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Purpose: Most existing methods for accelerated parallel imaging
in MRI require additional data, which are used to derive informa-
tion about the sensitivity profile of each radiofrequency (RF) chan-

nel. In this work, a method is presented to avoid the acquisition of
separate coil calibration data for accelerated Cartesian trajectories.

Methods: Quadratic phase is imparted to the image to spread
the signals in k-space (aka phase scrambling). By rewriting the
Fourier transform as a convolution operation, a window can be

introduced to the convolved chirp function, allowing a low-
resolution image to be reconstructed from phase-scrambled

data without prominent aliasing. This image (for each RF chan-
nel) can be used to derive coil sensitivities to drive existing
parallel imaging techniques. As a proof of concept, the quad-

ratic phase was applied by introducing an offset to the x2 � y2

shim and the data were reconstructed using adapted versions
of the image space–based sensitivity encoding and GeneRal-

ized Autocalibrating Partially Parallel Acquisitions algorithms.
Results: The method is demonstrated in a phantom (1 � 2,

1 � 3, and 2 � 2 acceleration) and in vivo (2 � 2 acceleration)
using a 3D gradient echo acquisition.
Conclusion: Phase scrambling can be used to perform paral-

lel imaging acceleration without acquisition of separate coil
calibration data, demonstrated here for a 3D-Cartesian trajec-

tory. Further research is required to prove the applicability to
other 2D and 3D sampling schemes. Magn Reson Med
73:1407–1419, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Since the demonstration of SiMultaneous Acquisition of
Spatial Harmonics (SMASH) in 1997 (1), the use of parallel
imaging has become ubiquitous through a range of MR appli-
cations. The fundamental principle of parallel imaging is to

accelerate the encoding process by undersampling k-space
while making use of the multiple receive channels of an
radiofrequency (RF) array to mitigate the effects of aliasing.
Various approaches exist to perform such reconstructions,
the best known being the image space–based sensitivity

encoding (SENSE) (2) and the k-space based GeneRalized
Autocalibrating Partially Parallel Acquisitions (GRAPPA) (3).
A property that nearly all parallel imaging techniques share

is the requirement to separately acquire additional data con-
taining information about the sensitivity profiles of the RF
coils. If it can be assumed that these sensitivity profiles do
not change with time then, in principle, a single calibration

scan could be performed and used for the reconstruction of a
number of subsequent accelerated acquisitions. However,
motion of the subject (bulk motion or physiological motion)

or scanner instabilities can, especially at higher B0 fields,
compromise the validity of such an assumption. Addition-
ally, the coil sensitivity information must be matched to the

field of view (FOV) of the particular acquisition—meaning
that practically it has become standard in most cases to incor-
porate the calibration data into each separate scan. An

“autocalibrating” approach is often used, where it is ensured
that the central portion of k-space is sampled densely enough
to satisfy the Nyquist conditions for the given FOV. These

additional k-space samples are often referred to as autocali-
bration signals (ACS) (4) and can be directly used to derive
the kernel for k-space-based methods such as GRAPPA or can

be used to generate unaliased low-resolution images from
which relative coil sensitivity maps for image-based methods
such as SENSE (5) can be derived.

Several recent publications have presented methods that
seek to reconstruct both coil calibration data and the final
images from the undersampled data themselves (6–9). The
price to pay is the increased reconstruction time due to non-
linear iterative methods, typically required for these recon-
struction problems. Additionally, all these methods use k-
space trajectories with the sampling density increased toward
the center of k-space, which essentially contains the required
coil calibration information. A method has also been pre-
sented (in abstract form), which is capable of resolving Carte-
sian data undersampled by a factor of 2 without any
calibration data at all (10). This was achieved by recognizing
that a so-called GRAPPA operator for estimating a missing
line of data (k þ 1) from a neighboring acquired line can also
be derived from the square root of the operator, which esti-
mates data across two lines (i.e., estimating line k þ 2 from
line k). The ambiguity of the multiple solutions to the square
root, however, requires exhaustive search among all possible
solutions for the “correct” one.

It has long been established that imposing a quadratic
phase profile across the object leads to the spread of
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signals in k-space (phase scrambling), as was originally
demonstrated for the purpose of reducing the dynamic
range of the acquired signal intensities (11,12). It has also
been shown that 1D quadratic phase profiles can be used
to suppress signal aliasing (13), leading to more recent
work, which demonstrated that 2D phase-scrambled Car-
tesian undersampled data can be reconstructed using the
Fresnel transform without aliasing, but at the expense of
image resolution (14). In this article, we demonstrate that
an adapted version of this technique can be used as the
first stage of a reconstruction of data acquired using an RF
array, allowing the synthesis of coil calibration information
solely from the undersampled data. Conventional parallel
imaging methods can then be applied to complete the
image reconstruction pipeline, resulting in an alias-free
image with no loss of image resolution—and avoiding the
necessity for acquisition of additional RF calibration data.
In this proof-of-concept work, quadratic phase within the
image is achieved by offsetting the second-order shims. For
practical implementations, it would be recommended to
use specialized hardware capable of fast switching the non-
linear fields (15,16). The main motivation of this work is to
demonstrate the technical feasibility of achieving more effi-
cient spatial encoding by combining parallel imaging with
nonlinear phase modulation. Parts of this work have previ-
ously been published in abstract form (17,18).

THEORY

Rewriting the Fourier Transform as a Convolution

The following section considers 1D spatial encoding of a
sample within a homogeneous RF coil, but multidimen-
sional encoding with coil arrays follows as a trivial
extension of the described approach.

The k-space signals of a sample with magnetization
density q(x) ignoring relaxation, B0 and B1 inhomogene-
ities can be expressed as follows:

sðkÞ ¼
Z

rðxÞexpð�i2pkxÞdx

¼
Z

rðxÞexp �i2p
k

kmax

x

Dx

� �
dx; [1]

where integration is performed over the sensitive volume
of the receiver coil; kmax and Dx are the k-space sampling
extent and resolution in image space. Nyquist k-space
sampling requires kmaxDx ¼ 1. On introduction of dimen-
sionless variables

h ¼ k

kmax
; j ¼ x

Dx
; [2]

and using the trivial substitution

2hj ¼ h2 þ j2 � ðh� jÞ2; [3]

Equation [1] can be rewritten as

sðhkmaxÞ ¼
Z

rðjDxÞexpð�iph2Þexpð�ipj2Þ

� exp
�

ipðh� jÞ2
�

Dx dj:

[4]

By defining a chirp function gð#Þ ¼ expðip#2Þ, modu-
lated spin density and modulated k-space signal varia-
bles can be introduced as

r0ðjÞ ¼ rðjDxÞDxg� ðjÞ;

s0ðhÞ ¼ sðhkmaxÞ gðhÞ;
[5]

which enable us to simplify Eq. [4]. Indeed, modulated
signal intensity can now be expressed as a convolution
of the modulated spin density with the chirp function as

s0ðhÞ ¼
Z

r0ðjÞexp
�

ipðh� jÞ2
�

dj; [6]

or in a shorthand notation:

s0 ¼ r0 � g; [7]

where the symbol � denotes the convolution operation.
The chirp function used as a convolution kernel in Eqs.
[6] and [7] is a pure phase term, which upon using the
Fourier convolution theorem and the explicit Fourier
transform of a Gaussian function permits the formulation
of the image reconstruction in terms of a convolution
with a conjugated chirp g�:

r0 ¼ s0 � g�: [8]

The above derivation of the convolution interpretation
of MR image reconstruction is entirely equivalent to the
traditional Fourier transform. However, the presence of a
convolution with an explicit kernel invites the study of
the properties of this kernel in more detail and to inves-
tigate the possibilities of changing this kernel to alter the
properties of the image reconstruction. It is also notewor-
thy that Eq. [8] describes a transformation from the fre-
quency domain to the spatial domain without an explicit
Fourier transform—instead the original data s(k) are
modulated by a chirp function to form s0ðhÞ, which on
convolution with the chirp function g* gives the desired
image of the object r0ðjÞ. The superscript prime is added
to represent that this version of the image still has a
known chirp-modulated phase—which can be unwound
if the phase of the image is of interest.

Suppressing Aliasing with the Convolution Reconstruction

To efficiently calculate Eq. [8], the Fourier convolution
theorem may be applied making it equivalent to Eq. [9]
in Ref. (14). In analogy with this publication, we con-
sider a convolution kernel modified as

gað#Þ ¼ expðipa#2Þ; [9]

where a is the scaling parameter, defining the resolution
and FOV of the reconstructed image. As we showed pre-
viously (17,18), sampling properties such as aliasing can
directly be observed from a discretization of the modi-
fied kernel in Eq. [9] (see also explanations of Fig. 2). To
suppress aliasing with scaled kernels, a further modifica-
tion of the kernel is required:

gawð#Þ ¼ wað#Þexpðipa#2Þ; [10]

where wað#Þ is a window function (normalized to pre-
serve the resulting image intensity). A variety of window
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functions may be used—in this work, we chose a Fermi
band-pass filter.

Until the addition of the scaling parameter (a in Eq.
[9]), the reconstruction is entirely equivalent to the Fou-
rier transform, but it is the combination of the scaling
and windowing that leads to the aliasing-suppression
properties of the described reconstruction. A nonwin-
dowed kernel exhibits multiple “centers” due to the
undersampling of the discrete quadratic function, which
leads to the convolution reconstruction exhibiting the
aliasing familiar from the Fourier transform of under-
sampled data. The alias-free images presented in Ref.
(14) appear at first glance to be produced without the
need for a windowing function—but by choosing also
to replace the convolution in Eq. [9] by a fast Fourier
transform (FFT) operation, the method implicitly
applies a top-hat filter at the same resolution as the
FFT. In this work, we chose to keep the (slower) pure
convolution to retain explicit control over the window-
ing as the spatial extent of the filter proves to be critical
in assuring an alias-free reconstruction.

For the convolution reconstruction to achieve suppres-
sion of aliasing, it is necessary that the signals originat-
ing from different locations in the object are separated in
the acquired k-space—which can be achieved by induc-
ing a phase distribution to the object in addition to the
primary gradient encoding. This allows the convolution
kernel to assimilate signals from the multiple sources ali-
asing to a particular location with a different weight-
ing—where the amplitude of this weighting depends on
the chosen windowing function. The distribution of the
shifted signals is also important, as to reconstruct a use-
ful image the bulk intensity component of each spatial
location (i.e., the center of the local k-space—which we
refer to here as the principal echo) must fall within the
locus of the windowed kernel from the actual image-
space location (see also explanations of Fig. 2). In other
words, convolution with the windowed kernel cannot
shift signals farther than the locus of that kernel, so each
DC component in k-space must already lie within a cer-
tain “range” of its final destination in the image—as the
convolution with the kernel is the only operation which
redistributes signal in this method of moving from

k-space to image space (Eq. [7]). This condition can be
expressed mathematically as

�W <
�

x7DkðxÞ
�
< W ; [11]

where Dk(x) is a k-space echo shift for the location given
by x, and W is the distance from the window function
center to its cut-off edge. Note that all variables in this
equation are given in pixels in image space or k-space.
This condition must hold across the entire object, and
the 7 sign indicates that either the � sign or the þ sign
must hold everywhere. The þ sign is equally valid as it
corresponds to the case where the conjugate reconstruc-
tion (or flipped image) falls within the locus of the win-
dowed kernel.

The convolution method is only able to resolve alias-
ing for low spatial-resolution features of the image, as
only these signals are contained within a small radius of
the principal echo in k-space. Shifting of the echoes in
k-space allows the windowed convolution kernel to
select only the principal echoes from a certain region in
the original object to be able to contribute to the image
in a particular location. The higher spatial frequencies,
however, are distributed throughout the outer regions of
a conventional k-space—and are, therefore, distributed
across the entire k-space when phase scrambling has
shifted the echoes. The windowed convolution kernel is
not able to “reach out” to the “correct” signals for the
higher spatial frequencies. This corresponds to the obser-
vation in Ref. (14) that aliasing could only be resolved for
“zoomed-out” lower-resolution images (when a > 1)—
as this excludes the higher spatial frequencies.

Choosing the Phase Modulation

For the method to function correctly, it is required to
impose a phase modulation in image space which dis-
perses sufficiently the signals in k-space, but that also
satisfies Eq. [11]. From the Fourier shift theorem, it is
known that the k-space echo shift Dk(x) is proportional
to the local spatial gradient of the signal phase at posi-
tion x. Therefore, the simplest phase distribution satisfy-
ing our requirements is one where the spatial derivative

FIG. 1. The simulated object magnitude (a) and its real component (b), demonstrating the strong quadratic phase variation. c: The corre-
sponding magnitude of the k-space.
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is proportional to the coordinate itself, such as the quad-
ratic phase function:

c ¼ bx2; [12]

where b describes the strength of the quadratic modula-
tion. This strength is clearly important as it directly con-
trols the extent of the signal spread in k-space. If the
modulation is too weak, aliasing cannot be adequately
suppressed. If the modulation is too strong, the edges of
the object will not be refocused inside the acquired k-
space range and signal dropout will occur [as has been
demonstrated for reduced FOV imaging (19)].

A quadratic phase can be introduced to an MR image
in a number of ways, such as using tailored RF excita-
tion, e.g., Refs. 12 and 13, or the presence of an addi-
tional quadratic B0 field between excitation and readout

(12). For the current work, we chose to offset one of the

second-order shim coils (x2 � y2) as this was the simplest

approach to implement and adequately demonstrate the

method. Figure 1 shows a simulated object with phase

added in image space following the x2 � y2 form and the

corresponding k-space, where the signals are shifted such

that it resembles the object itself. Note that the signal shift

in k-space is proportional to the derivative of the phase—

and so the negative sign for y in (x2 � y2) leads to the

inversion of the object along the y-axis.
Figures 2 and 3 demonstrate the principle behind the

alias-suppression, which results from the convolution

reconstruction when applied to phase-scrambled data.

Equations [7]–[9] express the Fourier transform as a con-

volution operation (along with multiplications with

chirp functions, which for brevity are not shown in the

FIG. 2. As described in the text, (a) the Fourier transform can be rewritten as a convolution with a quadratic phase function. b: When
2 � 2 undersampled phase-scrambled data are reconstructed with this method, the familiar aliasing pattern arises, as expected from

the Fourier transform. c: If the quadratic phase function is appropriately windowed, however, an alias-suppressed image can be recon-
structed. Note that k-space “images” in (b) and (c) are of lower resolution, which corresponds to undersampling without zero-filling the
missing lines. Also note that the convolution kernels are of double matrix sizes compared to both k-space and object-space images

and have been rescaled in the figure for presentation purposes, whereas actual convolution occurs in the pixel domain.
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figures). When the k-space data are convolved with a
quadratic phase function without windowing (Fig. 2b),
the resulting image exhibits the same aliasing as from
the Fourier transform, as expected (the quadratic phase
function needs to be defined on a 2N � 2N grid to fully

define the convolution over the N � N k-space). With an
appropriately sized window on the quadratic phase func-
tion, however, the signals corresponding to low spatial
frequencies are assigned to their actual location in the
final image but are prevented from appearing at their
three aliased locations as these fall outside the locus of
the windowing function from the phase-scrambled k-
space (Fig. 2c). To demonstrate this effect in more detail,
Figure 3a shows the 2 � 2 undersampled phase-
scrambled k-space with an example shift-vector Dk(x)
where the location has been selected to be easily identifi-
able by eye slightly above the larger of the two “lobes” of
the digital phantom. Figure 3b shows the same under-
sampled k-space with an overlay of the outline of the
digital phantom in image space. The green cross indi-
cates the location x in image space for which the princi-
pal echo will have been shifted by Dk(x). The red
crosses indicate the image-space locations where aliasing
of the location x will occur for 2 � 2 undersampling. Fig-
ure 3c and d shows that if the filter window of the con-
volution kernel is too small there is no way for the
principal echo to be correctly located onto the desired
location x. When the window size is well chosen, the
kernel reaches the desired location x but does not reach
any of the aliased locations (Fig. 3e,f). If the filter
window is too large, however, the kernel reaches the
desired location and the aliased locations, thereby repro-
ducing the aliasing artifact expected from a Fourier
reconstruction.

The convolution reconstruction is, therefore, able to
strongly suppress aliasing of low-resolution features of
the object, but some artifacts resulting from aliasing of
higher spatial frequencies remain (the residual aliasing
visible in Figs. 2c and 3f). It should be noted that for
clarity the y-direction of the k-space images has been
reversed with respect to Figure 1—whereas during the
actual reconstruction the flipping of y-direction of the
k-space representation of the object (resulting from
the x2 � y2 phase distribution) was handled using a 2D
chirp function where the polarities were opposite for the
x- and y-dimensions.

An important question is the choice of the optimal
parameter b in Eq. [12], which controls the achievable
image-space resolution in the low-resolution convolution
reconstruction. The induced phase dispersion should,
therefore, be large enough for the low-resolution alias-
suppressed reconstruction to capture the spatial distribu-
tions of the coil sensitivities, but not so high as to avoid
signal suppression mentioned above.

Creating the Final Reconstructed Image

The convolution reconstruction described so far is only
capable of resolving the aliasing for the low spatial-
resolution features of the image—aliasing of high spatial-
resolution features will remain. If desired, this residual
aliasing can also be suppressed by spatial smoothing, but
this will necessarily reduce the resolution of the final
image. Therefore, we propose to take advantage of the
property that the RF coil sensitivity profiles are smoothly
varying functions in space—and therefore, should
be well described by the low-resolution alias-free

FIG. 3. Diagram demonstrating the importance of the filter window

in the convolution reconstruction. a: A 2 � 2 undersampled
k-space with quadratic phase scrambling. A vector Dk(x) has also
been marked, showing the shift of the principal echo for a point in

the image located just above the larger of the two “lobes” in the
digital phantom. b: The same k-space overlaid with the outline of

the object in image space. The vector x is indicated with a green
cross, and the three locations where it will alias to with 2 � 2
undersampling are indicated with red crosses. c: When the filter

window is too small, the green cross falls outside the locus of the
convolution kernel when centered on Dk(x) leading to an incom-

plete reconstruction (d). e: When the filter window is well chosen,
the green cross falls within the convolution kernel but the red
crosses fall outside of it, leading to the alias-suppressed image

(f). g: If the filter window is too large all four crosses fall within the
convolution kernel and the resulting image is aliased as would

occur when using an FFT (h).
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reconstruction offered by the convolution reconstruction.
Once low-resolution alias-free images can be recon-
structed for each RF coil then sufficient information is
available to perform conventional parallel imaging recon-
struction methods such as SENSE or GRAPPA—the
validity of which should not be affected by the phase
scrambling in the data. The result will be a full-
resolution image without the need for separate acquisi-
tion of coil calibration data—a method we refer to as
parallel imaging with phase scrambling (PIPS).

METHODS

Simulations

A digital phantom shown in Figure 1 with a strongly
varying quadratic phase (of the form x2 � y2) was simu-
lated on a matrix of size 792 � 792 for a Cartesian trajec-
tory of dimensions 192 � 192, with eight RF coil
channels derived from application of the Biot–Savart
law. Simulations of the convolution reconstruction were
performed for a range of quadratic phase modulations
and widths of the Fermi filter used as the windowing
function of the convolution kernel (wað#Þ in Eq. [10])

In Vivo Experiment

To demonstrate the feasibility of the method on in vivo
data, we acquired a fully sampled 1-mm isotropic 3D
gradient-recalled echo (3D-GRE) dataset (TE/TR ¼ 5.0/6.7
ms) on a single healthy subject on a 7T head-only MR
system (Siemens Healthcare, Erlangen, Germany) using a
32-channel receive RF coil (Nova Medical Inc., Wilming-
ton, MA) in accordance with guidelines of the local Ethics
Committee. The matrix size was 256 � 256 � 176 with
the readout direction chosen to be along the z-axis of the
scanner so that the quadratic phase induced by the x2 �
y2 shim coil spread the k-space signals in the two phase-
encoding directions. After a normal shimming procedure,
the values for the x2 � y2 shim were manually offset by
6.0 mT/m2 compared to the optimal shim setting. Nonse-
lective excitation was used for the 3D readout to avoid
distortion of the excitation slab resulting from the shim
offset. The total scan duration was 5 min and 2 s.

It should be noted that due to the absence of rapidly
switchable second-order fields on our system, a shim off-
set was present throughout the entire pulse sequence.
For the simulation, however, we assume that the quad-
ratic background phase has been imparted to the object
without significantly affecting the readout itself—thereby
making the results independent of the particular pulse
sequence used.

An FFT was applied along the readout direction so
that the rest of the reconstruction could be treated as a
set of independent 2D datasets, one for each slice. The
convolution reconstruction was performed as for the sim-
ulations, but with the width of the filter window fixed—
chosen to cover approximately half of the width of the
k-space data in both phase-encoding dimensions.

Phantom Signal-to-Noise (SNR) Experiment

We performed experiments in a phantom (17-cm-
diameter sphere filled with doped water) where a series

of 20 volumes were acquired—at a reduced resolution to
keep a reasonable total scan time and data volume (2-mm
isotropic resolution, 128 � 128 � 88 matrix, TE/TR ¼
1.25/2.30 ms, 26 s per volume). The acquisition was
repeated twice: without and with the quadratic phase. The
same quadratic shim offset was used as for the in vivo
experiment (6.0 mT/m2) which, after accounting for the
change in matrix size and the change in TE, leads to the
signals being spread by the same proportion across the
acquired k-space. These data were then used to compare
the SNR in various reconstructions after retrospective deci-
mation of the data to simulate undersampling, with and
without the presence of the quadratic phase scrambling.

PIPS-SENSE and PIPS-GRAPPA

Once low-resolution alias-suppressed images have been
generated, a variety of options are available to perform
the standard parallel-imaging reconstruction. For PIPS-
SENSE, we first estimated coil sensitivities directly from
the windowed convolution reconstruction. As expected,
this led to unreliable sensitivity maps in the regions
where the convolution reconstruction still shows resid-
ual aliasing. To reduce this bias, we then masked out
regions where the residuals where greater than 10% of
the maximum image intensity and performed fitting of a
smooth surface only within the mask using a smoothness
parameter to penalize variations in the gradient of the fit-
ted surface (http://www.mathworks.com/matlabcentral/
fileexchange/8998-surface-fitting-using-gridfit). During
preliminary tests, a value for the smoothness parameter
was determined by trial and error, then kept constant for
all the data shown. For comparison with the best results
we could expect to achieve with PIPS-SENSE, we also
performed a SENSE reconstruction where the coil sensi-
tivities were determined by the same smooth fitting pro-
cedure but based on the images from the fully sampled
data.

To perform PIPS-GRAPPA we required a method to
generate the kernel weights for the GRAPPA reconstruc-
tion. We found that a simple and reliable method was to
unwind the phase of the convolution reconstructed
images relative to the first coil channel to remove the
quadratic phase from all channels while preserving
the relative phase differences and take the FFT. This
then gives a “pseudo” k-space where the signals are not
spread. We used the central portion (40 samples per
accelerated dimension) to derive GRAPPA kernel
weights in the standard way. The GRAPPA kernel cov-
ered 4 � 4 samples in two phase-encoding directions,
thus providing 16 source points and three target points
per RF coil in each instance of the kernel (for the 2 � 2
acceleration). It was found that for the in vivo data a
noticeable improvement was observed when an addi-
tional Tikhonov regularization parameter was introduced
when deriving the kernel weights from the pseudo-k-
space of the convolution reconstructed images.

Preliminary results demonstrated that the determina-
tion of the GRAPPA weights from the filtered convolu-
tion reconstruction (which still has aliasing for high
spatial frequency information) can still lead to residual
aliasing artifacts in the final reconstruction. These
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artifacts were found to be significantly suppressed with
the introduction of an iterative approach to determine
the GRAPPA weights, inspired by existing iterative
approaches for conventional GRAPPA reconstructions
(20). After the PIPS-GRAPPA reconstruction described
above, the reconstructed images were again phase
unwound with respect to the first RF coil and then Fou-
rier transformed to create a new pseudo-k-space from
which new GRAPPA weights could be derived and then
applied to the original undersampled data to create a
new GRAPPA reconstruction. In total, four such itera-
tions were performed, as for all slices it was found that
the procedure had converged by the fourth iteration.

For comparison with the best reconstruction we could
expect to achieve with GRAPPA, we derived GRAPPA
weights from the fully sampled data. It should be noted
that when performing conventional GRAPPA on phase-
scrambled data, it is necessary to use the whole of k-
space for calibration, as using only a fixed number of
central ACS lines will bias the weights to certain regions
of the object due to the dependence of the position of
signals in k-space on their spatial location in object
space.

RESULTS

Simulations

Figure 4, while mainly illustrating the steps of the
method, also shows real reconstructions using the pro-
posed method (only the images of the undersampled k-
space data have been represented at 32 � 32 resolution
instead of 192 � 192 so that both the image features and
undersampling are still recognizable). The final recon-
struction is the (root) sum-of-squares from the individual
GRAPPA reconstructions. Although the reconstruction
algorithm may be run iteratively, the image in Figure 4c
was reconstructed without applying any iterations. It can
be seen that the final reconstructed image is of high reso-
lution (the small features within the digital phantom can
be clearly recognized) and there is little evidence of
aliasing.

Figure 5 demonstrates the importance of choosing the
appropriate width of the filter for the windowed convo-
lution, as well as the effect of changing the amount of
quadratic phase added for phase scrambling. Without
quadratic phase no spreading of the signals in k-space
occurs, therefore the convolution reconstruction only
reduces the effective FOV of the reconstructed image—
but there is no improvement in aliasing. At the other
extreme, when the quadratic phase is too strong, the sig-
nals are spread so far in k-space as to never be refocused
towards the edge of the FOV—leading to signal dropout
at the periphery. Decreasing the width of the filter is
unable to recover these signals. However, if the strength
of the quadratic phase is chosen such that the spread sig-
nals cover approximately half of the k-space then the
value of the filter window can be seen more clearly.
Here, when no window is applied, the aliasing
remains—but when the window size is reduced the ali-
asing becomes effectively suppressed for the low spatial
frequency components of the object. Further decreasing
the window size leads to signal loss toward the edges of

the object. It should be noted that for all images in this
figure, the zoom factor a in Eq. [9] was set equal to 2.
Increasing a would also allow alias-suppressed recon-
structions for lower values of quadratic phase, but at the
expense of the spatial resolution of the convolution
reconstruction. The optimal strength of quadratic phase
(i.e., the parameter b in Eq. [12]) appears to be when the
spread of signals in k-space covers approximately half of
k-space—so when designing a protocol it may be neces-
sary to perform preliminary tests to verify that this is
being achieved, as changing parameters such as FOV

FIG. 4. Flow chart showing the proposed reconstruction method.

Undersampled phase-scrambled data (a) are reconstructed with
the windowed convolution to give low-resolution but alias-

suppressed images for each RF coil (b), which can be used to
derive the coil sensitivities. The original data can then be recon-
structed using conventional parallel imaging methods such as

SENSE or GRAPPA to the final image (c) without the need for
separate acquisition of coil calibration data. If required, the final
steps can be iterated by estimating a new set of coil calibration

data from the latest reconstructed image.
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and/or image resolution will also alter the strength
of quadratic phase required. As demonstrated in Figure
5, there is a range of values of a and b which lead to a
good suppression of aliasing in the convolution
reconstruction.

In Vivo Experiment

Figure 6a shows the magnitude of k-space (after an FFT
along the readout direction, z) for the 3D-GRE data col-
lected in vivo with the offset x2 � y2 shim to spread the
signals. Although not as obvious as for the simulated
phantom, the shape of the brain is clearly discernible.
Note that in Figure 6a, the transversal orientation corre-
sponds to 2D k-space, whereas the sagittal and coronal
orientations correspond to hybrid spaces with the head–
feet direction already Fourier-transformed. For reference,
Figure 6b also shows the direct FFT reconstruction of
the data from Figure 6a after decimation to 2 � 2 acceler-
ation in the two phase-encoding directions. Figure 6c
then shows the same data reconstructed with the win-
dowed convolution method, where it is clear that the ali-
asing of the low spatial frequencies has been almost
completely suppressed. Only minor folding of the high-
resolution features (especially the edge of the skull) can

be identified. The expected loss of spatial resolution in
the convolution reconstruction is also directly observed.

Figure 7 compares five axial slices out of the 2 � 2
undersampled 3D dataset, which have been recon-
structed using SENSE and GRAPPA (both of which
require additional data from the fully sampled dataset)
and PIPS-SENSE and PIPS-GRAPPA that derive the coil
sensitivity information directly from the undersampled
data. For all of the reconstructions, the difference from
the FFT reconstruction of the fully sampled data is also
shown. The residuals from the SENSE and GRAPPA
reconstructions are mostly noise-like (although there is a
faint low-frequency ringing toward the front of the
brain), indicating that the presence of the quadratic
phase has not significantly compromised the reconstruc-
tion. Over most of the brain, the residuals from the PIPS-
SENSE and PIPS-GRAPPA reconstructions are also
noise-like—but there are some noticeable localized
regions. Especially PIPS-SENSE shows some residual ali-
asing (Fig. 7c,d), where it mostly follows the regions
where the skull is aliased (also the regions of most pro-
nounced aliasing in the windowed convolution recon-
struction, Fig. 6c). For PIPS-GRAPPA (Fig. 7g,h), the
most noticeable region of significant aliasing is close to
one of the eyes—and the aliasing falls outside of the
brain. Figure 8 shows orthogonal views of the PIPS-
GRAPPA reconstruction of the 2 � 2 undersampled data
to demonstrate that the method performs well across the
entire brain.

Figure S1 (Supporting Information) shows the
improvements to the final reconstruction, which are
achieved when including Tikhonov regularization in the
derivation of the GRAPPA weights and when using
the iterative approach to refining the GRAPPA weights.
Four iterations were sufficient for this dataset to sup-
press the residual aliasing artifacts to the level where
they are barely discernible in the final image.

Phantom SNR Experiment

Figure 9 shows reconstructed images of the phantom
using conventional GRAPPA and SENSE on data col-
lected with and without phase scrambling. For GRAPPA,
no difference between the images is noticeable by eye,
but examination of the difference images reveals that the
quadratic phase has introduced a small amount of ring-
ing with amplitude approximately 2% of the mean sig-
nal. There are small differences in the measured
standard deviations—for GRAPPA all values are slightly
lower with quadratic phase (by up to �6%), for SENSE
all values are slightly higher (by up to �4%).

Figure 9 also shows PIPS-GRAPPA and PIPS-SENSE
reconstructions for the data acquired with phase scram-
bling. At 1 � 2 acceleration, they are both indistinguish-
able by eye from the other reconstructions, although the
mean value for PIPS-SENSE is reduced by �6% (which
is also true for the 1 � 3 and 2 � 2 accelerations). At the
higher acceleration factors, some horizontal and/or verti-
cal banding artifact is visible within regions where the
aliased image overlaps the object itself in both the PIPS-
GRAPPA and PIPS-SENSE reconstructions, which have
an amplitude approximately 6% of the mean signal.

FIG. 5. The effects of increasing the strength of the quadratic
phase variation and decreasing the filter window width for the

convolution reconstruction of 2 � 2 undersampled data. With no
filter window the convolution reconstruction is equivalent to the

Fourier transform. With too little quadratic phase the reconstruc-
tion is incomplete, and with too much the edges of the object suf-
fer from signal dropout. Note that here the scaling parameter (a in

Eq. [9]) was equal to 2. Increasing a would allow alias-suppressed
reconstructions for lower values of quadratic phase (at the cost of

spatial resolution).
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Values of the standard deviations for both PIPS-GRAPPA
and PIPS-SENSE are similar to the corresponding
GRAPPA and SENSE reconstructions without phase
scrambling.

DISCUSSION

We successfully demonstrated that the proposed method
is capable of reconstructing accelerated Cartesian data at
a variety of 1D and 2D acceleration factors without the
need for the separate acquisition of data to calibrate the
RF coil sensitivities. The quality of the PIPS-GRAPPA
reconstruction within the brain is comparable to that of
the reference GRAPPA reconstruction (where the kernel
weights were derived from the fully sampled data) but

there are localized regions of aliasing, especially outside
of the brain. The PIPS-SENSE results are slightly inferior
to the PIPS-GRAPPA, with localized aliasing artifact
occurring in some places within the brain as well.

The data from the phantom experiment demonstrate
that the introduction of the quadratic phase at this
amplitude can cause some minor ringing but has little
effect on the SNR. The appearance of the mild banding
artifact, especially at higher acceleration factors, is
clearly undesirable. However, as this artifact is also
apparent in the SENSE reconstructions with quadratic
phase—but not in the GRAPPA reconstructions with
quadratic phase—it implies that this is the result of
small residual deficiencies in the approximation of the
coil sensitivities. Therefore, this should not be seen as a

FIG. 6. a: Orthographic views of

k-space magnitude of in vivo
spread-signal 3D-GRE data after
FFT along readout direction (z).

b: Sum-of-squares of direct FFT
reconstruction of 2 � 2 under-

sampled data and (c) the same
undersampled data following a
windowed convolution recon-

struction. Note that images in (a)
appear flipped along the AP-

direction as is to be expected
for the x2 � y2 phase modulation
(mostly apparent for the sagittal

orientation).
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limitation of the PIPS methodology per se, as we have
demonstrated that a good initial estimate of coil sensitiv-
ities can be obtained without ACS lines, but there is still
room for future improvement in the refinement process.

For practical imaging situations (such as the matrix
size used here of 256 � 256 � 176 and an ACS region of
24 � 24) the PIPS method would allow one to achieve
the true net acceleration factor of 4.0 instead of 3.85
(when including the time to acquire the ACS lines). This
gain for higher acceleration factors and 2D imaging is
even greater because of the increase of the relative con-
tribution of the tightly sampled ACS block to the total
scan time. With custom hardware to create the quadratic
phase dispersion, PIPS can also be used for 2D imaging.
For a 2D image with a matrix size of 128 � 128 and 24
ACS lines, an undersampling factor of 3 results in a net
acceleration of 2.2. In this example, PIPS would allow
for a choice between achieving the real acceleration fac-
tor of 3.0, or gaining some image quality while only
slightly increasing the imaging time by lowering the
undersampling factor to 2 and thus avoiding some of the
g-factor penalty.

We imparted the quadratic phase on the object by off-
setting the x2 � y2 shim as this was the simplest
approach to implement and demonstrate the method.
This is also readily repeatable on most clinical scanners
with no modification necessary—although at lower field
strengths it may be necessary to extend the TE further to
allow sufficient quadratic phase to accumulate in the
object as the available shim strength is often also lower.
With standard hardware the method is, therefore,
restricted to the use of GRE-based sequences (as the
shim offset to impart the quadratic phase is present

throughout the entire pulse sequence) and nonselective
RF excitations (as the offset shim will affect the slice-
excitation profile). Strongly B0-sensitive sequences such
as EPI or bSSFP would require the quadratic field term
to be switched off during the readout module to give
usable image quality. Having an offset field applied per-
manently may also cause some problems with RF excita-
tion profiles—and the quadratic phase will also continue
to accrue during the readout itself. Dynamically control-
lable shim coils (21), or even custom-built inserts (16),
would allow the phase to be imparted during the phase
encoding or the signal weighting period, but switched
off during the RF transmission and readout. This would
make the PIPS method applicable to virtually any pulse
sequence desired.

Quadratic phase can also be generated using RF pulses
(13), but this typically requires longer duration RF pulses
than might be convenient. This may, however, be
improved using parallel transmission techniques to
accelerate the excitation pulse. However, for 2D accelera-
tion during signal reception as demonstrated in this arti-
cle, a 2D selective RF excitation would be required, and
even with parallel transmission acceleration we would
still expect the pulse duration to exceed ranges accepta-
ble for the majority of applications.

The PIPS principle can also be applied along arbitrary
axes. Fast-switchable second-order shims would allow
the quadratic phase to be applied along any axis—and
indeed for any region in the body—and would remove
the restriction of a nonselective excitation as the shim
offsets need not be present during the RF excitation
pulse. Our use of a nonselective excitation led us to
choose the z-axis as the readout direction for the

FIG. 7. (Left column) Reconstruction of the 2 � 2 phase-scrambled undersampled data shown in Figure 6 using SENSE and GRAPPA
(which both require coil sensitivity information from the fully sampled data) and PIPS-SENSE and PIPS-GRAPPA (which both derive the

coil sensitivity information directly from the undersampled data itself). (Right column) Differences of each of the reconstructions on the
left from the FFT reconstruction of the fully sampled data (color scale multiplied by 10 compared to the left column).
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3D-gradient encoding to avoid potential aliasing from
signals below the head.

In this article, we found that PIPS-GRAPPA was able
to out-perform PIPS-SENSE. This is likely due to the fact
that we were able to make a simple iterative version of
PIPS-GRAPPA, and therefore be more robust to the resid-
ual aliasing of high spatial frequencies which is present
in the windowed convolution reconstruction. If a partic-
ular application required a SENSE-like approach, then
with further investigation it may be possible to develop
an iterative version of PIPS-SENSE. Extension of existing
iterative SENSE-based methods [e.g., (9,22)] to PIPS may
be possible, but is nontrivial as the coil sensitivities
need to be approximated by a small number of coeffi-
cients—which in our experience is less robust for high
channel-count RF receive arrays.

There have been several recent publications reporting
methods that can also be considered “calibrationless”
parallel imaging techniques (6–9) as they seek, directly
or indirectly, to derive coil sensitivities from the under-
sampled data themselves. However, all these methods
use k-space trajectories which sample at the Nyquist fre-
quency close to the k-space center to ensure that the
algorithm will converge to the desired solution. The
method presented here, however, uses the spreading of
the signals in k-space to provide the initial information
necessary to guide the reconstruction toward the desired
solution and it is, therefore, no longer required to crit-
ically sample the center of k-space.

There has also been recent work demonstrating that sig-
nals spread using quadratic phase can improve the results
of a compressed sensing reconstruction (23). The current
method, however, relies on the regular and predictable
aliasing patterns associated with Cartesian undersam-
pling. When applying the convolution with the win-
dowed chirp function, it is necessary for the true signal
location to fall within the locus of the window of its start-
ing location, and all aliased locations to fall outside this
locus. The method as described is, therefore, incompatible
with the pseudorandom undersampling typically used for
compressed sensing—which is deliberately applied to cre-
ate incoherent aliasing. Similarly, common non-Cartesian
trajectories such as radial or spiral sampling patterns are
also incompatible with the convolution-based PIPS
method described here—but it is clear that the spread k-
space signals will still contain information about the coil

sensitivities. Further work is required to determine how
this information can best be used for an optimal
reconstruction.

Regions where flow crosses contours of the quadratic
phase will potentially have encoding errors, the magni-
tude of which will depend on the flow velocity and the
particular method used to impart the quadratic phase
(i.e., how much time such errors have to evolve). How-
ever, in most MR imaging flow occurs over a small frac-
tion of the FOV and would not be expected to perturb
the ability to determine the initial GRAPPA weights (or
low-resolution coil sensitivities for SENSE). In principle,
we also expect PIPS to be applicable to phase-sensitive
techniques, as provided the phase gradients of interest
can be considered small compared to the spatial deriva-
tives of the applied quadratic phase for PIPS then the
PIPS convolution reconstruction should still be expected
to have the desired result.

A valid concern when modifying the signals with such
a strong phase function is that image quality will be com-
promised as a result of the phase scrambling. For the
images we presented, the quadratic phase was chosen so
as to impart a shift in k-space of approximately quarter of
k-space at the edge of the FOV. In this case, the situation
is similar to a three-fourth partial Fourier acquisition in
the local k-space perspective for voxels at the edge of the
FOV (but without a reduction in the total number of k-
space samples). The exact degree of signal loss will
depend on the local spatial frequency content of the
object being described—but is expected to be mostly
benign until the quadratic phase is so strong that it
approaches the drastic signal loss as the principal echo
moves outside the acquired range of k-space (19,24).
These local k-space shifts will also have an effect on the
local resolution of the reconstructed image. It may prove
worthwhile to investigate the possibility of modify exist-
ing algorithms for partial Fourier reconstruction, such as
Projections Onto Convex Sets (POCS) (25), to properly
deal with these data. For our present implementation
with weak quadratic prephasing, we would only expect a
small loss of resolution equivalent to the commonly used
zero-filling for partial Fourier acquisitions.

In parallel imaging, the g-factor is often calculated as a
measure of the loss of SNR associated with the use of
the parallel imaging reconstruction beyond the inevitable
SNR loss associated with using fewer samples (2). For

FIG. 8. Orthographic views of

the PIPS-GRAPPA reconstruc-
tion of the 2 � 2 phase-

scrambled undersampled data
to demonstrate the effectiveness
of the method throughout the

brain.
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SENSE, the g-factor depends on the undersampling pat-
tern, the coil sensitivity profiles and the noise correla-
tion of the RF receive channels. We would, therefore,
not expect the phase scrambling to have any influence
on the g-factor as none of these will be affected. For
GRAPPA, an equivalent definition has also been pro-
posed, where the g-factor depends on the individual
GRAPPA weights themselves (26). Further investigation

would be required to determine whether the weights
from phase-scrambled data should be expected to alter
the GRAPPA g-factor in a predictable manner. Prelimi-
nary phantom measurements (Fig. 9) show no g-factor
penalty associated with phase scrambling. We also
observed that strong quadratic prephasing appears to
make the images more sensitive to subject motion (e.g.,
the ringing toward the rear of the brain visible in Fig. 8).

FIG. 9. Results from central slice of phantom SNR experiment. a: Mean reconstructed image at three acceleration factors (1 � 2, 1 � 3,

and 2 � 2) using GRAPPA and SENSE with and without quadratic phase scrambling present, and PIPS-GRAPPA and PIPS-SENSE
(which require phase scrambling). The mean signal (arbitrary units) within the phantom is also displayed. b: The difference between

each reconstructed image and the sum-of-squares reconstruction of the fully sampled data without phase scrambling. The mean abso-
lute difference within the phantom is also displayed. c: Standard deviation of the reconstruction across 20 acquired volumes. The mean
and standard deviation of these values across the phantom are also displayed.
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This provides further motivation to reduce the required
strength of the quadratic phase modulation.

CONCLUSIONS

In this work, we have presented a method for deriving
coil sensitivity information to drive parallel imaging
reconstructions directly from Cartesian undersampled
data. In this proof-of-concept study based on a 3D acqui-
sition, phase scrambling with a quadratic phase distribu-
tion was used to spread the signals in k-space, allowing
a windowed convolution reconstruction to recover an
image with aliasing suppressed, but reduced spatial reso-
lution. Due to the smooth nature of coil sensitivities,
however, this is sufficient to derive coil sensitivities for
a PIPS-SENSE reconstruction, or the weights for a PIPS-
GRAPPA kernel, which can then be applied to the
undersampled data to reconstruct a full resolution alias-
suppressed image.
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