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Computational methods are crucial for the analysis of diffusion magnetic resonance imaging

(MRI) of the brain. Computational diffusion MRI can provide rich information at many size

scales, including local microstructure measures such as diffusion anisotropies or apparent axon

diameters, whole-brain connectivity information that describes the brain's wiring diagram and

population-based studies in health and disease. Many of the diffusion MRI analyses performed

today were not possible five, ten or twenty years ago, due to the requirements for large amounts

of computer memory or processor time. In addition, mathematical frameworks had to be devel-

oped or adapted from other fields to create new ways to analyze diffusion MRI data. The purpose

of this review is to highlight recent computational and statistical advances in diffusion MRI and to

put these advances into context by comparison with the more traditional computational methods

that are in popular clinical and scientific use. We aim to provide a high-level overview of interest

to diffusion MRI researchers, with a more in-depth treatment to illustrate selected computational

advances.
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1 INTRODUCTION

By measuring the diffusion of water molecules that probe the brain's microstructure at the cellular scale, diffusion magnetic resonance imag-

ing (dMRI) provides unique information about the living human brain in health and disease.1,2 Unlike traditional structural MRI acquisitions

that provide scalar maps directly (such as T1, T2, or susceptibility-weighted images), dMRI acquisitions require multiple measurements to assess

brain microstructure and connectivity. Current dMRI protocols produce from seven to hundreds of diffusion-weighted measurements, which are

acquired at different orientations and often using different amounts of diffusion weighting. Due to the complex nature of these data, compu-

tational analysis methods are essential to produce advanced visualization or quantitation (Figure 1). In the application of dMRI to the study of

brain microstructure and connectivity, computational analyses can be performed at multiple neuroanatomical scales, ranging from the microstruc-

ture scale of diffusion compartments to the voxel scale of local white or gray matter anatomy, the whole-brain scale of connections estimated

using tractography and finally the population scale for neuroscientific studies.3-8 Note, though, that there is an important mismatch of size scales

between white matter neurons and much larger dMRI measurement voxels.9 Many mathematical modeling approaches have tried to bridge

this gap.

Since the introduction of the diffusion tensor model in 15 computational methods for dMRI have become an increasingly active area of research.

Techniques initially developed for scalar medical images, such as registration, segmentation and statistical analyses, have been extended and

adapted to various forms of dMRI data, including voxel-level and tract-level data representations. dMRI has enabled one unique computational

analysis method, tractography, which is the process of tracing the brain's white matter connections (fiber tracts) non-invasively. Many of the
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FIGURE 1 Computational methods for diffusion MRI are needed to analyze input diffusion-weighted image (DWI) data to enable visualization or
quantitation. At the left, coronal images show DWIs acquired using several gradient directions. The yellow box indicates the zoomed region shown
in the images at the right, which result from computational analysis of the DWIs. Colors encode fiber orientation such that left–right is red,
inferior–superior is blue, and anterior–posterior is green. The traditional single diffusion tensor model (DTI, top right) is shown using ellipsoids for
tensor visualization. DTI analysis has led to important findings, but it cannot represent anatomical fiber tract crossings (bottom right image,
arrows), which can be seen with a multi-fiber model such as the two-tensor (2-T)10,11 tractography shown here. These images were created using
the first dataset from the Human Connectome Project12 using the SlicerDMRI package in 3D Slicer13,14

computational dMRI studies performed today were not possible five, ten or twenty years ago: many analyses require large amounts of mem-

ory and long processor times, or had high computational complexity and required optimization to become feasible. In some cases (see Section

3), mathematical frameworks had to be developed or adapted from other fields (e.g. statistics or geometry) to create new ways to analyze

dMRI data.

In this review, we will focus on the historical evolution and recent advances in three selected computational analyses of dMRI: tractography,

statistical analysis and registration (dMRI tract-based segmentation was recently reviewed).16 We will begin this review at the whole-brain scale,

with tractography (Section 2), which is commonly performed in individual subject data. Next we will give an overview of the mathematics of statistical

analysis of local diffusion models (Section 3), which are generally analyzed in groups of subjects. Finally, we will discuss how different representations

of dMRI data, both tractography and voxel-level diffusion information, can be used for registration (Section 4), which is most often employed across

subjects. Where possible, we will contrast standard dMRI computational methods with more advanced ones to show when the latter might be

useful, with consideration of the potential differences in computational cost. Finally, we will conclude with an overall look at future directions for

computational diffusion MRI.

2 WHITE MATTER TRACTOGRAPHY: A COMPUTATIONAL PERSPECTIVE

Tractography, the process of inferring white matter pathways from dMRI data, is an invaluable tool for studying the brain's structural connec-

tivity non-invasively.17,18 Despite the large number of available methods (see Jeurissen et al.19 for a comprehensive review), the reconstructed

pathways are not truly quantitative and reflect the actual white matter structure only indirectly.20,21 In this section, we describe selected compu-

tational advances that represented major steps forward in terms of accuracy and interpretation of connectivity estimates (Figure 2). All reported

benchmarks are intended as indicative values of the algorithms (as described in the original publications) for a typical dataset size and a standard

workstation, without using multi-threading or parallel computing, unless otherwise specified.

2.1 Tractography as line propagation

Tractography was originally formulated as a line-propagation problem:

df(s)
ds

= v(f(s)) with

{
0 ≤ s ≤ 1
f(0) = f0

(1)
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FIGURE 2 Computational demands and benefits for quantifying the connectivity of notable formulations proposed to date for tractography: line
propagation (A, deterministic; B, probabilistic), global inverse problem (C, bottom-up), and microstructure informed tractography (D, top-down; E,
dictionary-based)

where a streamline f, parameterized by arc-length s, is constructed iteratively from a starting point f0 ∈ R3 following the principal diffusion direction

v estimated along the path with DTI.22,23 This deterministic procedure (Figure 2A) is very fast (a few minutes per subject), but also extremely sensitive

to local inaccuracies in estimating the propagation direction; moreover, the reconstructed streamlines do not provide a direct means of quantifying

the underlying connectivity.20,24 In probabilistic methods,25,26 the propagation direction is sampled from a distribution estimated from advanced

diffusion models (Figure 2B) and probability maps are created by generating a high number of streamlines from each seed location. This tracking

strategy is computationally expensive (≈ 1 day per subject) and may not improve the estimation of connectivity substantially, as these probabilities

are difficult to interpret and have often been mistakenly considered as anatomical connection strengths.20

2.2 Tractography as an inverse problem

Recent approaches have directly acknowledged the ill-posed nature of tractography and tackled the reconstruction as a global inverse problem

(Figure 2C–E):

 = argmax  (
S, Ŝ( )

)
(2)

in which the set of streamlines  , also known as the tractogram, that maximizes the similarity (·, ·) between the acquired diffusion MR images, S,

and those predicted from  , Ŝ( ), is estimated simultaneously using global optimization.

Bottom-up methods27,28 construct the tractogram starting from an initial set of fixed-length segments, where each segment contributes to the

predicted signal according to a tensor-based generative model and the optimization encourages segments to concatenate into long chains while

fitting the measured data (Figure 2C). While reconstructions showed an unparalleled level of detail, the tracking process became computationally

impractical (≈ 1 month per subject). The model was later simplified by Reisert et al.,29 who decreased the processing time significantly to a few

hours per subject. Sherbondy et al.30 approached the reconstruction problem in a top-down fashion (Figure 2D). The BlueMatter algorithm built

a massive collection of candidate streamlines (≈ 180 billion) combining the output from different tractography algorithms and used a stochastic

search to determine the optimal subset that best explained the acquired dMRI data. Although it required nine days on a 2048-core supercom-

puter with 500 GB of memory, BlueMatter offered a novel solution to tackle tractography from a different angle, opening new perspectives for the

quantification of connectivity.

Spherical-deconvolution Informed Filtering of Tractograms (SIFT)31 followed the same pruning strategy, but cut computational demands down

to ≈ 15 − 20 hours per subject on standard workstations using an efficient heuristic to approximate the similarity  . SIFT selectively removes

streamlines guided by the fiber orientation distribution function (fODF) estimated in each voxel with constrained spherical deconvolution (CSD);32

however, the procedure requires a very large number of initial candidates (≈ 100 million) and a considerable amount of memory (≈ 26 GB per

subject). In SIFT2,33 rather than discarding streamlines, the algorithm attempts to estimate their ‘effective volume’ using a CSD-based genera-

tive model and assigning a cross-sectional area to each. This approach needs a lower number of candidates (≈ 10 million) and improves both
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computation time (a few hours per subject) and memory consumption (a few GB per subject). Recent studies showed that tractograms optimized

with these pruning techniques provide more robust and biologically meaningful estimates of the underlying connectivity.34,35 Nevertheless,

SIFT/SIFT2 use a similarity function based on the reconstructed fODFs rather than the full dMRI data and thus cannot exploit possible additional

information about the microstructural composition of the fascicles, e.g. apparent axon caliber, which may improve quantification of connectivity

further.

2.3 Tractography with microstructure information

The integration of microstructure information into tractography represents the latest frontier in dMRI tractography. The first

microstructure-informed tractography method was proposed by Sherbondy et al.,36 who extended the pruning strategy of BlueMatter (Figure 2D) to

allow simultaneous estimation of the optimal subset of fascicles and their biophysical parameters, invoking the assumption that these latter remain

consistent along the fibers.* MicroTrack uses a biophysical model derived from Alexander et al.37 to predict the diffusion MR images, Ŝ( ), and infer

the effective volume and apparent average axon caliber of each fiber f ∈  ; specifically, the signal is expected to arise from water restricted inside

the axons and hindered in the space around them, besides possible isotropic contributions from gray matter or cerebrospinal fluid. An efficient

genetic algorithm enabled computation on standard workstations, but the processing time remained an issue (20 days per subject).

Malcolm et al.10 approached the problem bottom-up and extended the line-propagation formulation of Equation 1 to take microstructure infor-

mation into account in the integration process. At each tracking position, an unscented Kalman filter is used to simultaneously fit a multi-tensor

model and determine the most consistent propagation direction using the information estimated at previous positions. Recent methods extended

this idea by incorporating more advanced tissue microstructural models; Reddy and Rathi38 built on the previous approach and used an enhanced

version of the Neurite Orientation Dispersion Diffusion Imaging (NODDI) model39 to deal with crossing fibers, whereas Girard et al.40 used the

Accelerated Cicrostructure Imaging Via Convex Optimization (AMICO) framework41 to estimate, at each tracking position, the apparent mean axon

caliber along the current tracking orientation. Being based on line propagation, these methods are considerably faster than MicroTrack (2 days per

subject), but, at the same time, they also inherit all drawbacks of the local formulations described earlier.

These pioneering approaches served as a proof of concept for the great potential of tractography to benefit from microstructure information;

however, despite encouraging preliminary results, the complexity of these initial solutions has hampered their widespread application in clinical

research. A dramatic reduction in the computational burden was achieved with the dictionary-based formulation introduced by Daducci et al.,42,43

(Figure 2E), who observed that the predicted signal from a tractogram  , Ŝ( ), can be conveniently expressed in matrix form as

Ŝ( ) = Ax (3)

where A = {aij} ∈ Rnv nd×nc is a linear operator mapping a multicompartment model analogous to MicroTrack to the nd diffusion measurements in all

nv voxels. The contributions x ∈ R
nc
+ of the corresponding nc compartments, e.g. the fraction of restricted water inside the axons corresponding to

fibers in  , can be efficiently estimated using convex optimization:

argmin
x≥0

||Ax − y||2
2 (4)

where || · ||2 is the usual 𝓁2-norm in Rn and the cost function is the distance between the acquired diffusion MR images S, contained in the vector

y ∈ R
nd nv
+ , and those predicted from the tractogram  via the relation Ŝ( ) = Ax.

This approach is named Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT). COMMIT allows combination of

tractography with virtually any diffusion model44 and its convex formulation enables fast estimation (a few minutes per subject) that is guaranteed to

converge to the optimal solution. Its memory usage is quite efficient (a few GB per subject): although A is extremely large, it is never stored explicitly

and its columns are assembled at runtime, one at a time, using the Kronecker product and precomputed look-up tables. A similar mathematical

formulation was recently implemented in Pestilli et al.,45 but the Linear Fascicle Evaluation (LiFE) method was designed for validating the existence

of fascicles rather than assessing their microstructure properties.

Microstructure-informed tractography is a relatively young but very promising area of research and these recent advances offer new and exciting

possibilities for connectivity mapping, potentially opening the door to truly quantitative and biologically meaningful analyses of the brain's connec-

tivity. Nonetheless, like any new technology, they also come with challenges and open questions (see Daducci et al.46 for an extensive discussion),

which are expected to stimulate research further.

3 STATISTICS OF LOCAL DIFFUSION MODELS

Statistical analyses of neuroimaging data enable the quantitative study of the human brain in health and disease.47,48 The mathematical character-

istics of non-scalar entities derived from dMRI data, such as the diffusion tensor (DT) or orientation distribution function (ODF), have led to exciting

*Although this hypothesis might not be strictly true biologically, it is commonly accepted and actually used, implicitly or explicitly, in almost any tractography algorithm.
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theoretical and computational developments. As mentioned in Section 4, defining a metric between these entities constitutes a key step to assess

similarity, estimate distributions and test hypotheses that are critical for neuroscience2 and clinical studies.49 At the core of this line of research

is the notion that the DT1 and ODF50-52 do not live in linear (Euclidean) spaces and therefore require appropriate theories to enforce physically

meaningful properties, such as symmetry, positivity or integrability to 1, while avoiding potential statistical bias and significant increase in compu-

tational requirements. Compared with the computational costs of dMRI tractography or registration, the cost of statistical analyses often is lower

and relates to the efficiency of metric computation.

The definition of differential geometrical structures for statistical models originated in 1936 with the work of Mahalanobis53 for multivariate

normal distributions with fixed covariance matrices. It was followed by Rao,54 who showed that the Fisher information matrix could be used to define

a Riemannian metric, therefore called the Fisher–Rao metric,55 between parameterized probability density functions. Since then, the information

geometry field56,57 has provided a better understanding of those geometries and several articles have leveraged these concepts to develop statistical

analysis methods for dMRI data. We hereby review some of the works that have addressed these questions.

3.1 Diffusion tensors

Following a prior work where DTs were identified as elements of R6,58 which ignores the algebraic properties of symmetric and positive-definite

matrices, the concept of a tensor-variate normal distribution59 was introduced to capture the variability of DTs via a symmetric positive-definite

fourth-order tensor. Such approaches provided a convenient framework to estimate DT distributions and perform hypothesis testing, albeit not tak-

ing the geometry of DTs into account. This was achieved shortly after by modeling the space of DTs as a Riemannian symmetric space GL+(3)∕SO(3),
where GL+(3) is the set of real 3×3 matrices with positive determinant and SO(3) is the set of real 3×3 orthogonal matrices with determinant 1.60 In

this pioneering work, the authors established methods and provided algorithms to compute statistics and modes of variations for DTs, using a met-

ric that is naturally invariant under transformations from GL+(3). Subsequently, Batchelor et al.,61 expanding on previous work by Moakher,62 used

similar theoretical results to define a distance between tensors, obtain their mean and interpolate them. In addition, a new definition of anisotropy

called geodesic anisotropy (GA) was introduced, which appeared to be more sensitive to small eigenvalues. Pennec et al. also leveraged this Lie group

perspective and developed a computational framework to DT processing with a particular emphasis on interpolation, regularization and restora-

tion of noisy tensor fields.63 Finally, Lenglet et al.64 relied on the information geometry of the space of multivariate normal distributions with zero

mean to tackle similar theoretical questions, while focusing on the estimation and level-set-based segmentation65 of DTI data. A related and recent

work, which focuses on the DT estimation problem,66 formulates a Bayesian framework for the simultaneous estimation and regularization of DTI

data, while accounting for Rician noise in diffusion-weighted data and providing error bounds. The geodesic distance between two DTs, common to

all these studies, is defined as

d(D1,D2) =
√

tr
(

log2 (D−1
1

D2

))
(5)

This affine-invariant metric prevents the generation of non-positive DTs and limits the ‘swelling’ effect known to increase eigenvalues dispropor-

tionally and affect diffusivity and anisotropy estimates. However, one of the drawbacks of these approaches is their relatively high computational

requirement due to matrix operations and the need for optimization methods, since closed-form expressions do not exist in many cases. To address

this situation, Arsigny et al. introduced the log-Euclidean framework67,68 and applied it to data interpolation and regularization. Under this frame-

work, Riemmanian operations are converted to Euclidean ones by transforming DTs into their matrix logarithms (which are symmetric matrices).

The key finding of this work was that, thanks to one-to-one correspondences via the matrix logarithm and exponential, tensors can be treated as

vectors, thereby simplifying and speeding up computations. Equation 5 becomes

d(D1,D2) = ||log (D1) − log (D2) ||
but it should be noted that affine invariance is lost and replaced by similarity invariance. A comparison of these metrics, along with the introduction

of a new Procrustes size-and-shape metric, with its origin in shape statistics, was recently proposed by Dryden et al.69

Although scalar-based (fractional anisotropy, diffusivity, etc.) analyses still largely dominate when it comes to clinical or neuroscience applica-

tions, investigators have started to adopt these new developments, e.g. to process clinical data with low SNR70 and perform statistical analyses71

to detect white-matter lesions in patients with multiple sclerosis. However, despite their ability to enforce physically meaningful constraints, affine-

or similarity-invariant metrics have been shown potentially to bias the analysis of normally distributed DT data,72 therefore requiring investigators

to select the metric carefully in light of their particular application.

Recent works have focused on multivariate parametric and non-parametric tests, as well as hypothesis-testing procedures for DT data, and have

investigated the relevance and impact of non-Euclidean metrics.73-75 For instance, in Lee et al.,73 a Hotelling's T2 test applied to log-Euclidean

transformed DT data was shown to outperform univariate analysis of DT-derived scalar measures. Again, careful considerations appear to be nec-

essary for such parametric tests, which assume multivariate normality of DTs and their interaction with non-Euclidean metrics.72,76 Using affine- or

similarity-invariant metrics in combination with permutation-based76,77 or Cramer76 tests also did not appear to improve the performance of these

non-parametric tests. However, using the Cholesky decomposition of DTs, as introduced in Wang et al.,78 it was demonstrated that,79,80 in addition
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to decreased computational time, a non-parametric two-sample test can detect differences in a specific brain region between young children with

dyslexia and controls.

3.2 Orientation distribution functions

Generalizing the concepts, which we briefly outlined in the previous section, to orientation distribution functions derived from high angular resolu-

tion diffusion imaging is challenging, in part because of the multi-directional nature of ODFs. This can lead to the mixing or generation of erroneous

fiber orientations when performing simple operations such as averaging.81 ODFs are symmetric spherical probability density functions commonly

approximated using the spherical harmonic basis,82 although other approximation methods, using e.g. mixtures of von Mises–Fisher distributions83

or spherical ridgelets,84 have also been proposed. The primary application of such approximation methods has been the accurate estimation and

characterization of ODFs to extract white-matter fiber orientations (e.g. for tractography). Defining metrics between ODFs for interpolation85 or

segmentation purposes86 can easily be done by using the Euclidean distance between spherical harmonic coefficients,86 although this does not

account for the intrinsic properties of the (Riemannian) space of ODFs. Chiang et al.85 first introduced the idea of using the Fisher–Rao Riemannian

metric to compare ODFs. In particular, they used this idea to perform spatial interpolation of ODFs and study genetic influences on white-matter

fiber organization. This metric had been introduced in the computer vision literature87 and provides closed-form expressions for geodesic distance,

as well as exponential and logarithm maps. Considering the space of spherical probability density functions {p ∶ S2 → R+|∫
S2 p(s) ds = 1}, the space

of square-root representations 𝜓(s) =
√

p(s) is the Hilbert unit sphere, where the Fisher–Rao metric becomes the standard L2 metric. It can be

shown, for instance, that the geodesic distance is defined as

d(𝜓1, 𝜓2) = cos−1

(
∫
S2

𝜓1(s)𝜓2(s) ds
)

This was used by Cheng et al.88 and Goh et al.89,90 to propose frameworks for computational and statistical analysis of ODF data. While Cheng et al.

focused on the estimation and interpolation of ODFs, Goh et al. developed tools for the anisotropic filtering and statistical analysis of ODFs. They

proposed applying the concept of principal geodesic analysis91 to ODFs, to study the modes of variation of a set of ODFs, and they generalized the

Hotelling's T2 statistic for performing multivariate hypothesis testing on two populations of ODFs. This was applied to detect asymmetries of the

white matter and led to the identification of significant clusters in the language and sensorimotor areas, for which the Riemannian metric appeared

to be more sensitive than the Euclidean metric. Related work leveraging the properties of the Fisher–Rao metric in a sparse Riemannian spectral

clustering framework also demonstrated the possibility of extracting fiber pathways reliably in complex white matter areas.92

Finally, recent contributions have aimed to design metrics producing more physically meaningful results, as they relate to the shape of ODFs. For

instance, it has been demonstrated that interpolating single-fiber ODFs with peaks at different locations, using the Fisher–Rao metric, can result in

two-fiber ODFs. To alleviate such issues, one can separate the orientation and shape information contained in an ODF, thereby defining a product

space in which orientation and shape are independently compared and new statistics can be defined.93 Similar ideas were pursued81 by introducing

a group-action-induced distance.

We have summarized some of the recent efforts to define metrics for DTs and ODFs, which respect their inherent mathematical properties, with

a particular emphasis on statistical analysis. It appears important to move beyond the scalar (e.g. fractional anisotropy, diffusivity) parametric or

non-parametric population studies, in order better to leverage the great amount of information encoded in these local models of diffusion. Nonethe-

less, as we have outlined, care must be taken in doing so, as significant bias can be introduced when these metrics do not account for the proper

distributions or noise models. However, it seems apparent that, at least for ODFs, recent works can enforce both mathematically and physically

meaningful constraints, which may ultimately prove useful in statistical analysis of these data for neuroscience and clinical studies.

4 REGISTRATION METHODS FOR DIFFUSION MRI

Registration is a key tool in medical imaging, with applications from population studies to surgical planning. Given two objects I and J, the registration

problem is that of finding a transformation 𝜙 that, when applied to the object J, makes it ‘look’ as close to I as possible. The registration problem is

usually formulated as the minimization problem

argmin
𝜙∈Φ

(I, 𝜙∗J) +(𝜙) (6)

Equation 6 aims to find the transformation 𝜙 from the set of transformations Φ that minimizes the dissimilarity measure  between I and 𝜙∗J.

Throughout this article, 𝜙∗J represents J deformed according to the transformation 𝜙. We prefer this notation to the less general composition rule

J◦𝜙, as these deformations have different mathematical interpretations depending on whether J is a scalar image, a diffusion-weighted image or a

three-dimensional object such as a white-matter tract. Furthermore, to reduce the possible space of solutions, hypotheses on𝜙such as the regularity

are represented by the term (𝜙).
Finding the optimal deformation𝜙, which is usually either a linear transformation or a deformable one, by minimizing Equation 6 has three main

points that must be specifically addressed in the dMRI case.
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1. How to quantify the difference between two elements representing or computed from diffusivity, specifically the formulation of (·, ·)
2. How the diffusivity information or its derivatives such as tracts must be warped; specifically, how 𝜙∗J is formulated and implemented.

3. How to incorporate the previous two points into the minimization scheme in Equation 6.

In the remainder of this section, we focus on the different approaches to the aforementioned items and we refer the reader interested in the

deformation space Φ, the regularization term (𝜙) and the overall optimization schemes to existing reviews on this topic.94

4.1 Image-based registration

In the case where I and J are images, they are commonly viewed as spatial functions I, J ∶ R3 → I. In this formulation, I can denote a subset of real

numbers I ⊆ R for scalar image registration, a subset of 3 × 3 positive-definite matrices I ⊆ S
3
+ in the case of DTI, and, more generally, a subset of

spherical I ⊆ (S2 → R) for HARDI or three-dimensional functions I ⊆ (R3 → R) for multi-shell or DSI approaches. In the scalar case, the application

of the transformation𝜙 to the image J takes the form

(𝜙∗J)(x) = J(𝜙(x)) (7)

However, in cases where the images are vector fields, tensor fields or more complex representations of the dMRI signal, an extra transformation

is required. We have illustrated the need for this transformation in Figure 3. Applying the transformation 𝜙 to the image J can then be divided into

two steps.

1. Obtain the diffusivity information N ∈ I of the warped image 𝜙∗J at x:

N = J(𝜙(x)) (8)

2. Warp the diffusivity information N according to the deformation𝜙:

𝜙∗N = warp(N,Dx𝜙) (9)

In accordance with the formalization of Cao et al.,95 these two steps represent the action of 𝜙 on tensor fields. Specifically, the first step is the

change of coordinates, while the second, which depends on Dx𝜙, the Jacobian of 𝜙 at x, accounts for reorientation and, if needed, scaling.

Much of the effort in dMRI registration is focused on the warp in Equation 9. This presents two important computational challenges: first, reg-

istration algorithms have to devise a warp operator for the diffusivity data; second, the algorithms must incorporate the warp in the optimization

process.

FIGURE 3 Two rotation transformations applied to the dMRI field on the left. The one on the top right does not include the warping of diffusivity
information; the one on the bottom right does
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The most common approach in statistical analyses of dMRI images is still to choose a scalar measure derived from a dMRI acquisition and perform

registration on that scalar image.96 However, these techniques drive registrations according to a sub-optimal subset of the information contained in

a dMRI image. To address this problem, Alexander et al.97 studied approaches for diffusion tensor (DT) registration. They compared using a combina-

tion of scalar measures versus taking the Frobenius norm between tensors, while testing different methodologies to warp the diffusion information.

They showed that, for most DT applications, quantifying the image difference using full tensor information and warping by reorienting the tensors

yielded an improved registration result. This first step in dMRI image registration created a lasting framework for diffusivity information warping

and left two problems open: first, the DT warping was performed in an alternate optimization scheme, leading to instability in the solutions; second,

the proposed framework was hard to extend to the novel trend of diffeomorphic optimization techniques, which was achieving more stable results

in scalar registration and template estimation.98,99

The results produced by Alexander et al.97 opened a new research trend: the exploration of similarity measures for DT images. Ruiz-Alzola et al.100

proposed a generalization of the cross-correlation metric for scalar images to the tensor space. Their work was more robust to noise than that of

Alexander et al97 However, incorporating the DT rotation into the optimization framework proved to be a difficult task. To decrease the compu-

tational costs of deformable registration, Park et al.101 proposed to frame the problem in terms of the multichannel Demons algorithm102 using a

vector with components including the T2 image obtained by setting the b-value to 0 s/mm2 in the dMRI and scalar measures derived from DT images,

as well as components of the DT. Although this made the registration much faster and reduced memory consumption, it added the non-trivial problem

of how to weight the different channels. Additional multi-channel approaches explored the use of mutual information as a metric to perform affine

and non-rigid registration using DTI or DWI images,103,104 with tensor reorientation in the case of DTI images. Up to this point, registration tech-

niques had begun to agree on the idea of using the Frobenius norm for tensors. Being able to perform deformable diffeomorphic registration and

template estimation of dMRI images was, nonetheless, still an open problem.

Zhang et al.105 proposed a diffeomorphic registration algorithm and deformable template estimation using the Euclidean norm between the

deviatoric tensor of a DT as a metric and parameterizing the deformation field as a multi-scale patchwork of affine deformations. This parameteri-

zation is invertible, greatly improving the template estimation process. Within this framework, the gradient of the registration cost function, shown

in Equation 6, can be computed analytically, enabling the use of a large number of efficient optimization strategies to register the images. Previous

registration approaches had not produced an analytic gradient for the registration cost function, instead implementing it thorough numerical or

heuristic approaches, resulting in algorithms with reduced numerical stability. Soon after, Cao et al.106 used the Frobenius norm and a clever formu-

lation of the preservation of principal direction (PPD)97 warping technique to formulate the problem within the large deformation diffeomorphic

metric mapping (LDDMM) framework,107 which most commonly uses the Euclidean metric between image elements. Both approaches were stable

and suitable for generating dMRI templates, while the Zhang et al.105 approach required less computation time. Later, Yeo et al.108 took this a step

further, deriving a general framework for incorporating the gradient of the DT warp, shown in Equation 9, into a larger set of registration techniques.

This enabled them to produce a diffeomorphic Demons algorithm for DT registration and compare different similarity metrics for tensor fields.

As more advanced acquisition techniques for dMRI became common,109,110 registration approaches were extended and adapted. In these

approaches, the diffusivity M at each point of the images was now a spherical function, such as the ODF,109 or a three-dimensional function, such as

raw DSI information.110 Goh et al.111 addressed the ODF case by first devising a Riemmanian space to embed these functions and then deriving a

diffeomorphic registration algorithm.Hsu et al.112,113 addressed the DSI case by registering the image in the full six-dimensional space (three spa-

tial dimensions + three dimensions indicating a 3D vector in diffusion space). On the other hand, Zhang et al.114 opted for a more general approach.

Their work aimed to register the raw DWI images using the LDDMM framework while reorienting and resampling the spherical functions at each

voxel to match the acquisition scheme.115

4.2 White matter tract-based approaches

An alternative to image-based registration is to perform registration on the white matter tracts directly.19 Note that image registration techniques

act on the spatial domain of the diffusion image, while tracts are usually defined as curves on the image's co-domain. Hence, to register tracts while

keeping the parameterization of deformations consistent with image-based registration, the deformation needs to be applied on the co-domain of

the diffusion image. In practice, the tracts must be deformed in the opposite direction from the images (i.e. by applying the forward transformation

to the tract points, rather than the inverse or image resampling transformation). An example of this is the application of a deformation to a single

point in the co-domain of an image: given an image consisting of a dimensionless point at coordinate c, J(x) = 𝛿(c − x), applying the deformation𝜙 to

the domain of J is equivalent to applying𝜙−1 to the coordinate c, which is defined on J's co-domain. More formally,

𝜙∗J = J(𝜙(x)) = 𝛿(c − 𝜙(x)) = 𝛿(𝜙−1(c) − x) (10)

The first proposed tract registration approach performed rigid registration of whole-brain fiber tracts by first finding the best matched pairs

of fibers across the two datasets, then estimating a local transformation using points from each fiber pair, and finally computing an overall global

transform.116 This process was repeated in an iterative multiscale fashion. To perform population statistics on tracts, Corouge et al.117 proposed

a framework to register groups of tracts using linear transformations. This technique represented tracts as sequences of N points and used a

Euclidean distance between these matrices of RN×3. This representation imposes two artefacts on the tracts: an orientation and a fixed discrete
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length. To address this, the approach of Corouge et al. required a careful reparameterization of the tracts to have the same length and orientation.

Ziyan et al.118,119 produced a deformable registration for tracts. They achieved this by representing the tracts as images of point density in space

and quantifying the similarity between tracts through well-known measures of density agreement. This representation enabled them to remove

the requirement of a point-to-point correspondence and equivalent parameterization of white matter tracts. Durrleman et al.120 took this a step

further by representing the tracts as dense vector fields and implementing an LDDMM registration algorithm. Their approach used the current

mathematical framework to take the orientation of the tracts explicitly into account and enable sparse representation to reduce computation time.

The main drawback of this approach was due to the formalization of tracts as oriented parametric curves. Consequently, their approach needs a

coherent tract orientation: two otherwise identical tracts, but with opposite orientations, will be considered infinitely different. Then, Wassermann

et al.121 combined the two approaches based on density representations of tracts118,120 to produce a diffeomorphic tract registration and template

estimation algorithm that did not require consistent orientation. Finally, two recent approaches produced efficient tract-based unbiased template

estimations122 and statistical analyses123 based on explicit tract parameterizations.

4.3 Computational costs

For dMRI image registration algorithms, once the registration algorithm and the representation of the deformation are fixed, the computational

cost increases with the dimensionality of the representation of diffusion information. This is due to the computation of the metric, which usually

increases at most quadratically with the diffusion representation,108 but in general increases linearly with the number of components.105,111,113

Moreover, a more costly increment to the computational cost is the warp strategy, shown in Equation 9, which is at least quadratic with respect to the

dimensionality of the diffusion information,97 but can be much higher when diffusion information is non-parametric.115 Overall, the computational

cost of dMRI registration depends on both the metric and warping operations needed for dMRI registration.

In the case of tract-based registration algorithms, the cost can be divided into two trends: techniques working directly on tracts,122,123 the com-

putational cost of which depends directly on the number of tracts and the number of points representing each tract, and those representing tract

bundles as spatial functions, the cost of which is equivalent to registering a scalar or vector image.118,120,121 In general, if the number of tracts reg-

istered is large, e.g. a full-brain tractography of a hemisphere, the run time is at least as long as that of full dMRI image registration. However, if it is

not large, e.g. the registration is aimed at a specific bundle, the run time will be lower than that of dMRI image registration techniques.

5 FUTURE DIRECTIONS IN COMPUTATIONAL DMRI

Today, there are many possible dMRI acquisition and analysis strategies for neuroimaging research. The choice of methods may depend on the neu-

roscientific or clinical question of interest, the constraints for acquisition and computational processing time and the researchers' awareness of

potential pitfalls. There are still many open challenges in dMRI, including non-specificity of traditional DTI-derived measurements,124,125 uncertain

anatomical accuracy of dMRI tractography126-128 and a general lack of ground truth, which is partially addressed using synthetic or physical fiber

phantoms.129,130 These challenges are expected to inspire future developments in computational dMRI.

Quantitative and anatomical validation is becoming an important aspect of computational dMRI. The dMRI analysis field is developing a strong

track record of community validation challenges at the Medical Image Computing and Computer Assisted Intervention (MICCAI), International Soci-

ety for Magnetic Resonance in Medicine (ISMRM) and International Symposium on Biomedical Imaging (ISBI) conferences,† including challenges

in tractography in phantoms,129,131 tractography in clinical cases132 and model reconstruction.133,134 The clinical community is becoming increas-

ingly aware that multi-fiber models beyond the diffusion tensor can improve anatomical accuracy of tractography,11,135-142 and there is increasing

development of open-source dMRI software that moves beyond the diffusion tensor.10,14,143-148

‘Big data’ is another important direction for future developments in computational dMRI. Large open datasets, such as the Human Connectome

Project12 and the UK Biobank,149 are being acquired and released to enable the study of multimodal imaging, genetics and bioinformatics data. To

handle big data, future computational dMRI algorithms are expected to require improvements in speed, memory usage and the ability to correlate

dMRI information with other multimodal data. Another research direction is to synthesize large dMRI datasets by statistically harmonizing multiple

smaller datasets150 to reduce across-site variability of measures such as fractional anisotropy.151

The advances described in this article represent crucial steps forward for dMRI computational analysis. However, important basic research is

under way that may change our assumptions about the brain's microstructure and connectivity: current theories about the organization of axons

into sheets152-155 and the possibility that axons take sharp turns or branch at 90 degrees throughout the brain156 have important implications for

the future of tractography methods and microstructure models. In fact, the true three-dimensional morphology of neurons is not yet known and it

is currently an active field of study.157 In the future, more detailed microstructural and neuroanatomical information may become available using

advanced ‘multi-dimensional’ dMRI acquisitions that employ diffusion-sensitizing magnetic field gradients in sophisticated ways.158,159 Such novel

dMRI acquisitions will require future advances in mathematical modeling and computational analysis.

† Some recent challenges are yet unpublished, including http://hardi.epfl.ch/static/events/2013_ISBI/, http://tractometer.org/ismrm_2015_challenge/ and http://cmic.cs.ucl.ac.uk/wmmchallenge/

http://hardi.epfl.ch/static/events/2013_ISBI/
http://tractometer.org/ismrm_2015_challenge/
http://cmic.cs.ucl.ac.uk/wmmchallenge/
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6 CONCLUSION

Thus far, standard DTI-based computational methods, which have been available since the mid-1990s, have had a large impact in scientific

research.160 More recently, significant progress has been made with HARDI, multishell, q-ball and DSI imaging.161 However, there is still a need for

methods that can measure and model the brain's true underlying tissue geometry and biophysical parameters. Based on the current progress in val-

idating advanced methods and the expected future increases in computational power, we look forward to an increasingly successful application of

advances in computational and statistical dMRI to neuroimaging research.
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