts enlarges the noise intensity
distribution's right tail that extends to higher intensity values and hence increases its
skewness. Right-skewness, up to a certain degree, is incorporated in the model, particularly
for single-channel receive coil. However, the model becomes less and less accurate with
substantially right-skewed distributions. Therefore, we consider the goodness-of-fit (gof, i.e.
absolute error) to be a sensitive measure of quality, especially if its computation is restricted
to the right tail of the distribution, such as:

(3)

where t2 is the intensity at half maximum amplitude of H′ in the negative slope part.

We propose a second quality index accounting for both clustered artifacts effects (measured
by QI1) and subtle artifacts effects (measured by gof), defined as:
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(4)

1.2. Subjects and image acquisition
In this study, we assess overall image quality in 749 T1-weighted structural 3D head MRI
data (188 subjects, 72.5 ± 17.5 years old) obtained from the ADNI study. Data have been
acquired at 36 different Siemens 1.5T and 3T scanners (6 different scanner types). The
scanners were equipped and operating with various models of receive head coils and
software versions (see Table 1). Because our purpose is to evaluate image quality from
background noise analysis, no screening was performed based on age, clinical dementia
rating, or gender. Back-to-back scans are acquired on each subject within each ADNI
scanning session. Scan and scan-repeat were considered as two independent scans because
different patient-related artifacts can occur differently during these two acquisitions.

T1-weighted sagittal volumes are obtained using the magnetization prepared rapid gradient
echo (MP-RAGE) pulse-sequence (25). Used imaging parameters are TR = 2300 ms, TI =
900 ms, flip angle = 9 ° at 3 T (TR = 2400 ms, TI = 1000 ms, flip angle = 8 ° at 1.5 T)
minimum full TE, 160 sagittal slices. All 1.5 T subject acquisitions use 1.25×1.25 mm2 in-
plane spatial resolution and 1.2 mm thick sagittal slices. The 3.0 T subject acquisitions also
use 1.2 mm thick sagittal slices, but are acquired with 1.0×1.0 mm2 in-plane spatial
resolution. In addition, phantom acquisitions are obtained as part of each imaging session
using the same imaging parameters and in-plane resolution but 1.3 mm thick sagittal slices
(10,11,26). These phantom scans were used to confirm Constantinides' noise modeling (22)
(see 1.1.3). Detailed lists of imaging protocol are available at
www.loni.ucla.edu/ADNI/Research/Cores. No pre-processing was applied.

1.3. Information on the Alzheimer's Disease Neuroimaging Initiative
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership. The primary goal of ADNI is to improve
methods for AD clinical trials. Specific aims include optimizing methods for imaging in
multi site studies and comparing the value of serial MRI, positron emission tomography
(PET), fluid biomarkers, and clinical and neuropsychological assessment to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). These
efforts are designed to improve the effectiveness of clinical trials to discover and validate
new treatments for AD, and reduce the duration and cost of clinical trials. For up-to-date
information see www.adni-info.org.

1.4. Validation process
As part of the ADNI MRI workflow, each MP-RAGE sequence is graded qualitatively for
artifacts by an experienced individual at the ADNI MRI center at the Mayo Clinic. Quality
grading is performed on a 4-point scale [None, mild, moderate, severe] on several criteria
[blurring/ghosting/ringing; flow artifact; intensity and homogeneity; signal to noise ratio;
susceptibility artifacts; gray-white CSF contrast]. General image quality is also graded on a
binary basis: passed, failed. The latter criterion is considered in our investigation as a gold
standard to assess the predictive performance of quality indices obtained with the proposed
quality assessment method.

We evaluate the effectiveness of tests based on our automated quality indices through two
attributes: accuracy and consistency.

Mortamet et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Accuracy refers to the ability of automated quality measures to discriminate between high-
quality and low-quality scans and is measured using receiver operating characteristics
(ROC) curves (27) (see Figure 4.a). More specifically, the ROC curve for a test represents
the range of combinations of sensitivity and specificity achievable as the cutoff value ranges
from more stringent (more specific) to less stringent (more sensitive). Sensitivity and
specificity need the information from the confusion matrix, which consists of four elements:
true positive or appropriate high-quality decision (TP), false positive or outcome of a missed
low-quality scan (FP), false negative or outcome of a missed high-quality scan (FN), and
true negative or appropriate low-quality decision (TN). Sensitivity is calculated as true
positives divided by number of cases “passed” on the Mayo quality control rating.
Specificity is calculated as true negatives divided by number of cases “failed” on the Mayo
quality control rating. We use ROC curves for three purposes: (1) to measure the
performance of each test over its range of possible cutoff points provided by the area under
the curve (AUC=1: perfect; 0.9-1: excellent; 0.8-0.9: good; 0.7-0.8: fair; 0.6-0.7: poor;
0.5-0.6: fail), (2) to compare the discriminative abilities between our two quality indices in
order to identify the preferred one, and (3) to determine a cutoff point for each quality index
(qiT1 and qiT2) corresponding to equal sensitivity and specificity. An appropriate modeling
technique (e.g. supervised machine learning) could also be used to further determine optimal
cutoff points but is not investigated here. Each cutoff point determined in (3) allows the
classification of the datasets into two quality groups (high-/low-quality). The statistical
difference between these two groups is evaluated by means of a one-way analysis of
variance (Fischer's ANOVA) (see Figure 5).

Consistency refers to the degree to which the quality index predicts the same quantity from
different field strength/system/receive coil type configurations. For example, a consistent
prediction algorithm would predict the same quantity for a particular scan regardless of
whether the scan was acquired at 1.5 or 3T, using 8 channels or 12 channels receive coils.
To assess consistency, we conduct an ANOVA by considering acquisition configuration as
an independent variable.

1.5. Practical implementation
Background noise regions extraction algorithm was written as an integrated package in ITK
(Insight Toolkit). Noise distribution analyses are implemented in C++. When run on a Dual-
Core Intel Itanium 2 CPU 2.93 GHz, the whole process takes about one minute for images
with matrix dimensions 240×256×160. Statistical analyses are performed using Matlab
routines.

2. Results
2.1. QIs accuracy – discrimination of low- and high-quality images

The quality of a total number of 749 scans consisting of 695 manually rated as high-quality
(or pass) and 54 rated as low-quality (or fail) was assessed. On average, 42.5 ± 4.7 % of the
total 3D scan volume was considered as background over which quality indices were
computed. ROC curves were used to test the accuracy of each automated quality index (see
Figure 4.a.). These curves have areas of about 0.93 on average indicating an “excellent”
prediction performance, and overall a test based on QI2 is as accurate as a test based on QI1.
However, QI2 appears to be more specific in artifact detection (QI2-based test ROC curve is
steeper near the origin than QI1 one).

Trading-off sensitivity and specificity at approximately equal rates (87.19 % and 85.18 % on
average for QI1 and QI2, respectively) provides cutoff points of 5.06e-3 and 5.7e-2,
respectively. This means that a scan will automatically be rated as low-quality if more than
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0.506 % of its background volume is affected by artifacts (according to QI1 value and 5.7 %
according to QI2 value).

2.2. QIs consistency – discriminative abilities independence from acquisition
configurations

ANOVA reveals significant differences among the two quality groups (i.e. low- and high-
quality) for each QI as shown on Figure 5.a. and 5.b. (p < 0.001). This significant trend is
also valid when considering acquisition configuration as an independent variable (p < 0.001
for each configuration). Therefore, the discriminative performances of the proposed indices
appear to be independent of differences in field strength or software-hardware combinations
used by the MRI systems.

Overall, the model underlying QI2 fits the data well and our quality indices appear to be both
accurate and consistent.

3. Discussion
In response to growing recognition of the value of MRI as an instrument in clinical research,
many investigators have launched multicenter studies. Similarly, multi-center trials are
widely used to assess pharmaceuticals and other therapies during their various stages of
development. To a large extent, the success of these studies will depend on MR data quality,
which will influence the post-processing (e.g. volumetric quantification) and diagnostic
conclusions.

Our purpose was to identify a simple method to automatically assess image quality from
magnitude images, in order to optimize the quality of quantitative measures. This method, if
applied just after the scan session and ideally incorporated in image reconstruction, may also
inform the MR operator about low-quality directly after the scan and advise the need to
rescan while the patient is still in the MR bore. Consequently, the number of call-back
examinations and thus overall patient burden could be reduced. Because the proposed
method is automated, it offers perfect repeatability (assuming that the cutoff point is held
fixed), unlike human graders, where inter- and intra-observer repeatability is imperfect.

We evaluated the performance of the method against the best gold standard available
corresponding to experts' quality rankings on a relatively large number of datasets. Our
results indicate that the automated measures are highly efficient in predicting image quality
(AUC > 0.9). As shown on Figure 4.a, QI1- and QI2-based test ROC curves cross.
Therefore, no definite conclusion can be drawn concerning which test is the best to perform.
This holds true as long as we consider investigation of quality measures based on untreated
raw data (no filter, no parallel imaging) as used within ADNI. This ROC curves crossing
suggests that QI2-based test may still be preferable over a certain range of sensitivities and
specificities, even though its AUC is the lowest. For example, an investigator who wishes to
exclude low-quality scans might prefer to operate in the left portion of the curve where QI2-
based test appear to work better. In the opposite case of an investigator who is more
concerned about sensitivity, it might be preferable to opt for the QI1-based test, which
appears more effective in the upper right end of the curve. In other words, the selection of
cutoff points could be application-specific. Further investigation would therefore consist of
customizing cutoff levels according to the required performance of a target application (e.g.
brain structures segmentation). In the meantime, for a given sensitivity/specificity
combination, corresponding cutoff values for QI1 and QI2 can be easily obtained using
Figures 4.b. and 4.c. When considering hardware configuration as an independent variable,
ANOVA revealed highly significant differences between low- and high-quality groups for
each index (p < 0.001). Therefore, these cutoff values can be considered as “universal” and
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thus can be applied to every system. Moreover, introduction of a new system would not
require the acquisition of phantom scan or large-scale data collection for adjustment of the
respective cutoff points and there is every reason to think that our quality indices might
perform equally well for data acquired with scanners from different vendors.

One potential concern was that our artifacts delineation algorithm would isolate clustered
artifacts voxels but could omit subtle ones. Accordingly, model-based QI2 test would overall
perform better in detecting the latter. This hypothesis appears to be valid since we observed
a trend towards an increased specificity when using the QI2-based test. This finding suggests
that incorporating additional models may improve the discriminative abilities of our quality
tests. One immediate possibility could be to differentiate artifacts into subtypes with regard
to their spatial location. Such differentiation could be easily obtained by incorporating
subregions into the VOI template, thus having an a priori knowledge where specific artifacts
are most likely supposed to take place. In addition, artifacts such as noise spikes would be
difficult to encode in a template as they create wave-like patterns over the whole volume. In
this particular case, the background intensity distribution H is no longer smooth, which can
be simply detected. Consequently, measuring the degree of background histogram
smoothness could provide an efficient quality criterion for noise spike type artifacts.

Although many of our quality measures were consistent with the independent visual ADNI
qualitative ratings of the datasets, a few were not. At a positivity criterion of < 5.06E-03, the
sensitivity of QI1-based test is 87.34 % (607 scans appropriately rated as high-quality over
695) and the specificity is 87.04 % (47 scans appropriately rated as low-quality over 54). As
seen on Figure 4.a., this sensitivity/specificity combination dominates the one achievable
with QI2. Therefore, the number of false positives and false negatives cannot be further
decreased by varying the cutoff point. However, on close examination of the false positives,
these discrepancies are mostly attributable to the fact that artifacts noticed by the expert do
not propagate into the background (e.g. failed according to ADNI because of nose wrap or
low SNR due to use of wrong coil). An interesting strategy to automatically detect quality
degradation in those cases would be to derive additional quality measures from, check of
imaging parameters and brain tissue intensity analysis.

This latter approach, however, raises several questions. First, given a certain contrast, is it
realistic to predict brain compartment intensity characteristics such as gray/white matter or
cerebrospinal fluid mean intensities? Second, there is a real question of age-related or
pathology-related changes in the MR imaging characteristics of gray and white matter that
could affect the significance of our quality indices. This points to a potentially important
new area of research. In an initial approach, we implemented a check of sequence
parameters as saved in the DICOM header of each image. Thus, we were able to detect a
scan that turned out to be a false negative case according to our QIs. This particular scan
was performed using the body coil instead of the head matrix, which resulted in low quality
due to poor SNR. In another example a structural scan with the nose entering brain tissue
was manually rated as low-quality. Our quality assessment, however, did not exhibit any
signs of quality degradation. Nevertheless, the atlas-based background segmentation
procedure provided us with the information of the erroneous positioning or choice of FoV
(not incorporated in the discussed sensitivity and specificity analysis) since the nose can be
spatially encoded in the VOI template. Other head features such as the chin or ears can also
be incorporated into the template to detect poor slice positioning. Initial results show that
our atlas-based technique performs remarkably well in detecting the degree of nose
wrapping but are not presented here in the interest of conciseness.

Summarizing, additional analysis steps such as automated protocol checks, more detailed
tissue analysis, smoothness analysis of the background intensity distribution, k-space
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analysis or introducing artifacts spatial a priori may provide valuable information to even
further increase sensitivity and specificity in the automated quality assessment.

The proposed quality assessment is restricted to imaged background air areas and anticipates
that a reasonable number of background voxels is provided. This assumption is valid in our
study as about 40 % of the area in 3D volumes accounts to background (here ranging from
30 % to 55 %). Further investigation could aim at determining a minimum number of
background voxels required. Nevertheless, for typical protocols such as used in this
particular study, we presume that both QIs considered here can be directly extended to other
contrasts. However, parallel-imaging techniques or corrections for B1-intensity variation of
the phased array receive coils performed inline (e.g. product correction known as prescan-
normalize on Siemens scanners) are known to alter background noise distribution that can
no longer be modeled by central chi statistics (28). As a result, model-based QI2 test
becomes questionable in such cases. The model-free QI1 test, however, is predicted to
perform reliably and be independent of this effect, since the 3D connected structure of
artifacts is typically not affected. Initial results testing the influence of prescan-normalize
confirm this hypothesis as we did not observe differences in the quality rating.

4. Conclusion
Considered together, these results establish the feasibility of providing automatic image
quality assessment in structural brain MRI data. Quality tests performed on 749 datasets
indicate that our quality indices have excellent predictive value (area under receiver
operating characteristics curve > 0.9) and correlate remarkably well with quality ratings
from an independent gold standard source (both sensitivity and specificity > 85 %). The
proposed automated procedures for quality assessment could be of great value for both
clinical routine and research imaging. For example, this approach can provide unbiased
exclusion criteria for research studies, and can greatly improve clinical workflow through its
ability to rule-out the need for a repeat scan while the patient is still in the magnet bore.
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Figure 1.
Flow chart showing the 2 steps involved in background region segmentation
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Figure 2.
Background noise distribution for magnitude sum-of-squares phantom images (MP-RAGE)
using single-, eight-, and twelve-channel receiving system at 1.5 T and 3 T.
12-channel systems were driven in ADNI in CP-matrix mode, which equals a 4-channel
mode.

Mortamet et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Original sagittal slices of high- (a) and low- (d) quality datasets (MPRAGE, Allegra, single
channel RX coil) along with their background air mask used for analysis (b-e)
On the graphs (c-f), solid gray line corresponds to histogram of background voxels
intensities, dash dark line to chi fit, solid red line to QI1 intensity distribution and dot red
line to QI2 intensity distribution, the number of voxels on both left and right axes is
normalized by the total number of voxels belonging to the background.
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Figure 4.
Performance of quality tests demonstrated by area under ROC curves (a) and corresponding
cutoff value ranges used to generate sensitivity-specificity pairs for QI1 (b) and QI2 (c).
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Figure 5.
Comparison of QI1 (a) and QI2 (b) variability (p < 0.001 for each QI).
Top and bottoms of each box are the 25th and 75th percentiles of the samples, respectively.
The line in the middle of each box is the sample median. The whiskers are lines showing
adjacent values. Observations beyond the whisker are outlier.
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