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Abstract

Objectives: To develop a new automated segmentation method of white-matter (WM) and
cortical multiple sclerosis (MS) lesions visible on magnetization-prepared 2 inversion-contrast
rapid gradient echo (MP2RAGE) images acquired at 7T MRI.

Material and Methods: The proposed method (MSLAST: Multiple Sclerosis Lesion Analysis at
Seven Tesla) takes as input a single image contrast derived from the MP2RAGE sequence and is
based on partial volume estimation and topological constraints. First, MSLAST performs a skull-
strip of MP2RAGE images and computes tissue concentration maps for WM, gray-matter (GM)
and cerebrospinal-fluid (CSF) using a partial-volume model of tissues within each voxel. Second,
MSLAST performs: i) connected-component analysis to GM and CSF concentration maps to
classify small isolated components as MS lesions; ii) hole-filling in the WM concentration map to
classify areas with low WM concentration surrounded by WM (i.e. MS lesions); and iii) outlier
rejection to the WM mask in order to improve the classification of small WM lesions. Third,
MSLAST unifies the three maps obtained from i), ii) and iii) processing steps to generate a global
lesion mask.
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Results: Quantitative and qualitative assessments were performed using MSLAST in 25 MS
patients from two research centers. Overall, MSLAST detected a median of 71% of MS lesions,
specifically 74% of WM and 58% of cortical lesions, when a minimum lesion size of 6 UL was
considered. The median false positive rate was 40%. When a 15 pL minimal lesions size was
applied, which is the approximation of the minimal size recommended for 1.5/3T images, the
median detection rate was 80% for WM and 63% for cortical lesions, respectively, and the median
false positive rate was 33%. We observed high correlation between MSLAST and manual
segmentations (Spearman’s rank correlation coefficient, p=0.91), though MSLAST
underestimated the total lesion volume (average difference of 1.1 ml), especially in patients with
high lesion loads. MSLAST also showed good scan-rescan repeatability within the same session
with an average absolute volume difference and F1-score of 0.38+0.32 ml and 84%, respectively.

Conclusions: We propose a new methodology to facilitate the segmentation of WM and cortical
MS lesions at 7T MRI, our approach uses a single MP2RAGE scan and may be of special interest
to clinicians and researchers.
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Introduction

Ultra-high field (UHF) magnetic resonance imaging (MRI) provides important insights into
multiple sclerosis (MS) pathophysiology due to its improved signal-to-noise and contrast-to-
noise ratio as well as higher achievable spatial resolution compared to lower fields (1-4). 7T
MRI has improved the detection of WM lesions — especially of small MS plaques (5) — as
well as focal and diffuse pathology in the cortex (6), both in the cerebral hemispheres (7, 8)
and in the cerebellum (9). The location, morphology, and inflammatory aspects of cortical
lesions at 7T MRI have been described (10-12). The recent regulatory approval of 7T MRI
for clinical use has made it necessary to develop tools for identification and quantification of
lesions throughout the neuraxis, especially in the case of cortical lesions, which are now
included in the revised MS diagnostic criteria (13).

To date, however, none of the existing methods for automatic lesion detection at 1.5T or 3T
MRI (14-16) have been used for 7T MRI. This is in part because 7T images exhibit some
characteristics that are challenging for direct translation of methods from lower field
strengths. Most importantly, 7T MRI scans are affected by stronger intensity variations
across the image due to increased inhomogeneity in the radiofrequency (B,) field compared
to 1.5T and 3T MRI (2, 17). Also, spatial distortions are increased due to the
inhomogeneities related to local variations of the static magnetic field (Bg). Lastly, high-
resolution T2 FLAIR imaging — the most often-used contrast for MS lesion detection, which
is frequently the basis of lesion-detection algorithms — is challenging to perform at UHF due
to its high specific absorption rate (SAR) and other restrictions (2, 18, 19). Consequently,
current available methods developed for 1.5 and 3T images are not suitable to perform
automatic lesion segmentation with images acquired at 7T.
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In this work, we have developed “MSLAST” (Multiple Sclerosis Lesion Analysis at Seven
Tesla), which is a new method tailored to detect and segment MS lesions on Magnetization-
Prepared 2 Inversion-Contrast Rapid Gradient Echo (MP2RAGE) images acquired at 7T
MRI. MP2RAGE has been selected as input image for our segmentation framework as it
provides i) a homogenous T1-weighted contrast due to its inherent bias correction, rendering
it robust to both By and By inhomogeneities, and ii) quantitative maps of T1 relaxation (20,
21). Moreover, MP2RAGE has been shown to provide high contrast between different brain
tissues and high sensitivity to WM and cortical MS pathology at both high- and ultra-high-
fields (8, 9, 22). These characteristics thus make MP2RAGE sequence a good image for
automated evaluation of MS lesion count and volume at 7T MRI.

2. Material and Methods
2.1. MRI and subjects

MR images were acquired at two different institutions: institution A and institution B, both
using a 7T research scanner (Siemens Healthcare, Erlangen, Germany). This research was
approved by the local ethics committees of both institutions, and all the subjects gave
written, informed consent prior to participation.

At the institution A, MP2RAGE images from 14 individuals with early relapsing-remitting
MS (RRMS) (10 women, 4 men, age range: 21-46 years) were obtained. At the institution
B, MP2RAGE images from 8 individuals with RRMS and 3 with secondary progressive MS
(7 women, 4 men, age range: 18-64 years) were acquired. In 5 patients of the institution B
cohort, two MP2RAGE exams were conducted at the beginning and the end of the same scan
session to assess repeatability.

The MP2RAGE protocol parameters applied at both institutions are summarized in Table 1.
In this work we excluded the quantitative maps, and we used only the homogenous T1-
weighted contrast from the MP2RAGE acquisitions, where lesions appear as hypointense
signals.

2.2. Manual Segmentation

Lesions were identified and delineated manually in the 25 cases (14 from institution A, and
11 from institution B). The manual segmentations were performed by consensus between
one radiologist (expert 1) and one neurologist/neuroimmunologist with expertise in MS and
neuroimaging (expert 2), with 4 and 14 years of experience, respectively. The observers
were blinded to clinical status. Hypointense abnormalities that have similar appearance to
MS lesions in MP2RAGE, such as Virchow-Robin (VR) spaces (23) and vessels were
distinguished from MS lesions according to the following criteria: (i) punctuate or tubular
hypodensities with a diameter inferior to 3 mm, and hypointense structures with superior
size located in the basal ganglia and subinsular regions were considered as VR spaces. VR
spaces were typically located around perforating brain vessels, which run perpendicular to
the brain surface. (ii) Vessels were considered as deep medullary veins as tubular
hypointense structures that had a parallel distribution patterns adjacent to the body or
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inferior horn and a radial pattern in the frontal horn or trigon of the lateral ventricle, and
which could be follow on at least three slices.

Subsequently, each lesion was labeled as cortical or WM lesion. Cortical lesions were
further categorized (6, 24) into: 1) leukocortical, extensions of WM lesions into the cortex;
2) intracortical, lesions within the cortex that do not involve the subcortical WM; and 3)
subpial, lesions across one gyrus that affect the cortex and reach the pial surface. Segmented
lesions with a volume < 6L were subsequently excluded from the lesion masks. The
resulting lesion masks were taken as a reference to validate MSLAST.

2.3. Pipeline

A scheme of the processing steps performed within MSLAST is presented in Figure 1.

2.3.1. Step 1: Brain segmentation—We used the MorphoBox prototype software (25)
to perform the skull stripping and to compute a mask of basal ganglia plus ventricles and
WM segmentation mask (VEM1). A template image was non-rigidly registered onto the 7T
MP2RAGE image using a transformation 7. The transformation 7’ represents a nine-
parameter affine transformation A’ (translation, rotation, and scaling) followed by a free-
form diffeomorphic displacement D’. Following the registration, template-based tissue prior
probability maps were resampled to the 7T MP2RAGE input image using the transformation
7. These priors were obtained using the DARTEL tool of SPM8 (26) from a data set of 136
MR scans of healthy subjects. A segmentation of the WM (VEM1) was computed using an
expectation-maximization algorithm that uses a simple 4-class Gaussian mixture intensity
model representing GM, WM, CSF, and non-brain tissue constrained by the tissue prior
probability maps. The total intracranial volume (T1V) of the input 7T MP2RAGE image was
obtained from the resampled TIV template mask according to the transformation 7°. Finally,
the basal ganglia plus ventricles mask was obtained by resampling the basal ganglia plus
ventricles template mask to the input image space applying the affine transformation A’.

2.3.2. Step 2: Partial volume estimation—-Brain tissue (WM and GM) and CSF
“concentrations” from the obtained TIV of MP2RAGE were computed using a partial
volume estimation algorithm. The method is an extension of the “mixel” model (27) based
on a Bayesian maximum a posteriori formulation, where a prior model is used in order to
regularize the problem (28). As a result, three maps were obtained representing the
calculated concentrations of WM, GM, and CSF for each voxel.

2.3.3. Step 3: Lesion detection—For subsequent processing steps, the concentration
maps must be binary, i.e. a threshold was applied. The three thresholds (for GM, WM, and
CSF) were optimized independently using a randomly selected patient dataset from the
cohort. The goal was to maximize the separation between lesions (defined by the manual
segmentation) and healthy tissues evaluating the connected component analyses at different
thresholds. After this optimization step, the resulting thresholds (cWM = 30%, cGM = 40%,
cCSF = 40%) were applied.

2.3.3.1. Connected-components analyses: In MP2RAGE images, lesions share similar
intensities with GM and CSF. Consequently, lesions are often misclassified as one of these
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tissue classes by the partial volume algorithm. To address this issue, we made the
assumption that cortical GM and cortical CSF are two large regions, which are either
partially or fully connected. To separate the different clusters in the image, a connected
component analysis was applied to the binary maps of GM and CSF. The largest connected
component in the GM map was assumed to be cortical GM and all the remaining small
components were classified as lesions, resulting in L gy, mask. A similar procedure was
applied to the CSF binary map to obtain a L sz mask, however only clusters within 2 mm
from the cortical CSF were considered as lesions. In this last case, we applied this distance
rule to avoid the misclassification of sulcal CSF. Some of these regions of sulcal CSF were
not connected to the main CSF component due to partial volume effects between GM and
CSF.

2.3.3.2. Holefilling: Inspired by Udupa et al. (29) and under the assumption that areas
with low WM concentration surrounded by WM correspond to lesions, we applied a hole-
filling technique — based on a flood-fill algorithm (30) — to the binary map of WM. Al
“holes” on the binary WM map were considered as lesions except the volumes
corresponding to the ventricles and basal ganglia structures (defined by the basal ganglia
plus ventricles mask from MorphoBox).

2.3.3.3. Outlier rejection: To improve the detection of small WM lesions that were fully
prone to partial volume effects, we used the MorphoBox VEM1 mask. We assumed that
hypointense regions that overlapped with VEM1 were WM lesions (defined as WM outlier
mask). L s mask was obtained by the union of the “hole” (sub-section 2.3.3.2) and the
WM outlier masks.

2.3.34. Union mask: After applying all the post-processing techniques mentioned above,
we obtained three “pseudo” lesion maps (Lcss Lenvs L) based on the three concentration
maps. These were merged into a single mask (union mask, MSLAST ;,2s1), Which is the final
output of our pipeline:

MSLAST, = v L
mask = j = CSF,GM,WM i

2.4. Evaluation

2.4.1. Lesion detection and volume estimation—Lesion-wise true and false
positive rates were estimated to evaluate the lesion detection performance of MSLAST,
using two definitions of minimum lesion size: 6 uL, and 15 pL (* 3 mm diameter size (31)).
The minimum lesion size of 15 pL was estimated considering the a 3 mm diameter minimal
lesion size that was previously suggested for lower magnetic field strengths (31) and
approximating the lesion shape to the one of a sphere; the minimal lesion size of 6 UL was
identified by considering the 10t percentile of the distribution of lesion sizes in our data.
The true positive rate (TPR) was defined by the percentage of detected lesions that overlap
with the reference by at least one voxel. The false positive rate (FPR) was estimated as the
ratio of the number of segmented lesions that do not overlap with any lesion in the reference
by the total number of lesions segmented automatically. TPR was computed for all lesions as
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well as for WM and cortical lesions separately. Correlation and Bland-Altman plots were
computed to evaluate the total lesion volume (TLV) agreement between manual and
automatic segmentations. The correlations were evaluated using the Spearman’s rank
correlation coefficient. In the Bland-Altman plot, the differences between manual and
automatic segmentations were plotted against the average of the two segmentations (32).

2.4.2. Repeatability analyses—Bland-Altman plots were also used to study the
repeatability, where TLV differences and averages between scan and re-scan were computed
for the manual and automated segmentations. In addition, the lesion-wise F1-score and
absolute volume difference between scan and re-scan were estimated for both scenarios. F1
score was adapted from Commowick et al. (33), defined here as the proportion of lesions
detected in both scans relatively to the number of lesions uniquely detected in one or other
scan.

2.5. Statistical analyses

Detection rates of WM and cortical lesions were compared using a paired Wilcoxon signed-
rank test. The same statistical test was used to compare the absolute TLV difference and F1-
score between the manual and the automated segmentations in the repeatability analyses.
The tests were performed using Matlab software version 8.1.

3. Results

3.1. Manual segmentation

Based on manual segmentation of MS lesions, our cohort of patients had a total of 1820 WM
lesions (median, range, 15t and 3" quartiles of WM lesion count per patient: 66, 14—253, 36,
90) with an average lesion volume of 87 pl, and 364 cortical lesions (median, range, 15t and
3"d quartiles of cortical lesion count per patient: 10, 0-56, 1, 21) with an average volume of
63 pl. The total number/ average volume per lesion of the sub-categories of cortical lesions
were 271/109 pl (leukocortical), 69/58 ul (intracortical) and 24/22 ul (subpial), respectively.
Figure 2 shows the total count and the total lesion volume (TLV) across the entire cohort
(panel A) and per patient (panel B). In our cohort, the majority (68% of the cases) of the
patients were characterized by a low lesion load (TLV < 10 ml).

3.2. Lesion detection and volume estimation

MSLAST lesion detection identified a median of 71% (range: 41-100%) of the lesions with
a median false positive rate of 40% (range: 13-75%). It showed better performance in WM
lesion detection (median: 74%, range: 38—-100%), when compared to cortical lesion
detection (median: 58%, range: 21-100%, p<.01, see Figure 3). These numbers were
obtained for a minimum lesion volume of 6 pl. When the minimum lesion size was set to 15
ul (3 mm diameter) — as defined by the MS diagnosis criteria (31) - the detection rate for
WM lesions and cortical lesions increased to 80% (p<.001), and 63% (p<.05), respectively.
The false positive rate median for this particular definition of minimum lesion size decrease
significantly to 33% (p<0.01).
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MSLAST results were highly correlated with those obtained by manual segmentation
(p=0.91). However, the TLV was generally underestimated, mainly in the setting of high
lesion load (Figure 4, panel A). In 3 cases, all of which had manual lesion load higher than
the median, the MSLAST lesion volume was outside of the limits of agreement by Bland-
Altman analysis (Figure 4, panel B). Overall, the mean TLV difference between the
automated and manual segmentations was —1.1 ml, with limits of agreement ranging from
-5.1to 5.1 ml.

Examples of lesion segmentations obtained using the MSLAST in three different MS
patients with different types of lesions are shown in Figure 5. Figure 6 shows examples of
three cases where MSLAST showed poor performance due to the high number of false
positives and/or false negatives.

3.3. Repeatability analyses

MSLAST showed a higher agreement between the segmentation of the first and second
scans in the five scan/rescan cases when compared to the manual assessment (Figure 7). The
mean TLV difference obtained was 0.29 ml with a deviation range of —0.82 to 0.82 ml
against 0.13 ml with a deviation range of —1.58 to 1.58 obtained from the manual
segmentations. MSLAST showed a better F1-score average (84% against 78.1% from
manual segmentations) and a lower average of TLV absolute difference (0.38 ml against
0.64 ml obtained from the manual segmentations, Table 2) between first and second scans.

4. Discussion and Conclusion

In this work, we have presented and validated MSLAST, a method that automatically detects
and segments MS lesions using a single MP2RAGE scan at 7T MRI.

Our results demonstrate that MSLAST effectively detects MS lesions located in both white
matter and cortex using high resolution 7T MR images. Considering the radiological
definition of MS lesion size (volume approximately >15 pl), we obtained a WM lesion
detection rate of nearly 80% and a cortical lesion detection rate of 63%. This performance,
based on one single image contrast, is in line with the reported results by methods developed
for conventional imaging and based on multiple MRI contrasts at 1.5T and 3T (34-36).

Despite its good overall performance, MSLAST has some limitations. We found that
MSLAST misses small periventricular lesions (Figure 6). This type of lesion is adjacent to
the ventricles and can share similar intensities with ventricular CSF in MP2RAGE images.
Consequently, when periventricular lesions are small, they are included in the ventricle mask
and therefore not detected by MSLAST. In addition to periventricular lesions, cortical
lesions were detected less efficiently overall than WM lesions. This might be because lesions
in the cortex are typically much smaller, and often have less contrast than WM lesions, with
normal tissue, rendering their identification based on a single contrast really challenging.
Finally, MSLAST moderately underestimated (by 27%) the lesion volume in cases with high
lesion load. The fact that MSLAST segments a lower lesion volume than manual rating is
possibly due to the poor delineation of lesion borders or surrounding regions characterized
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by diffuse pathology, that are usually affected by partial volume effects (see Figures 5 and
6).

MSLAST appeared to be more reproducible than the manual assessment in a scan-rescan
setting, and is in line with methods available for multi-channel 3T data (37). The high
lesion-wise F1-score indicates the accuracy of MSLAST in detecting the same lesions in
both scan and re-scan images. In comparison to other methods that use conventional field-
strength images, including T2-weighted images (such as FLAIR), the number of false
positives was comparable for MSLAST (median FPR of 33% for MSLAST, vs. 27 to 32%
for other methods) (16, 35, 38, 39). Most of these false positives were isolated areas of
sulcal CSF that appeared to be disconnected from cortical CSF due to partial volume effects
between GM and CSF at the given image resolutions. Additionally, some vessels and VR
spaces misclassified as lesions also contributed to the FPR, particularly in the basal ganglia
(see Figure 6, third row). Indeed, these structures have similar intensity and appearance to
lesions on the MP2RAGE image, rendering the automatic distinction challenging from a
computer vision perspective. Methods reported in the literature showing less false positives
are usually using information from different image contrasts that provide additional
information to distinguish lesions from other structures, but this remains challenging at 7T,
particularly for FLAIR (2, 18, 19).

Future work to improve the palette of available sequences at 7T, as well as pre-processing
techniques, might minimize these limitations. Incorporation of atlas-based information into
MSLAST, as well as additional topological constraints — as it has been done for other lesion
segmentation approaches (38, 40, 41) — might also reduce the FPR. Another potential avenue
which is — to the best of the author’s knowledge — not yet explored, is to segment lesions
based on quantitative maps (as the T1 map obtained by the MP2RAGE along with the
uniform contrast (20, 22)). This could improve the robustness of the segmentation results of
MSLAST and other algorithms especially for longitudinal assessment and multi-centre trials
due to the increased independence of quantitative maps from the employed hardware and
reconstruction. We also aim at assessing the performance of MSLAST in larger cohorts of
patients, which include subjects imaged in different 7T scanners.

In conclusion, we have presented an automated method to detect WM and cortical lesions
applied to a single MP2RAGE image acquired using ultra-high field MRI. MSLAST
represents a first step toward supporting researchers who require MS lesion segmentation at
7T, as manual segmentation is tedious and time-consuming, especially when done on the
high spatial resolution images typically obtained at UHF. Moreover, MSLAST may also be
of special interest to clinicians, as 7T scanners are now approved for clinical use. Future
work should aim at improving the current method for cortical lesion detection and lesion
delineation by exploring sensitive methods to further reduce partial volume effects and
improve contrast (8).
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Figurel-
Schematic diagram of the MSLAST method for lesion segmentation using 7T MP2RAGE,

divided into three main steps: brain segmentation, partial volume (PV) estimation, and post-
processing. VEM 1 is a template-based WM segmentation. cMap CSF, cMap GM, and cMap
are concentration maps of white matter, gray matter, and cerebrospinal fluid, respectively.
Lcse, Loms and Ly are “pseudo” lesion masks computed from the cMaps of CSF, GM and
WM, respectively. 1) - (25), 2) - (28).
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Les?on count and lesion volume estimation according to the manual segmentation results.
Panel A: total number (light orange) and total lesion volume (dark orange) of each type of
lesion in the entire cohort. Panel B: Log-log plot of total lesion volume (TLV) and number
of lesions per each type of lesion: white matter (WM, circle), leukocortical (triangle),
intracortical (square), and subpial (diamond) lesions. The coloured and black symbols
represent the values per patient and average values per lesion type, respectively. An example
MP2RAGE image for each type of lesion is presented below the panels A and B.
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Figure3 -

Vi%linplots and boxplots showing the lesion detection performance of the proposed method
(MSLAST). Panel A: True positive rate (TPR) and false positive rate (FPR) from all patients
across all type of lesions. Panel B: TPR of all patients across both types of lesions: white-
matter lesions (WML) and cortical lesions (CL).
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Plots showing the lesion volume estimation performance of the proposed method. Panel A:
Total lesion volume (TLV) correlation between the reference and the automated
segmentation. The respective Spearman’s rank correlation coefficient (p) is given. The
dashed line represents the identity (TLVRef=TLV auto)- Panel B: Bland-Altman plot for TLV

agreement between manual and automatic segmentations.
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MP2RAGE Reference Automated

Figure5-
Axial slices from three different MS patients showing the detection and segmentation results

of MSLAST. From left to right: MP2RAGE skull-stripped image, manual segmentation, and
automated segmentation. In the manual segmentations, white matter lesions are shown in
green, leukocortical lesions in yellow, and intracortical lesions in pink.
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MP2RAGE Reference

Figure6 -
Examples of three cases where MSLAST showed low performance due to high number of

false negatives and/or false positives. From left to right: MP2RAGE slice, manual
segmentation, and mask representing true positives (TP, blue), false negatives (FP, orange),
and false positives (FP, red). In the manual segmentations, white matter lesions are shown in
green and leukocortical lesions in yellow.
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Bland-Altman plot for total lesion volume agreement in scan and re-scan data obtained using
the manual (left panel), and automated (MSLAST, right panel) segmentations.

Invest Radliol. Author manuscript; available in PMC 2020 June 01.

14



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Fartaria et al. Page 19

Table 1:

Set of parameters used for the MP2RAGE acquisition at both institutions: institution A, institution B.

Institution A Institution B
Resolution, mm 0.75x%0.75x 0.9 0.7 isotropic
Matrix size 300 x 320 320 x 320
No. partitions 160 224
Orientation/readout dir.  sagittal/S—1 sagittal/S—1
AT, min 09:33 10:08
Acceleration factor 3 3
TR, ms 6000 6000
TE, ms 2.92 3.02
T1y/Tly, ms 750/2350 800/2700
Flip angles*, degrees 415 4/5
Bandwidth, Hz/pixel 240 240

Both acquisitions are 3D.

*
Flip angles for first/second GRE readout.

MP2RAGE indicates magnetization-prepared 2 inversion-contrast rapid gradient-echo; AT, acquisition time; TR, repetition time; TE, echo time;
TI1 and TI2, first and second inversion times.
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Total lesion volume (TLV), absolute volume difference and F1-score obtained using the five subjects from
scan, re-scan dataset. Average and standard deviation (STD) values for absolute volume difference and F1-
score are presented in the last row.

Manual Segmentation TLV [mI] Absolute TLV difference [ml]  F1-score [%]
Scan 1 Scan 2
Subject 1 7.59 6.95 0.64 7.7
Subject 2 4.09 3.20 0.90 77.0
Subject 3 9.64 10.79 1.15 77.2
Subject 4 3.36 3.50 0.15 67.3
Subject 5 2.90 2.56 0.34 91.2
Average + STD 0.64 £0.41 78.1+85
MSLAST Segmentation TLV [mI] Absolute TLV difference [ml]  F1-score [%)]
Scan 1 Scan 2
Subject 1 9.64 9.57 0.06 89.2
Subject 2 3.90 3.66 0.24 80.0
Subject 3 12.65 11.78 0.87 89.4
Subject 4 4.50 3.97 0.53 80.7
Subject 5 2.34 2.56 0.22 79.6
Average + STD 0.38+0.32 83.8+5.1
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