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Abstract

Objectives: To develop a new automated segmentation method of white-matter (WM) and 

cortical multiple sclerosis (MS) lesions visible on magnetization-prepared 2 inversion-contrast 

rapid gradient echo (MP2RAGE) images acquired at 7T MRI.

Material and Methods: The proposed method (MSLAST: Multiple Sclerosis Lesion Analysis at 

Seven Tesla) takes as input a single image contrast derived from the MP2RAGE sequence and is 

based on partial volume estimation and topological constraints. First, MSLAST performs a skull-

strip of MP2RAGE images and computes tissue concentration maps for WM, gray-matter (GM) 

and cerebrospinal-fluid (CSF) using a partial-volume model of tissues within each voxel. Second, 

MSLAST performs: i) connected-component analysis to GM and CSF concentration maps to 

classify small isolated components as MS lesions; ii) hole-filling in the WM concentration map to 

classify areas with low WM concentration surrounded by WM (i.e. MS lesions); and iii) outlier 

rejection to the WM mask in order to improve the classification of small WM lesions. Third, 

MSLAST unifies the three maps obtained from i), ii) and iii) processing steps to generate a global 

lesion mask.
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Results: Quantitative and qualitative assessments were performed using MSLAST in 25 MS 

patients from two research centers. Overall, MSLAST detected a median of 71% of MS lesions, 

specifically 74% of WM and 58% of cortical lesions, when a minimum lesion size of 6 μL was 

considered. The median false positive rate was 40%. When a 15 μL minimal lesions size was 

applied, which is the approximation of the minimal size recommended for 1.5/3T images, the 

median detection rate was 80% for WM and 63% for cortical lesions, respectively, and the median 

false positive rate was 33%. We observed high correlation between MSLAST and manual 

segmentations (Spearman’s rank correlation coefficient, ρ=0.91), though MSLAST 

underestimated the total lesion volume (average difference of 1.1 ml), especially in patients with 

high lesion loads. MSLAST also showed good scan-rescan repeatability within the same session 

with an average absolute volume difference and F1-score of 0.38±0.32 ml and 84%, respectively.

Conclusions: We propose a new methodology to facilitate the segmentation of WM and cortical 

MS lesions at 7T MRI, our approach uses a single MP2RAGE scan and may be of special interest 

to clinicians and researchers.
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1. Introduction

Ultra-high field (UHF) magnetic resonance imaging (MRI) provides important insights into 

multiple sclerosis (MS) pathophysiology due to its improved signal-to-noise and contrast-to-

noise ratio as well as higher achievable spatial resolution compared to lower fields (1–4). 7T 

MRI has improved the detection of WM lesions – especially of small MS plaques (5) – as 

well as focal and diffuse pathology in the cortex (6), both in the cerebral hemispheres (7, 8) 

and in the cerebellum (9). The location, morphology, and inflammatory aspects of cortical 

lesions at 7T MRI have been described (10–12). The recent regulatory approval of 7T MRI 

for clinical use has made it necessary to develop tools for identification and quantification of 

lesions throughout the neuraxis, especially in the case of cortical lesions, which are now 

included in the revised MS diagnostic criteria (13).

To date, however, none of the existing methods for automatic lesion detection at 1.5T or 3T 

MRI (14–16) have been used for 7T MRI. This is in part because 7T images exhibit some 

characteristics that are challenging for direct translation of methods from lower field 

strengths. Most importantly, 7T MRI scans are affected by stronger intensity variations 

across the image due to increased inhomogeneity in the radiofrequency (B1) field compared 

to 1.5T and 3T MRI (2, 17). Also, spatial distortions are increased due to the 

inhomogeneities related to local variations of the static magnetic field (B0). Lastly, high-

resolution T2 FLAIR imaging – the most often-used contrast for MS lesion detection, which 

is frequently the basis of lesion-detection algorithms – is challenging to perform at UHF due 

to its high specific absorption rate (SAR) and other restrictions (2, 18, 19). Consequently, 

current available methods developed for 1.5 and 3T images are not suitable to perform 

automatic lesion segmentation with images acquired at 7T.
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In this work, we have developed “MSLAST” (Multiple Sclerosis Lesion Analysis at Seven 

Tesla), which is a new method tailored to detect and segment MS lesions on Magnetization-

Prepared 2 Inversion-Contrast Rapid Gradient Echo (MP2RAGE) images acquired at 7T 

MRI. MP2RAGE has been selected as input image for our segmentation framework as it 

provides i) a homogenous T1-weighted contrast due to its inherent bias correction, rendering 

it robust to both B1 and B0 inhomogeneities, and ii) quantitative maps of T1 relaxation (20, 

21). Moreover, MP2RAGE has been shown to provide high contrast between different brain 

tissues and high sensitivity to WM and cortical MS pathology at both high- and ultra-high-

fields (8, 9, 22). These characteristics thus make MP2RAGE sequence a good image for 

automated evaluation of MS lesion count and volume at 7T MRI.

2. Material and Methods

2.1. MRI and subjects

MR images were acquired at two different institutions: institution A and institution B, both 

using a 7T research scanner (Siemens Healthcare, Erlangen, Germany). This research was 

approved by the local ethics committees of both institutions, and all the subjects gave 

written, informed consent prior to participation.

At the institution A, MP2RAGE images from 14 individuals with early relapsing-remitting 

MS (RRMS) (10 women, 4 men, age range: 21–46 years) were obtained. At the institution 

B, MP2RAGE images from 8 individuals with RRMS and 3 with secondary progressive MS 

(7 women, 4 men, age range: 18–64 years) were acquired. In 5 patients of the institution B 

cohort, two MP2RAGE exams were conducted at the beginning and the end of the same scan 

session to assess repeatability.

The MP2RAGE protocol parameters applied at both institutions are summarized in Table 1. 

In this work we excluded the quantitative maps, and we used only the homogenous T1-

weighted contrast from the MP2RAGE acquisitions, where lesions appear as hypointense 

signals.

2.2. Manual Segmentation

Lesions were identified and delineated manually in the 25 cases (14 from institution A, and 

11 from institution B). The manual segmentations were performed by consensus between 

one radiologist (expert 1) and one neurologist/neuroimmunologist with expertise in MS and 

neuroimaging (expert 2), with 4 and 14 years of experience, respectively. The observers 

were blinded to clinical status. Hypointense abnormalities that have similar appearance to 

MS lesions in MP2RAGE, such as Virchow-Robin (VR) spaces (23) and vessels were 

distinguished from MS lesions according to the following criteria: (i) punctuate or tubular 

hypodensities with a diameter inferior to 3 mm, and hypointense structures with superior 

size located in the basal ganglia and subinsular regions were considered as VR spaces. VR 

spaces were typically located around perforating brain vessels, which run perpendicular to 

the brain surface. (ii) Vessels were considered as deep medullary veins as tubular 

hypointense structures that had a parallel distribution patterns adjacent to the body or 
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inferior horn and a radial pattern in the frontal horn or trigon of the lateral ventricle, and 

which could be follow on at least three slices.

Subsequently, each lesion was labeled as cortical or WM lesion. Cortical lesions were 

further categorized (6, 24) into: 1) leukocortical, extensions of WM lesions into the cortex; 

2) intracortical, lesions within the cortex that do not involve the subcortical WM; and 3) 

subpial, lesions across one gyrus that affect the cortex and reach the pial surface. Segmented 

lesions with a volume < 6μL were subsequently excluded from the lesion masks. The 

resulting lesion masks were taken as a reference to validate MSLAST.

2.3. Pipeline

A scheme of the processing steps performed within MSLAST is presented in Figure 1.

2.3.1. Step 1: Brain segmentation—We used the MorphoBox prototype software (25) 

to perform the skull stripping and to compute a mask of basal ganglia plus ventricles and 

WM segmentation mask (VEM1). A template image was non-rigidly registered onto the 7T 

MP2RAGE image using a transformation T’. The transformation T’ represents a nine-

parameter affine transformation A’ (translation, rotation, and scaling) followed by a free-

form diffeomorphic displacement D’. Following the registration, template-based tissue prior 

probability maps were resampled to the 7T MP2RAGE input image using the transformation 

T’. These priors were obtained using the DARTEL tool of SPM8 (26) from a data set of 136 

MR scans of healthy subjects. A segmentation of the WM (VEM1) was computed using an 

expectation-maximization algorithm that uses a simple 4-class Gaussian mixture intensity 

model representing GM, WM, CSF, and non-brain tissue constrained by the tissue prior 

probability maps. The total intracranial volume (TIV) of the input 7T MP2RAGE image was 

obtained from the resampled TIV template mask according to the transformation T’. Finally, 

the basal ganglia plus ventricles mask was obtained by resampling the basal ganglia plus 

ventricles template mask to the input image space applying the affine transformation A’.

2.3.2. Step 2: Partial volume estimation—Brain tissue (WM and GM) and CSF 

“concentrations” from the obtained TIV of MP2RAGE were computed using a partial 

volume estimation algorithm. The method is an extension of the “mixel” model (27) based 

on a Bayesian maximum a posteriori formulation, where a prior model is used in order to 

regularize the problem (28). As a result, three maps were obtained representing the 

calculated concentrations of WM, GM, and CSF for each voxel.

2.3.3. Step 3: Lesion detection—For subsequent processing steps, the concentration 

maps must be binary, i.e. a threshold was applied. The three thresholds (for GM, WM, and 

CSF) were optimized independently using a randomly selected patient dataset from the 

cohort. The goal was to maximize the separation between lesions (defined by the manual 

segmentation) and healthy tissues evaluating the connected component analyses at different 

thresholds. After this optimization step, the resulting thresholds (cWM ≥ 30%, cGM ≥ 40%, 

cCSF ≥ 40%) were applied.

2.3.3.1. Connected-components analyses: In MP2RAGE images, lesions share similar 

intensities with GM and CSF. Consequently, lesions are often misclassified as one of these 
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tissue classes by the partial volume algorithm. To address this issue, we made the 

assumption that cortical GM and cortical CSF are two large regions, which are either 

partially or fully connected. To separate the different clusters in the image, a connected 

component analysis was applied to the binary maps of GM and CSF. The largest connected 

component in the GM map was assumed to be cortical GM and all the remaining small 

components were classified as lesions, resulting in LGM mask. A similar procedure was 

applied to the CSF binary map to obtain a LCSF mask, however only clusters within 2 mm 

from the cortical CSF were considered as lesions. In this last case, we applied this distance 

rule to avoid the misclassification of sulcal CSF. Some of these regions of sulcal CSF were 

not connected to the main CSF component due to partial volume effects between GM and 

CSF.

2.3.3.2. Hole-filling: Inspired by Udupa et al. (29) and under the assumption that areas 

with low WM concentration surrounded by WM correspond to lesions, we applied a hole-

filling technique – based on a flood-fill algorithm (30) – to the binary map of WM. All 

“holes” on the binary WM map were considered as lesions except the volumes 

corresponding to the ventricles and basal ganglia structures (defined by the basal ganglia 

plus ventricles mask from MorphoBox).

2.3.3.3. Outlier rejection: To improve the detection of small WM lesions that were fully 

prone to partial volume effects, we used the MorphoBox VEM1 mask. We assumed that 

hypointense regions that overlapped with VEM1 were WM lesions (defined as WM outlier 

mask). LWM mask was obtained by the union of the “hole” (sub-section 2.3.3.2) and the 

WM outlier masks.

2.3.3.4. Union mask: After applying all the post-processing techniques mentioned above, 

we obtained three “pseudo” lesion maps (LCSF, LGM, LWM) based on the three concentration 

maps. These were merged into a single mask (union mask, MSLASTmask), which is the final 

output of our pipeline:

MSLASTmask = ∪
i = CSF, GM, WM

Li

2.4. Evaluation

2.4.1. Lesion detection and volume estimation—Lesion-wise true and false 

positive rates were estimated to evaluate the lesion detection performance of MSLAST, 

using two definitions of minimum lesion size: 6 μL, and 15 μL (≈ 3 mm diameter size (31)). 

The minimum lesion size of 15 μL was estimated considering the a 3 mm diameter minimal 

lesion size that was previously suggested for lower magnetic field strengths (31) and 

approximating the lesion shape to the one of a sphere; the minimal lesion size of 6 μL was 

identified by considering the 10th percentile of the distribution of lesion sizes in our data. 

The true positive rate (TPR) was defined by the percentage of detected lesions that overlap 

with the reference by at least one voxel. The false positive rate (FPR) was estimated as the 

ratio of the number of segmented lesions that do not overlap with any lesion in the reference 

by the total number of lesions segmented automatically. TPR was computed for all lesions as 
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well as for WM and cortical lesions separately. Correlation and Bland-Altman plots were 

computed to evaluate the total lesion volume (TLV) agreement between manual and 

automatic segmentations. The correlations were evaluated using the Spearman’s rank 

correlation coefficient. In the Bland-Altman plot, the differences between manual and 

automatic segmentations were plotted against the average of the two segmentations (32).

2.4.2. Repeatability analyses—Bland-Altman plots were also used to study the 

repeatability, where TLV differences and averages between scan and re-scan were computed 

for the manual and automated segmentations. In addition, the lesion-wise F1-score and 

absolute volume difference between scan and re-scan were estimated for both scenarios. F1 

score was adapted from Commowick et al. (33), defined here as the proportion of lesions 

detected in both scans relatively to the number of lesions uniquely detected in one or other 

scan.

2.5. Statistical analyses

Detection rates of WM and cortical lesions were compared using a paired Wilcoxon signed-

rank test. The same statistical test was used to compare the absolute TLV difference and F1-

score between the manual and the automated segmentations in the repeatability analyses. 

The tests were performed using Matlab software version 8.1.

3. Results

3.1. Manual segmentation

Based on manual segmentation of MS lesions, our cohort of patients had a total of 1820 WM 

lesions (median, range, 1st and 3rd quartiles of WM lesion count per patient: 66, 14–253, 36, 

90) with an average lesion volume of 87 μl, and 364 cortical lesions (median, range, 1st and 

3rd quartiles of cortical lesion count per patient: 10, 0–56, 1, 21) with an average volume of 

63 μl. The total number/ average volume per lesion of the sub-categories of cortical lesions 

were 271/109 μl (leukocortical), 69/58 μl (intracortical) and 24/22 μl (subpial), respectively. 

Figure 2 shows the total count and the total lesion volume (TLV) across the entire cohort 

(panel A) and per patient (panel B). In our cohort, the majority (68% of the cases) of the 

patients were characterized by a low lesion load (TLV < 10 ml).

3.2. Lesion detection and volume estimation

MSLAST lesion detection identified a median of 71% (range: 41–100%) of the lesions with 

a median false positive rate of 40% (range: 13–75%). It showed better performance in WM 

lesion detection (median: 74%, range: 38–100%), when compared to cortical lesion 

detection (median: 58%, range: 21–100%, p<.01, see Figure 3). These numbers were 

obtained for a minimum lesion volume of 6 μl. When the minimum lesion size was set to 15 

μl (3 mm diameter) – as defined by the MS diagnosis criteria (31) - the detection rate for 

WM lesions and cortical lesions increased to 80% (p<.001), and 63% (p<.05), respectively. 

The false positive rate median for this particular definition of minimum lesion size decrease 

significantly to 33% (p<0.01).
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MSLAST results were highly correlated with those obtained by manual segmentation 

(ρ=0.91). However, the TLV was generally underestimated, mainly in the setting of high 

lesion load (Figure 4, panel A). In 3 cases, all of which had manual lesion load higher than 

the median, the MSLAST lesion volume was outside of the limits of agreement by Bland-

Altman analysis (Figure 4, panel B). Overall, the mean TLV difference between the 

automated and manual segmentations was −1.1 ml, with limits of agreement ranging from 

−5.1 to 5.1 ml.

Examples of lesion segmentations obtained using the MSLAST in three different MS 

patients with different types of lesions are shown in Figure 5. Figure 6 shows examples of 

three cases where MSLAST showed poor performance due to the high number of false 

positives and/or false negatives.

3.3. Repeatability analyses

MSLAST showed a higher agreement between the segmentation of the first and second 

scans in the five scan/rescan cases when compared to the manual assessment (Figure 7). The 

mean TLV difference obtained was 0.29 ml with a deviation range of −0.82 to 0.82 ml 

against 0.13 ml with a deviation range of −1.58 to 1.58 obtained from the manual 

segmentations. MSLAST showed a better F1-score average (84% against 78.1% from 

manual segmentations) and a lower average of TLV absolute difference (0.38 ml against 

0.64 ml obtained from the manual segmentations, Table 2) between first and second scans.

4. Discussion and Conclusion

In this work, we have presented and validated MSLAST, a method that automatically detects 

and segments MS lesions using a single MP2RAGE scan at 7T MRI.

Our results demonstrate that MSLAST effectively detects MS lesions located in both white 

matter and cortex using high resolution 7T MR images. Considering the radiological 

definition of MS lesion size (volume approximately ≥15 μl), we obtained a WM lesion 

detection rate of nearly 80% and a cortical lesion detection rate of 63%. This performance, 

based on one single image contrast, is in line with the reported results by methods developed 

for conventional imaging and based on multiple MRI contrasts at 1.5T and 3T (34–36).

Despite its good overall performance, MSLAST has some limitations. We found that 

MSLAST misses small periventricular lesions (Figure 6). This type of lesion is adjacent to 

the ventricles and can share similar intensities with ventricular CSF in MP2RAGE images. 

Consequently, when periventricular lesions are small, they are included in the ventricle mask 

and therefore not detected by MSLAST. In addition to periventricular lesions, cortical 

lesions were detected less efficiently overall than WM lesions. This might be because lesions 

in the cortex are typically much smaller, and often have less contrast than WM lesions, with 

normal tissue, rendering their identification based on a single contrast really challenging. 

Finally, MSLAST moderately underestimated (by 27%) the lesion volume in cases with high 

lesion load. The fact that MSLAST segments a lower lesion volume than manual rating is 

possibly due to the poor delineation of lesion borders or surrounding regions characterized 
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by diffuse pathology, that are usually affected by partial volume effects (see Figures 5 and 

6).

MSLAST appeared to be more reproducible than the manual assessment in a scan-rescan 

setting, and is in line with methods available for multi-channel 3T data (37). The high 

lesion-wise F1-score indicates the accuracy of MSLAST in detecting the same lesions in 

both scan and re-scan images. In comparison to other methods that use conventional field-

strength images, including T2-weighted images (such as FLAIR), the number of false 

positives was comparable for MSLAST (median FPR of 33% for MSLAST, vs. 27 to 32% 

for other methods) (16, 35, 38, 39). Most of these false positives were isolated areas of 

sulcal CSF that appeared to be disconnected from cortical CSF due to partial volume effects 

between GM and CSF at the given image resolutions. Additionally, some vessels and VR 

spaces misclassified as lesions also contributed to the FPR, particularly in the basal ganglia 

(see Figure 6, third row). Indeed, these structures have similar intensity and appearance to 

lesions on the MP2RAGE image, rendering the automatic distinction challenging from a 

computer vision perspective. Methods reported in the literature showing less false positives 

are usually using information from different image contrasts that provide additional 

information to distinguish lesions from other structures, but this remains challenging at 7T, 

particularly for FLAIR (2, 18, 19).

Future work to improve the palette of available sequences at 7T, as well as pre-processing 

techniques, might minimize these limitations. Incorporation of atlas-based information into 

MSLAST, as well as additional topological constraints – as it has been done for other lesion 

segmentation approaches (38, 40, 41) – might also reduce the FPR. Another potential avenue 

which is – to the best of the author’s knowledge – not yet explored, is to segment lesions 

based on quantitative maps (as the T1 map obtained by the MP2RAGE along with the 

uniform contrast (20, 22)). This could improve the robustness of the segmentation results of 

MSLAST and other algorithms especially for longitudinal assessment and multi-centre trials 

due to the increased independence of quantitative maps from the employed hardware and 

reconstruction. We also aim at assessing the performance of MSLAST in larger cohorts of 

patients, which include subjects imaged in different 7T scanners.

In conclusion, we have presented an automated method to detect WM and cortical lesions 

applied to a single MP2RAGE image acquired using ultra-high field MRI. MSLAST 

represents a first step toward supporting researchers who require MS lesion segmentation at 

7T, as manual segmentation is tedious and time-consuming, especially when done on the 

high spatial resolution images typically obtained at UHF. Moreover, MSLAST may also be 

of special interest to clinicians, as 7T scanners are now approved for clinical use. Future 

work should aim at improving the current method for cortical lesion detection and lesion 

delineation by exploring sensitive methods to further reduce partial volume effects and 

improve contrast (8).
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Figure 1 - 
Schematic diagram of the MSLAST method for lesion segmentation using 7T MP2RAGE, 

divided into three main steps: brain segmentation, partial volume (PV) estimation, and post-

processing. VEM 1 is a template-based WM segmentation. cMap CSF, cMap GM, and cMap 

are concentration maps of white matter, gray matter, and cerebrospinal fluid, respectively. 

LCSF, LGM, and LWM are “pseudo” lesion masks computed from the cMaps of CSF, GM and 

WM, respectively. 1) - (25), 2) - (28).
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>Figure 2 - 
Lesion count and lesion volume estimation according to the manual segmentation results. 

Panel A: total number (light orange) and total lesion volume (dark orange) of each type of 

lesion in the entire cohort. Panel B: Log-log plot of total lesion volume (TLV) and number 

of lesions per each type of lesion: white matter (WM, circle), leukocortical (triangle), 

intracortical (square), and subpial (diamond) lesions. The coloured and black symbols 

represent the values per patient and average values per lesion type, respectively. An example 

MP2RAGE image for each type of lesion is presented below the panels A and B.
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Figure 3 - 
Violinplots and boxplots showing the lesion detection performance of the proposed method 

(MSLAST). Panel A: True positive rate (TPR) and false positive rate (FPR) from all patients 

across all type of lesions. Panel B: TPR of all patients across both types of lesions: white-

matter lesions (WML) and cortical lesions (CL).
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Figure 4 - 
Plots showing the lesion volume estimation performance of the proposed method. Panel A: 

Total lesion volume (TLV) correlation between the reference and the automated 

segmentation. The respective Spearman’s rank correlation coefficient (ρ) is given. The 

dashed line represents the identity (TLVRef=TLVAuto). Panel B: Bland-Altman plot for TLV 

agreement between manual and automatic segmentations.

Fartaria et al. Page 15

Invest Radiol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5 - 
Axial slices from three different MS patients showing the detection and segmentation results 

of MSLAST. From left to right: MP2RAGE skull-stripped image, manual segmentation, and 

automated segmentation. In the manual segmentations, white matter lesions are shown in 

green, leukocortical lesions in yellow, and intracortical lesions in pink.
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Figure 6 - 
Examples of three cases where MSLAST showed low performance due to high number of 

false negatives and/or false positives. From left to right: MP2RAGE slice, manual 

segmentation, and mask representing true positives (TP, blue), false negatives (FP, orange), 

and false positives (FP, red). In the manual segmentations, white matter lesions are shown in 

green and leukocortical lesions in yellow.
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Figure 7 - 
Bland-Altman plot for total lesion volume agreement in scan and re-scan data obtained using 

the manual (left panel), and automated (MSLAST, right panel) segmentations.
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Table 1:

Set of parameters used for the MP2RAGE acquisition at both institutions: institution A, institution B.

Institution A Institution B

Resolution, mm 0.75 × 0.75 × 0.9 0.7 isotropic

Matrix size 300 × 320 320 × 320

No. partitions 160 224

Orientation/readout dir. sagittal/S→I sagittal/S→I

AT, min 09:33 10:08

Acceleration factor 3 3

TR, ms 6000 6000

TE, ms 2.92 3.02

TI1/TI2, ms 750/2350 800/2700

Flip angles*, degrees 4/5 4/5

Bandwidth, Hz/pixel 240 240

Both acquisitions are 3D.

*
Flip angles for first/second GRE readout.

MP2RAGE indicates magnetization-prepared 2 inversion-contrast rapid gradient-echo; AT, acquisition time; TR, repetition time; TE, echo time; 
TI1 and TI2, first and second inversion times.
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Table 2 -

Total lesion volume (TLV), absolute volume difference and F1-score obtained using the five subjects from 

scan, re-scan dataset. Average and standard deviation (STD) values for absolute volume difference and F1-

score are presented in the last row.

Manual Segmentation TLV [ml] Absolute TLV difference [ml] F1-score [%]

Scan 1 Scan 2

Subject 1 7.59 6.95 0.64 77.7

Subject 2 4.09 3.20 0.90 77.0

Subject 3 9.64 10.79 1.15 77.2

Subject 4 3.36 3.50 0.15 67.3

Subject 5 2.90 2.56 0.34 91.2

Average ± STD 0.64 ± 0.41 78.1 ± 8.5

MSLAST Segmentation TLV [ml] Absolute TLV difference [ml] F1-score [%]

Scan 1 Scan 2

Subject 1 9.64 9.57 0.06 89.2

Subject 2 3.90 3.66 0.24 80.0

Subject 3 12.65 11.78 0.87 89.4

Subject 4 4.50 3.97 0.53 80.7

Subject 5 2.34 2.56 0.22 79.6

Average ± STD 0.38 ± 0.32 83.8 ± 5.1
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