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Single-Shot Imaging with Higher-Dimensional Encoding
Using Magnetic Field Monitoring and Concomitant Field
Correction
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Purpose: PatLoc (Parallel Imaging Technique using Localized
Gradients) accelerates imaging and introduces a resolution vari-

ation across the field-of-view. Higher-dimensional encoding
employs more spatial encoding magnetic fields (SEMs) than the

corresponding image dimensionality requires, e.g. by applying
two quadratic and two linear spatial encoding magnetic fields
to reconstruct a 2D image. Images acquired with higher-

dimensional single-shot trajectories can exhibit strong artifacts
and geometric distortions. In this work, the source of these arti-

facts is analyzed and a reliable correction strategy is derived.
Methods: A dynamic field camera was built for encoding field
calibration. Concomitant fields of linear and nonlinear spatial

encoding magnetic fields were analyzed. A combined basis
consisting of spherical harmonics and concomitant terms was
proposed and used for encoding field calibration and image

reconstruction.
Results: A good agreement between the analytical solution for

the concomitant fields and the magnetic field simulations of
the custom-built PatLoc SEM coil was observed. Substantial
image quality improvements were obtained using a dynamic

field camera for encoding field calibration combined with the
proposed combined basis.

Conclusion: The importance of trajectory calibration for
single-shot higher-dimensional encoding is demonstrated
using the combined basis including spherical harmonics and

concomitant terms, which treats the concomitant fields as an
integral part of the encoding. Magn Reson Med 73:1340–
1357, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Single-shot magnetic resonance imaging allows image
acquisition in less than 100ms , e.g. echo-planar imaging
(EPI) (1), spiral (2), or other types of trajectories (3–5).
Such short acquisition times are achieved by switching
the linear spatial encoding magnetic fields (SEMs), com-
monly referred to as gradients, with large maximal
amplitudes as fast as possible over an extended total
readout time. The actual trajectory can deviate signifi-
cantly from the desired trajectory (6). These deviations
originate from many sources including field drifts, eddy
currents, hardware delays, and concomitant fields. With-
out adequate correction, these inaccuracies can cause
blurring, geometric distortions, or ghosting in the recon-
structed images (7). The problems have been partially
addressed by characterizing the eddy currents (8), by
measuring the k-space trajectory, (6) and by correcting
for distortions due to concomitant fields (9).

Magnetic field monitoring has been extended to imag-
ing applications by acquiring the signal of miniature
integrated sample-probe assemblies (10–17) during the
imaging experiment. The field probes’ signal phase is
used to model the field evolution. High-quality images
from spiral (11,12) or echo-planar (12) trajectories in the
presence of undesirable field perturbations have success-
fully been reconstructed using the trajectory measured
with four probes. The actual fields are only approximat-
ing the SEMs nominal spatial distribution and therefore
must be described by a low order spherical harmonic
expansion. Additionally, the magnetic fields produced
by eddy currents are also generated by conductive struc-
tures other than the SEM coils, and therefore have higher
order spherical harmonics. The higher order field
changes can be monitored by using more field probes
than the number of SEMs used for imaging. Barmet et al.
(14) proposed a dynamic field camera with 16 field
probes which allowed to measure higher order magnetic
field evolutions described by real-valued spherical har-
monics up to third order, which was used in the image
reconstruction for echo-planar diffusion imaging (16).

Recently, the concept of using nonlinear nonbijective
SEMs for imaging together with conventional linear
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SEMs has been introduced as PatLoc (Parallel Imaging
technique using Localized gradients) (18–20), and the
closely related concept of O-Space imaging (21,22). The
PatLoc reconstructed images show a lower resolution at
the center of the Field-of-View (FoV) and an increasing
resolution toward the edge of the FoV (23).

The resolution loss in the center of the FoV can be
overcome by simultaneous use of linear and nonlinear
SEMs, referred to here as higher-dimensional encoding.
Gallichan et al. proposed a multishot 4D Radial-In-Out
(4D-RIO) trajectory (24) allowing the preservation of the
spatially varying encoding resolution while avoiding the
total resolution loss in the center of the FoV. O-Space
(21), Null-Space (25), and multidimensionally encoded
magnetic resonance imaging (26) are other examples of
recent higher-dimensional encoding methods.

Higher-dimensional encoding trajectories can also be
performed in a single-shot as presented by Layton et al.
(27) where the trajectory referred to as North-West Echo-
Planar Imaging (NW-EPI) was designed such that a region
of interest has a higher resolution than the rest of the
image. A single-shot version of the 4D-RIO trajectory was
recently presented in abstract form in (28). However,
images reconstructed using the nominal 4D-RIO and NW-
EPI trajectory showed signal voids and geometric distor-
tions. Preliminary analysis of the trajectory deviations
indicated that concomitant fields associated with strong
SEMs play an important role in the observed phenomena.

Typically, imaging at higher field strengths is per-
formed without considering the full magnetic field vector
B
!ð r!; tÞ of the SEMs but only its z-component Bzð r!; tÞ.
The concomitant field (29) (often referred to as Maxwell
terms) can be calculated analytically and taken into
account in the image reconstruction (7) as an additional
phase term which is dependent on the squared SEM
waveform and on the field strength. An important prop-
erty of the concomitant phase is that it cannot be refo-
cused by switching the SEM waveform polarity and
therefore accumulates during long readouts.

The concomitant fields of the linear SEMs are negligi-
ble for most imaging sequences on the clinical scanners,
but can be observed in sequences particularly sensitive
to them such as diffusion (30) and steady state free pre-
cession (31), and can be particularly problematic for
SEM coils with an asymmetric winding pattern (32).

In this work, a dynamic field camera with 16 proton
field probes was used to calibrate for the spatiotemporal
field evolution (14,16,17). The two previously proposed
single-shot higher-dimensional trajectories, 4D-RIO and
NW-EPI, were calibrated to demonstrate the importance
to take the concomitant field spatial distribution into
account. In the Theory section, the concomitant field is
calculated analytically up to the full second order real-
valued spherical harmonic expansion and for the proto-
type custom-built head-insert coil (20) producing SEMs
of the type S2 (2xy) and C2 (x2 � y2). A novel basis for
trajectory calculation from the field probes’ phase is set
up incorporating the spatial dependencies of the linear
and the quadratic SEMs and the most important compo-
nents of the concomitant field. The spatial dependencies
are used to fit the acquired signal phase from the
dynamic field camera to obtain the trajectory that is used

for image reconstruction. Phantom and in vivo experi-
ments were performed and were reconstructed using the
nominal trajectory, the measured trajectory using real-
valued spherical harmonics as basis functions and the
measured trajectory using a basis combining real-valued
spherical harmonics and analytically derived concomi-
tant fields terms.

THEORY

Concomitant Fields of Quadratic SEMs

Single-shot higher-dimensional trajectories are very
demanding on both linear and quadratic SEM coils, and
involve an extended readout with multiple gradient ech-
oes. They are expected to be particularly sensitive to the
concomitant field terms as these are proportional to the
integral of the square of the SEM amplitude. The concom-
itant fields Bcð r!; tÞ are defined as the difference between
the length of the magnetic field vector jjB!ð r!; tÞjj and the
sum of the main static field B0 and all SEM ið r!Þ with
amplitude GiðtÞ. Thus Bcð r!; tÞ is equal to

Bcð r!; tÞ ¼ jjB!ð r!; tÞjj � Bzð r!; tÞ
¼ jjB!ð r!; tÞjj � B0 �

X
i

GiðtÞSEM ið r!Þ: [1]

The concomitant field for arbitrary SEMs can be
derived based on Gauss’s law for magnetism r! � B

!ð r!; tÞ
¼ 0 and Amperè’s law r!� B

!ð r!; tÞ ¼ 0 because currents
within the imaging volume are typically zero or negligi-
ble. Ampère’s law leads to

@Bx

@y
¼
@By

@x
¼ g;

@By

@z
¼ @Bz

@y
;
@Bx

@z
¼ @Bz

@x
; [2]

where the explicit time and spatial dependencies have
been omitted to keep the notation simpler. The parame-
ter g can be chosen arbitrarily, it can thus be a function
of space and time. In standard systems, however, g can
be set to 0 (29).

The divergence equation of the Maxwell magneto-
statics equations r! � B

!¼ 0 requires additionally

@Bx

@x
þ @By

@y
þ @Bz

@z
¼ 0: [3]

@Bz=@z can be explicitly calculated from the applied
SEMs. Then a dependency between @Bx=@x and @By=@y
is gained by introducing the dimensionless parameter a,
describing the relative strength of the concomitant fields
produced by the SEMs along the x- and the y-axes (32).
Equation [3] can then be rewritten as

@Bx

@x
¼ �a

@Bz

@z
and

@By

@y
¼ �ða� 1Þ @Bz

@z
: [4]

In standard clinical systems, the SEM coils have cylin-
drical forms which requires a ¼ 0:5 (29). Different geo-
metries of the SEM coils will lead to different values for
a as reported by (32).

The concomitant field can be determined by approxi-
mating the B

!
field using a Taylor expansion around the
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main static field B0. The derivation is performed in scan-
ner coordinates with B0 in the þẑ direction. By neglect-
ing the second and higher order terms, the Taylor
expansion reduces to

B
!� B0ẑ ¼ r!� r!

� �
B
!

[5]
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The derivation in (29) for the linear SEM x;y ;z can be
extended to quadratic fields, e.g. all five second order
SEM a;b;c;d;e from the real-valued spherical harmonics
expansion. The derivations were confirmed using the
Symbolic Math Toolbox in MATLAB (The MathWorks,
Natick, MA). Explicit calculations for specific cases are
shown in Appendix A.

The concomitant field expression for all SEMs up to
second order Eq. [A12] can be simplified for special
cases. For example, the head-insert coil from (19) pro-
duces three quadratic SEMs which, including the three
linear SEMs, simplifies the general concomitant field
expression given by Eqs. [A12] to [A19] (33).

The concomitant field of the quadratic encoding fields
of the prototype custom-built PatLoc SEM coil (20),
referred in the following simply as the PatLoc SEM coil,
is of interest in this article. The encoding fields C2 and
S2 of the PatLoc SEM coil (20) are rotated by approxi-
mately p=8 and �p=8 around the z-axis (scanner coordi-
nates) to reduce coupling with the second order shims
and are therefore referred in the following as SEM a and
SEM b, respectively. The rotated x; y coordinates are
denoted as xr ; yr . The encoding fields can therefore be
approximated by

SEM a ¼ < ½ðx þ iyÞe
�i

p

8 �2
 !

¼ x2
r � y2

r

� �

¼ x cos
p

8

� �
� y sin

p

8

� �� �2

� x sin
p

8

� �
þ y cos

p

8

� �� �2
� �

[7a]

SEM b ¼ = ½ðx þ iyÞe
�i

p

8 �2
 !

¼ 2xryr

¼ 2 x cos
p

8

� �
� y sin

p

8
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x sin

p

8

� �
þ y cos

p

8

� �� �
:

[7b]

Hereafter, the factor two in the analytical description
of SEM b in Eq. [7b] is omitted because only the spatial
dependencies are of importance in the following analy-
sis. In Appendix B, the derivation of Bcð r!; tÞ is pre-
sented in detail. Bcð r!; tÞ of the PatLoc SEM coil in
Eq. [B8] can be sorted as follows

Bcð r!; tÞ ¼ jjB!jj � Bz

¼ 1

2B0
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2
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p

GzðGa þ GbÞð1� aÞ�:
[8]

It is important to point out that the terms zðx2 þ y2Þ
and z2ðx2 þ y2Þ are only arising from the quadratic
SEMs. Additionally, it is to be noted that the elements
x2, y2, z2, x2 þ y2, xz2, yz2, ðx2 þ y2Þ, zðx2 þ y2Þ, and
z2ðx2 þ y2Þ are not solutions of the Laplace equation and
therefore cannot be described by real-valued spherical
harmonics. The elements z2 and ðx2 þ y2Þ are already
present in the concomitant field of linear SEMs on clini-
cal scanners, see Eq. [A13] and (29). These terms are not
solutions of the Laplace equation and might need to be
taken into account when doing imaging experiments
with certain SEM coils, e.g., (32).

Adapted Signal Equation

The effect of the concomitant field Bcð r!; tÞ introduces
an additional phase term fcð r!; tÞ in the signal equation
which needs then to be taken into account in the image
reconstruction, either by calculating the analytical repre-
sentation of the concomitant field Bcð r!; tÞ (29), from
magnetic field simulations of the particular SEM coil
or by field measurements of the concomitant fields (20).
fcð r!; tÞ can be calculated from Bcð r!; tÞ as

fcð r!; tÞ ¼ g

Z t

0

Bcð r!; tÞdt; [9]

with Bc in tesla and c the gyromagnetic ratio. The signal
equation of the spin density r r!

� �
for the radiofrequency

(RF) channel n is then given by the following equation,
extended by the phase fc (Eq. [9])

Sn tð Þ /
Z

d r!r r!
� �

cnð r!Þe�ifeð r
!

;tÞe�igDB0 r!
� �

te�ifcð r
!

;tÞ

[10]

where cnð r!Þ corresponds to the sensitivity maps of the
RF channel n, feð r!; tÞ the encoding phase and DB0 the
magnetic field inhomogeneity distribution. The encoding
phase is given by
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feð r!; tÞ ¼ k
!
ðtÞ � c
!ð r!Þ ¼ g

Z t

0

G
!ðtÞ � c

!ð r!Þdt [11a]

with k
!ðtÞ ¼ g

Z t

0

G
!ðtÞdt; [11b]

G
!ðtÞ ¼ GxðtÞ GyðtÞ GzðtÞ GaðtÞ GbðtÞ

	 

; [11c]

and

c
!ð r!Þ ¼ SEM xð r!Þ SEM yð r!Þ SEM zð r!Þ SEM að r!Þ SEM bð r!Þ

	 

;

[11d]

where k
!ðtÞ corresponds to the multidimensional phase

coefficients. If only linear SEMs are present, the phase
coefficient k

!ðtÞ corresponds to the conventional k-space
definition.

Trajectory Estimation from Field Probes

In (12,16), the trajectory is estimated from the measured
signal phase fðtÞ. The signal phase can be written as

fhðtÞ ¼ k
!
ðtÞ � p!h þ vh;ref t þ fhðt ¼ 0Þ; [12]

with vh;ref its off-resonance frequency, fhðt ¼ 0Þ the
phase value at time point 0, and k

!
ðtÞ the phase coeffi-

cients as defined by Eq. [11b]. p!h is the basis function
evaluated at the position r!h ¼ ðxh; yh; zhÞ of field probe
g. Solving Eq. [12] in the least-square sense yields

k
!
ðtÞ ¼ ðPTPÞ�1PT ½f!ðtÞ � v!ref t � f

!
0�; [13]

where v! and f
!

are the vector notation of the 16 field
probes’ off-resonance frequency and phase, respectively.
The probes’ off-resonance frequency and position can be
determined experimentally. P is the probing matrix (12)
which reflects the basis constructed using the field
probes’ position r!h. The real-valued spherical harmon-
ics expansion up to third order is the basis typically
used, which leads P to

P ¼

1 x1 y1 z1 x1y1 . . . x3
1 � 3x2y2

2

1 x2 y2 z2 x2y2 . . . x3
2 � 3x2y2

2

� � � � � . . . �

1 x16 y16 z16 x16y16 . . . x3
16 � 3x16y2

16

0
BBBBB@

1
CCCCCA;

[14]

where 16 field probes are used, resulting in a matrix P
with dimensions 16� 16. The constant in the first col-
umn of P corresponds to the offset of B0 and subse-
quently after fitting of the probe phases with Eq. [13],
k0ðtÞ describes the drift of B0. The conditioning of P is
important for the calculation of Eq. [13], and is directly
influenced by the field probe positions r!h. Previously
described experiments, such as in (16), have used real-
valued spherical harmonics up to the third order as the
chosen basis. This basis is referred to as N and the result-
ing measured trajectory as k

!
N. As pointed out in Barmet

et al. (12) Eq. [13] is generally valid for any basis.
The effect of the concomitant fields can be considered

by constructing a new basis Y to take into account the
spatial dependency of the concomitant field given by
Eq. [8]. Both bases are listed in Table 1. k

!
Y is the corre-

sponding trajectory. The new basis allows to simplify Eq.
[10] by including the concomitant field phase fcð r!; tÞ in
the encoding phase, feð r!; tÞ, by defining c

!
in Eq. [13]

with the SEMs defined in basis Y.
Basis Y is constructed to have a constant term, the

three linear terms and the two quadratic encoding fields
C2 and S2 created by the PatLoc SEM coil, which are the
basis functions 0, 1–3 and 4 and 8 in Table 1, respec-
tively. Additionally, the concomitant field terms in Eq.
[8] with amplitude dependent on GaðtÞ and GbðtÞ are
considered the most important terms of the real-valued
spherical harmonic expansion, giving seven functions to
be added to basis Y. The x2 þ y2 term is the eigth func-
tion which is included to basis Y because it is depend-
ent on the arbitrary function g(t).

We emphasize again that these spatial dependencies
are not all solutions of the Laplace equation. The z2 and

Table 1
The Basis N Corresponds to the Real-Valued Expansion of the Spherical Harmonics up to Third Order and the Basis Y Replaces Some

of These (Shown in Bold) with Terms which are Not Solutions to the Laplace Equation, But which Better Describe the Spatial Variation
of the Expected Concomitant Field (see Eq. [8])

Index Basis N: real-valued spherical harmonics Basis Y: spherical harmonics and concomitant field terms

0 Constant Constant

1 x x
2 y y

3 z z
4 xy xy
5 zy zy

6 3z2 � ðx2 þ y2 þ z2Þ x21y2

7 zx zx

8 x2 � y2 x2 � y2

9 3yx2 � y3 x2z

10 xyz xyz

11 yð5z2 � ðx2 þ y2 þ z2ÞÞ y2z

12 5z3 � 3zðx2 þ y2 þ z2Þ xz2

13 xð5z2 � ðx2 þ y2 þ z2ÞÞ yz2

14 zðx2 � y2Þ x2z2

15 x3 � 3xy2 y2z2
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y2 terms were not included in basis Y as they are only
dependent on linear SEM amplitudes.

The remaining three terms are chosen to be functions
5, 7, and 10 from the real-valued spherical harmonics
expansion (cf. basis N, Table 1), where the functions 5
and 7 are also present in the concomitant field of linear
SEMs (cf. concomitant field expression for linear SEMs
Eq. [A13]).

METHODS

4D-RIO Trajectory

The 4D-RIO trajectory (24) simultaneously covers both
the linear (kx, ky) and quadratic (ka, kb) k-spaces with
radial spokes, but with staggered timing such that the
edge of (kx, ky )-space is reached concurrent to passing
through the center of (ka, kb)-space, and vice-versa. The
original multishot trajectory was implemented by a dual-

echo sequence (24). To implement a single-shot version
of 4D-RIO (28), each traversal between the center and the
edge of these 2D k-spaces is treated as a separate element
of the trajectory and then these elements are arranged to
connect them together while minimizing the distance, in
4D Euclidean space, between their ends. The single-shot
trajectory is depicted in Figure 1a. These connections
need to respect the maximum amplitudes and slew rates
of both the linear and the quadratic SEMs, but can be
designed using methods directly analogous to existing
2D or 3D approaches (34). Assuming a nominal resolu-
tion of 64� 64 with a FoV of 256� 256mm , it was possi-
ble to generate a 43ms readout train which fulfills these
criteria using 128 “spokes,” each traversing between the
center and edge of both the (kx, ky)-space and the (ka,
kb)-space, but in opposite directions. The local k-spaces
(a concept introduced in (24) which displays the local
spatial derivatives of the net encoding phase) are similar

FIG. 1. a: Schematic representa-
tion of the linear (kx, ky) and

quadratic (ka, kb) components of
the single-shot 4D-RIO trajec-
tory. The start of the trajectories

is marked by multiple green tri-
angles, and the end by the red

squares. The local k-space of
the multishot and the single-shot
4D-RIO are depicted in (b) and

(c), respectively.
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for the multishot and the single-shot trajectory as shown
in Figure 1b and c, respectively.

Validation of the Analytical Concomitant Field Description

The magnetic field Bs
�!ð r!Þ of the PatLoc SEM coil was

simulated for a current of 80 A from a model set up in
the simulation software Cobham OPERA 14 3D (Cobham,
Oxfordshire, UK) and the concomitant field Bcsð r!Þ was
calculated using Eq. [1]. Bcsð r!Þ was then fitted to the
three terms in Eq. [B9] representing the concomitant
field part arising only from the PatLoc SEMs. The three
terms are proportional to x2 þ y2, zðx2 þ y2Þ, and
z2ðx2 þ y2Þ. Bcf ð r!Þ is the concomitant field calculated
from the fit result. The normalized root mean square
error between Bcf ð r!Þ and Bcsð r!Þ was used as a metric to
test the validity of the analytically derived concomitant
field over a spherical volume of 20 cm diameter.

Experimental Setup

All experiments were performed on a modified 3T sys-
tem (MAGNETOM Trio, a Tim System, Siemens AG,
Healthcare Sector, Erlangen, Germany) fitted with
transmit-array hardware (35). Two quadrupolar encoding
fields were generated by a prototype custom-built SEM
insert-coil as previously described by Welz et al. (20).
One field was rotated by 45

�
with respect to the other

assuring that the two encoding fields are orthogonal. The
encoding fields are additionally rotated with respect to
the scanner’s standard S2 and C2 shim fields by 6p=8 to
minimize geometric coupling between the head SEM
insert coil and the shim coils. The SEM coil for each
quadrupolar field can be driven with currents up to 80A
using additional high-performance multichannel gradient
amplifiers. The scanner architecture was modified to
control both the linear and the PatLoc SEM coil, which
allows for simultaneous and independent control of up
to six encoding fields. The head RF coil consisted of an
outer single Transmit/Receive (T/R) RF coil, used here
only for excitation, surrounding an inner eight channel
receive coil array used for signal reception (Siemens AG
Healthcare Sector, Erlangen, Germany).

A gradient echo based imaging sequence was used for
image acquisition and control of the field probes. The
sequence allowed specification of arbitrary waveforms
for each of the five encoding SEM channels.

Dynamic Field Camera

A dynamic field camera consisting of an array of 16 1H
field probes (14,16) was built for magnetic field estima-
tion. Thirty 20cm long tubes with an inner and outer
diameter of 2:8 and 3:2cm , respectively, were arranged
in a honeycomb-like shape; inside some of these tubes
the probes were placed. The field probe array was then
firmly positioned inside the eight channel head RF
receive coil to minimize uncontrolled mechanical vibra-
tions during the switching of the encoding fields. The
field probes were placed in four transversal planes sepa-
rated by � 3cm from each other. In each plane, four field
probes were placed on a circle. On the two outer planes,
the diameter of the circle was 11 � 10cm and on the

two inner planes, the diameter was 12 � 16cm . The
field probe array inside the receive coil is shown in Fig-
ure 2a. A separate Transmit (Tx) chain offered the possi-
bility to operate the field probes in T/R mode (13)
independently from the scanner and made sure that the
same RF power is distributed to each probe. The Tx
chain was controlled via the optical trigger from the
scanner. The Tx chain consist of a signal generator
(N5181A, Agilent, Santa Clara, CA), an RF power ampli-
fier (75A400, Amplifier Research, Souderton, PA) and a
24 way Wilkinson power splitter (MITEQ-ESTONIA,
Estonia). This setup is based on work presented in
(13,14,16). The field probes were connected to the spec-
trometer of the scanner and the signal was sampled with
an ADC dwell time of 2:5ms to be suitable for fast imag-
ing. Figure 2b depicts the connection setup of the
dynamic field camera to the patient table of the scanner.
Solenoid baluns to minimize coupling between the RF
coaxial cables were positioned between the preamplifier
and the scanner plug for cables longer than 20cm . The
RF coaxial cables between the field probes and the T/R
switch were manually positioned until minimal coupling
was observed in the acquired free induction decays. If
the probes’ coaxial cable positions are not carefully
arranged, the coupling between the field probes can lead
to phase oscillations with amplitudes up to 0:1rad and
reduced signal-life time (data not shown here) which
might corrupt the trajectory fit when using Eq. [13].

Trajectory Calibration

To account for possible synchronization errors between
all five gradient channels, residual eddy currents and
concomitant fields simultaneously, the single-shot 4D-
RIO and NW-EPI trajectory were measured in a separate
acquisition with the previously described dynamic field
camera. The head RF coil array was kept in the SEM coil
and connected to a custom-built coil test-bench for
detuning and grounding during the trajectory calibration
measurements. The averaged off-resonances v!ref were
calculated from the phase of 10 free induction decay sig-
nals using a repetition time of TR ¼ 1s. The position of
the probes was estimated by a linear fit to the acquired
phase from three projections along the spatial directions.
Again 10 repetitions were acquired for averaging, with
TR ¼ 1s.

The root mean square deviation (RMSD) was estimated
between the calculated and the nominal trajectory com-
ponents. They are referred to as RMSD N, RMSD Y for the
trajectories k

!
N and k

!
Y, respectively.

The theoretical phase evolution of the 4D-RIO trajec-
tory was calculated using the simulated encoding mag-
netic fields of the PatLoc SEM coil and assuming perfect
linearity of the linear SEMs with no concomitant field
terms. The obtained phase evolution was then fitted to
basis Y in the volume where the spatial distribution of
the SEM a and SEM b are described by Eq. [7], which is a
67cm long cylinder with 10cm radius (20). Both higher-
dimensional encoding trajectories are using SEMx, SEMy,
SEM a, and SEM b and transversal slices were acquired
in the isocenter, therefore the concomitant field Eq. [8]
can be simplified to
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Bcð r!; tÞ ¼ g2 x2 þ y2ð Þ
2B0

: [15]

It is, therefore, expected that mainly the time-
dependent coefficient kY;6ðtÞ will contribute to the image
reconstruction. The RMSD was estimated between the
simulated and the measured trajectory components.

Image Reconstruction

Image reconstruction was performed using an iterative
conjugate gradient (CG) method including all 16 trajec-
tory coefficients similar to the reconstruction used for
non-Cartesian trajectories (36). The reconstruction was
implemented in MATLAB. The coil sensitivities cnð r!Þ
and the DB0ð r!Þ map of the imaged slices were acquired
with a multiecho GRE sequence. The parameters were:
TE ¼ 4, 8, 12, 16, 20, 24, 28, 32ms , TR ¼ 0:1s, flip angle
25

�
, a slice thickness of 5mm , and a FoV¼ 220� 220

mm 2 for a matrix size of 300� 300. cnð r!Þ were esti-
mated using the adaptive method described in (37). The

acquired receiver sensitivity and DB0 maps were fitted to
real-valued spherical harmonics as in (38) up to 20th
order and recalculated on the desired reconstruction
grid. cnð r!Þ were additionally masked with a disk of
diameter equal to the FoV. The disk edge was further
smoothed to zero with a 2D Gaussian filter of a full
width at half maximum of 19px . The CG reconstruction
was implemented on a graphic processor unit (GPU)
(NVIDIA Tesla C2050 GPU) allowing fast image recon-
struction (39,40) as detailed in (41). The number of CG-
iterations was chosen manually for each reconstruction,
stopping when the best image quality was deemed to
have been reached, which lead to an image reconstruc-
tion time between 19:5 and 24:8s. All images were recon-
structed assuming three different effective encoding
trajectories: the nominal trajectory, trajectory k

!
N, and

trajectory k
!

Y. As in (5), the data acquired during ramp
up and down of the trajectory are excluded from the
reconstruction to avoid crossings of the trajectory, which
can cause off-resonance and T�2 artifacts.

FIG. 2. a: Dynamic field camera setup

inside the eight channel receive coil. b:
Setup to which the 16 field probes are

connected. The probes, the Wilkinson
power splitter and the preamplifiers con-
nected to the T/R switches are visible.

Breakout boxes convert the scanner coil
plug to SMA for the receive channels and

D-sub for the PIN diodes control voltages
and currents. The Wilkinson power splitter
is located below the PCB board compris-

ing the preamplifiers and the T/R switches.

1346 Testud et al.



Phantom Experiments

The phantom consisted of a 190mm diameter plastic cyl-
inder containing approximately 130 thin Plexiglas tubes
parallel to the longitudinal axis of the cylinder. The cyl-
inder and tubes were filled with nickel sulfate and
sodium chloride doped water. The 4D-RIO acquisitions
had a nominal FoV of 256� 256mm 2 and a total readout
durations of 43ms . The same acquisition dwell time of
2:5ms as for the trajectory calibration measurements was
chosen. The phantom data was reconstructed on a 128
�128 grid. Two 4D-RIO phantom experiments were per-
formed, one without and one with eddy current correc-
tion of the nonlinear SEMs as estimated in (20). The
eddy current correction is performed by the scanner as
part of the pre-emphasis.

In Vivo Experiments

In vivo experiments were performed on a healthy volun-
teer. Informed consent was acquired prior to the experi-
ment in accordance with the internal review board
approved protocol. The same sequence parameters were
used as for the phantom experiments described above.
The safety for the PatLoc SEM insert was discussed in
(42–44) and for higher-dimensional imaging in (44). To
maintain safe operation with respect to peripheral nerve
stimulation, the protocol used an incremental increase of

SEM amplitudes as described in (44). The Fourier spec-
trum of the 4D-RIO trajectory showed dominant frequen-
cies at 35Hz and between 1400 and 1600Hz which are
outside the range of the potentially problematic reso-
nance frequencies of the PatLoc SEM coil 480� 650Hz
(42).

NW-EPI in vivo experiments were performed, using
the modified EPI trajectory as described in (27), with a
FoV of 220mm and a readout time of 41:6ms . For com-
parison, an EPI experiment was performed as well (27).
All three in vivo data sets were reconstructed on a 128
�128 grid.

RESULTS

Validity of the Concomitant Field Description

The analytically derived concomitant field Eq. [8] origi-
nating from the PatLoc SEM coil was compared to the
concomitant field calculated from magnetic field simula-
tions of the PatLoc SEM coil. The concomitant field term
from magnetic field simulation, the result of the fit and
the remaining difference between simulation and fit are
plotted in Figure 3. The normalized root mean square
error estimated over a spherical volume of 20cm diame-
ter is 0.1% demonstrating the good correspondence
between the analytical formulas for Bcð r!Þ (Eq. [B9]) and
the Bcsð r!Þ of the SEM coil.

FIG. 3. The plots (a), (d), and (g) of the first column show the simulated concomitant fields Bcsð r
!Þ for the ðx; yÞ, the ðy; zÞ, and the ðx;

zÞ planes. The plots shown in the second column are the calculated concomitant fields Bcf ð r
!Þ from the fit result Bcsð r

!Þ to x2 þ y2, zðx2

þy2Þ and z2ðx2 þ y2Þ. The plots of the first and the second column have the same colorbar. The third column shows the residual from
(b) and (a). The first row shows the ðx; yÞ plane at z ¼ 0cm , the second row the ðy; zÞ plane at x ¼ 0cm and the third row the ðx; yÞ
plane at y ¼ 0cm
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4D-RIO Trajectory Fit

The linear components of the nominal trajectory k
!

n are
shown in Figure 4a. kn;4ðtÞ and kn;8ðtÞ are calculated by
rotating the components kaðtÞ and kbðtÞ, calculated from
the waveforms GaðtÞ and GbðtÞ of SEM a and SEM b as
described by Eq. [7], respectively. The difference between
the nominal and k

!
N and k

!
Y zeroth and linear compo-

nents are plotted in Figure 4b and c, respectively. The
quadratic components of the nominal trajectory are
depicted in Figure 4d. In Figure 4e and f, the differences
between the quadratic components of the nominal and the
measured trajectories are presented. The linear drift of the
kN;0 and kN;3 (constant and linear SEM in z-direction) com-
ponents can be reduced when using basis Y instead of N.
The same is observed for the encoding components kN;2

and kN;8. This is demonstrated by the reduced RMSD val-

ues for basis Y compared to basis N which are summarized
in Figure 4g. For trajectory components 1 and 4, the
RMSD values are by 1.9 and 11.5% larger for kY than for
kN, respectively. The remaining quadratic and third order

components have variations in the basis N up to 66 rad .

With basis Y variations below 63rad in the cubic and

quartic forms kY;9 to kY;15 are observed, except for kY;6,

which is linearly increasing up to � 8rad .
In general, using basis Y, the primary linear and quad-

ratic terms are present as well as the kY;6 component

caused by the concomitant field derived in Eq. [8]. The

condition numbers of the probing matrix P of basis N
and Y were 57 and 106, respectively.

The simulated and the measured kY;6 component have

a similar temporal evolution, (cf. Fig. 4h) which is

reflected in a RMSD of 1rad .

FIG. 4. a: Linear components of the nominal trajectory k
!

n. b: difference DknN between the zeroth and the linear components of k
!

n and

the measured k
!

N (basis set only using pure real-valued spherical harmonics). kn;0 and kn;3 are designed to be zero. c: Difference DknY

between the zeroth and the linear components of k
!

n and the measured k
!

Y (basis set including nonspherical harmonic terms to

account for concomitant field terms). d: Quadratic components of the nominal trajectory k
!

n. e and f: Difference between the primary
quadratic components of k

!
n and the measured k

!
N and k

!
Y, respectively. The RMSD values estimated between the nominal and the

measured trajectory components (0, 1, 2, 3, 4, and 8) are summarized in the bar plot shown in (g). In general, k
!

Y is closer to the nomi-

nal k
!

n components. h: Simulated and measured kY;6. A good agreement is observed.
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4D-RIO Phantom Experiment

In Figure 5, the reconstructed phantom images are
shown after 20 CG-iterations. Signal voids are visible in
the top and in the right part of the 4D-RIO phantom
image when using the nominal trajectory, regardless of
the use of eddy current correction of the nonlinear SEMs
or not. Reduced artifacts outside the phantom but
increased signal voids in the object are visible when per-
forming the image reconstruction with k

!
N. Using k

!
Y no

signal voids are visible. Comparison of Figure 5d and e
clearly demonstrates the importance of taking concomi-
tant fields into account.

4D-RIO In vivo Experiment

In Figure 6, the reconstructed in vivo images of one
experiment are shown after 15 CG-iterations. Ringing
and stripe artifacts are visible inside the brain when
using the nominal trajectory without applied eddy cur-
rent correction. Large signal voids are visible in the brain
when using k

!
N for the image reconstruction. The image

reconstructed with the trajectory k
!

Y shows an almost
artifact free image. The signal void and blurring at the

frontal part of the brain is most likely due to field inho-
mogeneities and is—to a minor extent—also visible in
the gradient echo image.

NW-EPI In vivo Experiment

In Figure 7, the reconstructed in vivo EPI and NW-EPI
after 20 CG-iterations are shown. Here, only the EPI recon-
structed with k

!
Y is shown as it has the smallest amount

of artifacts and geometric distortions compared to EPI’s
reconstructed using k

!
n and k

!
N (data not shown here).

As presented in (27), the NW-EPI show an increased
resolution in the top left part and a reduced resolution
in the bottom right part of the FoV compared to standard
EPI. Strong distortions are visible in the reconstructed
NW-EPI when using the nominal trajectory; they can be
reduced using k

!
N. The geometric distortion in the poste-

rior brain can be well corrected for when using k
!

Y.

DISCUSSION

In this article, reconstructed single-shot higher-dimen-
sional images from 4D-RIO and NW-EPI are presented
which use simultaneous linear and quadrupolar fields. A

FIG. 5. a: Reference GRE image, enlarged from 220� 220mm 2 (256� 256 grid) to the same FoV of 256� 256mm 2 (349� 349 grid) as the
4D-RIO acquisition by adding background around the acquired image for better visual comparison. b: Reconstructed image using the nominal
trajectory without and (c) with eddy current correction. d: Reconstructed image using the measured trajectory k

!
N (basis set including only

pure real-valued spherical harmonics) and (e) k
!

Y (basis set including nonspherical harmonic terms to account for concomitant field terms).
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dynamic field camera with 16 proton-based field probes

was built to calibrate the trajectory for successful image

reconstruction. The proposed method is, however, not

limited to the two trajectories used here, but is valid for

any higher-dimensional trajectory with a long readout

and large SEM amplitudes.
We derived the analytical form for the concomitant

fields resulting from pure real-valued spherical harmon-
ics, as well as for the specific design of the custom-built
and the high-performance PatLoc SEM coils. In the deri-
vation presented here, the quadrupolar fields are
assumed to be rotated by 22:5

�
around the z-axis as in

the simulations used. In the prototype custom-built coil,
however, the quadropular fields are rotated by �21

�
and

24
�

for SEM a and SEM b, respectively (20). These small
deviations are expected to only impair the coefficients in
front of the spatial terms, which are irrelevant because
only the spatial dependencies are of importance in
this work. Terms are present in the derived formulas for
Bcð r!; tÞ in Eqs. [A12], [A19], and [8] which can not be
described by spherical harmonics. For example,

ðx2 þ y2Þ, zðx2 þ y2Þ, and z2ðx2 þ y2Þ are not a solution of
the Laplace equation. These terms are appearing because
of the use of quadratic SEMs. The analytically derived
formula for Bcð r!; tÞ for the PatLoc SEM coil was com-
pared to magnetic field simulations. The calculated root
mean square error of 0.1% supports the validity of the
analytical derivation. It is important to point out that the
coefficient g2 of the spatial term x2 þ y2 is not zero for
the PatLoc coil and justifies its presence in basis Y, as
demonstrated by the fit of the simulated phase evolution

of the 4D-RIO trajectory to basis Y. The remaining differ-
ence at the edges of the FoV (Fig. 3) is most likely due to
more complex fields generated near the current paths of
the PatLoc SEM coil (20), which cannot adequately be
described by the assumption of purely quadratic SEMs,
Eq. [7]. The comparison of the simulated with the meas-
ured trajectory k

!
Y showed a good agreement demon-

strating that concomitant fields are truly measured with
the field camera and corrected for in the image recon-
struction. The observed mismatches can be explained by
differences between the simulated quadratic fields and

FIG. 6. a: Reference in vivo GRE
image, enlarged from 220� 220
mm 2 (256� 256 grid) to the

same FoV of 256� 256mm 2

(349� 349 grid) as the 4D-RIO

by adding background around
the acquired image for better
visual comparison. b: Recon-

structed image using the nomi-
nal trajectory, (c) using the

estimated trajectory k
!

N (basis
set only using pure real-valued
spherical harmonics) and (d)

using k
!

Y (basis set including
nonspherical harmonic terms to

account for concomitant field
terms).
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the actual encoding fields of the home-built PatLoc coil
(20), and also the assumption of perfectly linear SEMs
with negligible concomitant components. Also, waveform
corrections such as the pre-emphasis were not taken into
account in the simulation of the phase evolution.

An alternative approach to the derivation of the con-
comitant field can be obtained from the Bx and By com-
ponents of the SEMs by spatial differentiation of the
magnetic field scalar potential obtained by solving the
Laplace equation. The spatial distribution and strength
of the magnetic encoding field radial component Br

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q
for linear, quadratic, and cubic SEMs were

investigated in (45). The concomitant field Bc can then
be calculated from

Bcð r!; tÞ ¼ B2
r ð r!; tÞ
2B0

: [16]

No hardware implementation details were taken into
account. From the analysis performed in (45), the larger
Br of quadratic SEMs leads to concomitant terms approx-

imately four times larger compared to the concomitant
field for linear SEMs. Therefore, the effect of the con-
comitant fields for imaging using nonlinear SEMs is
expected to have a larger impact than using linear SEMs.

The spatial dependencies present in the concomitant field
formula for the combined linear and PatLoc SEMs Eq. [8]
were used to create the basis Y to fit the phase of the field
probes to better describe the measured phase evolution.

The positioning of the field probes was a compromise,
as it is desirable to be far from the isocenter to induce
larger phase variation and improved SNR, while being
too far from the isocenter may push the frequency offset
outside the bandwidth of the acquired probe data. The
field probes’ position could be further optimized by min-
imizing an appropriate cost function to improve the con-
ditioning of the probing matrix as proposed by (46). This
would decrease the very large condition number of P for
basis Y obtained in this probes’ configuration and
improve the trajectory fit using Eq. [13]. Additionally,
the phase of the field probes positioned near the isocen-
ter could be filtered using, e.g. a Savitzky Golay filter

FIG. 7. a: NW-EPI reconstructed

using the nominal trajectory and
(b) EPI reconstructed using k

!
Y

(basis set including nonspherical

harmonic terms to account for
concomitant field terms). c:
NW-EPI reconstructed using

k
!

N (basis set only using pure
real-valued spherical harmonics)

and (c) using k
!

Y.
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(47). However, despite the condition number for P for
basis Y being twice as large as the condition number for
basis N, a significant image quality improvement was
obtained using k

!
Y for image reconstruction.

Instead of using a dynamic field camera, voxel-based
phase mapping can be performed to obtain the true phase
evolution for every pixel, as proposed by Schneider et al.
(48). This method was used successfully for image recon-
struction in O-space imaging (22). The method is very
accurate but very time consuming and might not be usable
for trajectory calibration in vivo. Realistically, the trajec-
tory calibration needs to be performed via a separate
experiment on a phantom. However, mechanical vibra-
tions might change when different mechanical loads are
placed in the SEM coil. The same problem is present with
the current dynamic field camera setup used here. How-
ever, it can be overcome by using, e.g. fluorine (16,46) or
deuterium (49) based field probes allowing concurrent
field monitoring. As demonstrated in the experiments
shown here, it is necessary to monitor the complete phase
evolution induced by the encoding trajectory allowing to
record the accumulated phase due to the concomitant
field. This can only be measured with field probes which
have long enough relaxation times, as was the case here.
Additionally, the necessity of non-Laplacian spatial terms
is demonstrated by the reconstructed images. The choice
of the functions used in basis Y was made in order to
obtain good image quality. A more thorough method
would be to have a dynamic field camera with more than
16 channels to extend the real-valued spherical harmon-
ics expansion basis to all spatial terms of the concomitant
field given by Eq. [8] to improve the trajectory fit result.

The differences between the nominal and the measured
trajectories k

!
N and k

!
Y are shown for some of the k-space

components which are common to the two bases in Figure
4. The linear decrease of kN;3 when no SEMz was applied
led to the conclusion that the basis set using only solutions
to the Laplace equation is not adequate. By using basis Y,
which includes terms that are not solutions to the Laplace
equation, but instead follow the form expected by some of
the dominant concomitant field terms, the observed drift of
the components kN;0 and kN;3 can be reduced as shown by
DknY;0 and DknY;3. Moreover, the primary imaging compo-
nents kY;2 and kY;8 are much closer to the designed trajec-
tory components kn;2 and kn;8 than when using basis N.
kY;6ðtÞ describes the temporal evolution of the quantity g2

which was introduced in the derivation of Bcð r!; tÞ due to
Amperè’s law, Eq. [2]. For the 4D-RIO and the NW-EPI tra-
jectories, a linear increase during the readout was observed
up to 7rad and 20rad , respectively. This demonstrates the
importance of the quantity g2 for the particular SEM coil
used in the experiments. All k

!
Y terms with a z-depend-

ency show very small variation during the readout, as
expected from the designed 4D-RIO trajectory. The same
was observed for the NW-EPI trajectory.

GPU acceleration was also used for other magnetic reso-
nance imaging reconstruction applications (39,40). The
here used implementation provided fast enough processing
for practical use, and it can be further accelerated by using
multiple graphic processor units simultaneously (41).

For the 4D-RIO trajectory, the multiple crossing of the
local k-space centers shown in Figure 1b leads to the acqui-

sition of signals of different contrasts and consequently to a
mixing of multiple contrasts. This effect might also be
exploited by filtering the data to select the desired contrast,
as performed for Turbo Spin Echo O-space imaging (50).

Some stripe artifacts are present in the NW-EPI and 4D-
RIO in vivo images that were not observed in the phantom
data. One possible explanation could be the different
mechanical loading of the SEM head coil when a volun-
teers’ head, a phantom, or a dynamic field camera is pres-
ent leading to slightly different mechanical vibrations.

CONCLUSIONS

We demonstrated the importance of taking the concomitant
field into account for successful image reconstruction for
arbitrary single-shot higher-dimensional encoding. The tra-
jectory was calibrated using a dynamic field camera with
16 field probes. A fitting basis was constructed for encod-
ing field calibration that combines real-valued spherical
harmonics with analytically derived concomitant field
terms. In this way, the most important concomitant field
terms are treated as an integral part of the encoding.
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APPENDIX A

A Concomitant Fields of Quadratic Fields

In the following, a complete derivation of the concomi-
tant field Bcð r!; tÞ produced by all second order SEMs of
the real-valued spherical harmonics expansion (Table 1).
The partial derivatives of Bz with the SEMs described by
the linear and second order real-valued spherical har-
monics defined in Cartesian coordinates as

SEM xð r!Þ ¼ x [A1a]

SEM yð r!Þ ¼ y [A1b]

SEM zð r!Þ ¼ z [A1c]

SEM að r!Þ ¼ x2 � y2
� �

[A1d]

SEM bð r!Þ ¼ xy [A1e]

SEM cð r!Þ ¼ 2z2 � ðx2 þ y2Þ
� �

[A1f]

SEM dð r!Þ ¼ zx [A1g]

SEM eð r!Þ ¼ zy [A1h]

with their respective SEM waveforms GaðtÞ; . . . ; GeðtÞ
are then

@Bz

@x
¼ Gx þ 2xGa þ yGb � 2xGc þ zGd [A2]

@Bz

@y
¼ Gy � 2yGa þ xGb � 2yGc þ zGe [A3]

@Bz

@z
¼ Gz þ 4zGc þ xGd þ yGe: [A4]
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The divergence equation of Maxwell’s magnetostatics
equations, Eq. [3], introduces the additional requirement

@Bx

@x
þ @By

@y
þ Gz þ 4zGc þ xGd þ yGe ¼ 0: [A5]

By introducing the dimensionless parameter a in Eq.
[A5] two more constraints are introduced

@Bx

@x
¼ �a Gz þ 4zGc þ xGd þ yGeð Þ

and
@By

@y
¼ � Gz þ 4zGc þ xGd þ yGeð Þ a� 1ð Þ

[A6]

where a describes the relative strength of the concomi-
tant fields produced by an applied SEM z along the x-
and y-axes (32). On standard clinical systems, the linear
SEMs are cylindrically symmetric requiring a ¼ 0:5 (29)
(in the case of the asymmetric coil used in (32), a is
0.22). The partial derivatives and the constraints from
Maxwell’s equations, Eqs. [A5] and [2], allow calculation
of the magnetic field vector length jjB!jj

jjB!ð r!Þjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y þ B2

z

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y þ ðB0 þ

X
i¼x;y ;z;a;b;c;d;e

½SEM i � Gi�Þ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0ð1þ uÞ
q

[A7]

with u ¼
B2

x þ B2
y

B2
0

þ 2

P
i¼x;y ;z;a;b;c;d;e½SEM i � Gi�

B0

þ
ð
P

i¼x;y ;z;a;b;c;d;e½SEM i � Gi�Þ2

B2
0

: [A8]

The Taylor expansion of
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u
p

is

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u
p

¼ 1þ u

2
� u2

8
þ u3

16
� � � � [A9]

and using Eq. [A9] in Eq. [A8], we can reach the approx-
imation (neglecting higher order terms)

jjB!ð r!Þjj ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ

p
¼ B0 þ

X
i¼x;y ;z;a;b;c;d;e

½SEM i � Gi� þ
B2

x þ B2
y

2B0

þO ½SEM i � Gi�ÞÞ2
� �

þO ð½SEM i � Gi�Þ3
� �

þO ð½SEM i � Gi�Þ4
� �

þþO 1

B2
0

� �
þO 1

B3
0

� �
[A10]

� B0 þ
X

i¼x;y ;z;a;b;c;d;e

½SEM i � Gi� þ
B2

x þ B2
y

2B0
: [A11]

Using Eqs. [1] and [A11], the concomitant field Bc for all
second order real-valued spherical harmonics is then,
with unknown g and a,

Bc ¼
1

2B0
½ðG2

e þ G2
dÞz4 þ ðð8GcGeaþ ð�4Ga � 12GcÞGe þ 2GbGdÞyþ

þð�8GdGcaþ 2GeGb þ 4Gdð�Gc þ GaÞÞx þ 2GdGx þ 2GeGyÞz3þ

þðð16G2
c a2 þ ð2G2

e � 16Gcð3Gc þ GaÞÞaþ 4G2
a þ 24GaGc þ G2

b þ 36G2
c � 2G2

e Þy2þ

þðð�16GcGb � 2GdGeÞx þ ð8GyGc þ 2GeGzÞaþ

�12GyGc � 4GaGy þ 2GbGx � 2GeGz þ 2GdgÞyþ

þð16G2
c a2 þ ð�2G2

d � 16Gcð�Gc þ GaÞÞaþ 4G2
c þ 4G2

a � 8GaGc þ G2
bÞx2þ

þðð�8GcGx � 2GdGzÞaþ 2GbGy þ 4GaGx þ 2gGe � 4GcGxÞx þ G2
y þ G2

xÞz2þ

þðð�8þ 8aÞGeðGca� 3=2Gc � 1=2GaÞy3þ

þðð8Gca2Gd � 4GdðGa þ 5GcÞa� 2GeGb þ 4Gdð3Gc þ GaÞÞx þ 8Gza2Gcþ

þð2GeGy � 4GzðGa þ 5GcÞÞaþ 4GaGz þ 2gGb þ 12GzGc � 2GeGyÞy2þ

þðð8Gca2Ge � 4Geð�Gc þ GaÞa� 2GbGdÞx2þ

þðð2GyGd � 2GeGxÞa� 2GbGz � 16gGc � 2GyGdÞxþ

þ2gGx þ 2GzaGy � 2GzGyÞy � 2xð�4aGdð1=2Gc � 1=2Ga þ GcaÞx2þ

þð�4Gza2Gc þ ðGdGx þ 2Gzð�Gc þ GaÞÞa� gGbÞxþ

þGxGza� gGyÞÞz þ G2
e ð�1þ aÞ2y4 þ 2Geð�1þÞ2ðGz þ GdxÞy3þ

þðððG2
e þ G2

dÞa2 � 2aG2
d þ G2

dÞx2 þ ð2GdGz þ 2Gda2Gz � 4GdGza� 2gGeÞx þ g2þ

�2aG2
z þ G2

z a2 þ G2
z Þy2 þ 2xðGz þ GdxÞða2Gex � gÞyþ

þx2ðG2
dx2a2 þ G2

za2 þ g2 þ 2Gza2GdxÞ�:

[A12]

Single-Shot Higher-Dimensional Imaging 1353



From Eq. [A12], some interesting cases can be analyzed
separately

1. In the case typically encountered on clinical scan-
ners, g¼ 0, a ¼ 0:5, and no quadratic SEMs are used.
Therefore, Ga ¼ Gb ¼ Gc ¼ Gd ¼ Ge ¼ 0 and the concomi-
tant field derived in (29) is obtained

Bc ¼
1

2B0
ðz2ðG2

x þ G2
yÞ � zGzðxGx þ yGyÞ þ G2

z

x2 þ y2

4
Þ:

[A13]

2. For a slice at the isocenter (z¼ 0), Bc becomes

Bc ¼
1

2B0
½ð�2G2

e aþ G2
e þ G2

e a2Þy4 þ ðð2a2GdGe � 4GdGeaþ 2GeGdÞxþ

�4GeGzaþ 2GeGz þ 2a2GzGeÞy3 þ ðða2G2
d � 2aG2

d þ G2
e a2 þ G2

dÞx2þ

þð�2Geg þ 2GdGz þ 2GdGza2 � 4aGdGzÞx � 2aG2
z þ a2G2

z þ G2
z þ g2Þy2þ

þð2x3a2GdGe þ ð�2Gdg þ 2a2GzGeÞx2 � 2GzxgÞy þ x4a2G2
d þ 2x3a2GzGdþ

þx2ðg2 þ a2G2
z Þ�:

[A14]

3. For a slice at the isocenter (z¼ 0) and with Gz ¼ 0, Bc reduces to

Bc ¼
1

2B0
½ð�2G2

e aþ G2
e þ G2

e a2Þy4 þ ð2a2GdGe � 4GdGeaþ 2GeGdÞxy3þ

þðða2G2
d � 2aG2

d þ G2
e a2 þ G2

dÞx2 � 2xgGe þ g2Þy2þ

þð2x3a2GdGe � 2Gdgx2Þy þ x4a2G2
d þ x2g2�:

[A15]

4. When only quadratic SEMs are used for imaging (Gx ¼ 0, Gy ¼ 0, Gz ¼ 0), Bc is

Bc ¼
1

2B0
½ðG2

e � 2G2
e aþ a2G2

e Þy4 þ ðð2GeGd þ 2a2GdGe � 4GdGeaÞxþ

þð12GcGe � 20GcGea� 4aGeGa þ 8Gca2Ge þ 4GaGeÞzÞy3þ

þððG2
d þ a2G2

d � 2aG2
d þ a2G2

e Þx2 þ ðð4GaGd þ 12GdGc � 4aGdGaþ

�20GcGda� 2GbGe þ 8Gca2GdÞz � 2gGeÞx þ 2gGbzþ

þð24GaGc þ 4G2
a � 2G2

e þ 36G2
c � 48aG2

cþ

þ16a2G2
c þ G2

b � 16aGcGa þ 2G2
e aÞz2 þ g2Þy2þ

þððð�4aGeGa þ 8Gca2Ge � 2GdGb þ 4GcGeaÞz � 2GdgÞx2þ

þðð�16GcGb � 2GeGdÞz2 � 16gGczÞx þ 2x3a2GdGeþ

þð�12GcGe � 4GaGe þ 2GdGb þ 8GcGeaÞz3 þ 2Gdgz2Þy þ x4a2G2
dþ

þð8Gca2Gd � 4aGdGa þ 4GcGdaÞzx3 þ ð2gGez2þ

þð�4GdGc þ 2GbGe � 8GcGdaþ 4GaGdÞz3Þx þ ðg2 þ 2gGbzþ

þðG2
b � 2aG2

d � 16aGcGa þ 4G2
c þ 4G2

a þ 16a2G2
c þ 16aG2

c � 8GaGcÞz2Þx2þ

þðG2
e þ G2

dÞz4�:

[A16]

5. When only the quadratic SEMs C2 and S2 are present (Gx ¼ 0, Gy ¼ 0, Gz ¼ 0, Gc ¼ 0, Gd ¼ 0, Ge ¼ 0), Bc is

Bc ¼
1

2B0
ðx2 þ y2Þ½z2ð4G2

a þ G2
bÞ þ 2gGbz þ g2�: [A17]

6. If no z-dependent SEM is applied (Gz ¼ 0, Gc ¼ 0, Gd ¼ 0, Ge ¼ 0), Bc reduces to
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Bc ¼
1

2B0
½ð4ðG2

a þ G2
bÞðx2 þ y2Þ þ 4ðGbGy þ GaGxÞxþ

þ4ðGbGx � GaGyÞy þ G2
x þ G2

yÞz2þ
þ4gðx2Gb þ Gyx þ yðGx=2þ yGbÞÞz þ g2ðx2 þ y2Þ�:

[A18]

7. In the case the linear and the high-performance Pat-
Loc SEM coil (19) are used for imaging (Gd ¼ 0, Ge ¼ 0)
(33), Bc is

Bcð r!; tÞ ¼ 1

2B0
½ðð16a2G2

c þ 24GaGc þ G2
b þ 4G2

a � 16aGcGa þ 36G2
c � 48aG2

c Þz2þ

þG2
z þ g2 þ ð4GzGa þ 12GzGc � 4aGzGa � 20aGzGc þ 8Gza2Gc þ 2gGbÞzþ

�2aG2
z þ a2G2

z Þy2 þ ððð�2GbGz � 16gGcÞz � 16GcGbz2 � 2gGzÞxþ

þð�12GyGc � 4GaGy þ 8GcaGy þ 2GbGxÞz2þ

þð2GzaGy þ 2gGx � 2GzGyÞzÞyþ

þðð2gGb þ 8Gza2Gc � 4aGzGa þ 4aGzGcÞzþ

þðG2
b þ 4G2

a þ 16aG2
c � 8GaGc � 16aGcGa þ 16a2G2

c þ 4G2
c Þz2þ

þa2G2
z þ g2Þx2þ

þðð�2aGzGx þ 2GygÞz þ ð2GbGy þ 4GaGx � 8aGcGx � 4GxGcÞz2Þxþ

þðG2
y þ G2

xÞz2�:

[A19]

APPENDIX B

Concomitant Fields of the PatLoc SEM Coil

The partial derivatives of Bz with the three linear and
the two quadratic encoding fields described by Eq. [7]
for the PatLoc SEM coil (20) are

@Bz

@x
¼ Gx þ 4xGacos 2ðp

8
Þ � 4yGacos ðp

8
Þsin ðp

8
Þ � 2xGa

þ4yGbsin 2ðp
8
Þ þ 4xGbcos ðp

8
Þsin ðp

8
Þ � 2yGb;

[B1]

@Bz

@y
¼ Gy � 4xGacos ðp

8
Þsin ðp

8
Þ � 4yGacos 2ðp

8
Þ þ 2yGa

�4yGbcos ðp
8
Þsin ðp

8
Þ þ 4xGbcos 2ðp

8
Þ � 2xGb;

[B2]

@Bz

@z
¼ Gz: [B3]

Note the difference of Eq. [A4] compared to Eq. [B3]
because of the rotated SEM a and SEM b. The divergence
equation of Maxwell’s magnetostatics equations r! � B

!

¼ 0 requires

@Bx

@x
þ
@By

@y
þ @Bz

@z
¼ @Bx

@x
þ
@By

@y
þ Gz ¼ 0: [B4]

By introducing the dimensionless parameter a in Eq.
[B4], as in Eq. [A5], the same two constraints are intro-
duced as with a linear SEM system (29)

@Bx

@x
¼ �aGz and

@By

@y
¼ Gzða� 1Þ: [B5]

The partial derivatives and the constraints from Max-
well’s equations Eqs. [B4] and [2] gives the magnetic
field vector length jjB!jj

jjB!ð r!Þjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y þ B2

z

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y þ ðB0 þ

X
i¼x;y ;z;a;b

½SEM i � Gi�Þ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0ð1þ uÞ
q

[B6]

with u ¼
B2

x þ B2
y

B2
0

þ 2

P
i¼x;y ;z;a;b½SEM i � Gi�

B0
þ

ð
P

i¼x;y ;z;a;b½SEM i � Gi�Þ2

B2
0

:

[B7]

With the Taylor expansion of
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u
p

given by Eq. [A9]
and using Eq. [B7], the jjB!ð r!Þjj can be estimated simi-
larly to Eq. [A10]. Using Eqs. [1] and [A11], the concomi-
tant field Bc for the PatLoc SEM coil is

Bc ¼
1

2B0

�h
�xaGz þ yg þ zðGx þ Ga

�m

2
ðmx � nyÞ

� n

2
ðnx þ myÞ

�
þ Gb

�m

2
ðnx þ myÞ þ n

2
ðmx � nyÞ

��i2

þ
h
xg � yGzð1� aÞ þ z

�
Gy � Ga

� n

2
ðmx � nyÞ

þm

2
ðnx þ myÞ

�
� Gb

� n

2
ðnx þ myÞ þ m

2
ðmx � nyÞ

��i2�
;

[B8]
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with m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
pp

and n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
pp

. One special case is
the presence of only quadratic SEMs used for imaging
(Gx ¼ 0, Gy ¼ 0, Gz ¼ 0), which simplifies Eq. [B8] to

Bcð r!; tÞ ¼
ðx2 þ y2Þ½g2 þ z2

ffiffiffi
2
p

gðGb � GaÞ þ z24ðG2
a þ G2

bÞ�
2B0

:

[B9]

This is a slightly different result compared to Eq. [A17]
which is the expression for the concomitant field calcu-
lated for second order spherical harmonics when Gx ¼ 0,
Gy ¼ 0, Gz ¼ 0, Gc ¼ 0, Gd ¼ 0, and Ge ¼ 0. The differ-
ence lies only in the scaling coefficients of the spatial
terms, which is a consequence of the physical rotation
by 6p=8 of the C2 and S2 SEMs of the PatLoc coil
design (20).
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