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ABSTRACT

In a recent article series, the authors have promoted convex optimization algorithms for
radio-interferometric imaging in the framework of compressed sensing, which leverages
sparsity regularization priors for the associated inverse problem and defines a minimiza-
tion problem for image reconstruction. This approach was shown, in theory and through
simulations in a simple discrete visibility setting, to have the potential to outperform sig-
nificantly CLEAN and its evolutions. In this work, we leverage the versatility of convex
optimization in solving minimization problems to both handle realistic continuous visibil-
ities and offer a highly parallelizable structure paving the way to significant acceleration
of the reconstruction and high-dimensional data scalability. The new algorithmic structure
promoted relies on the simultaneous-direction method of multipliers (SDMM), and contrasts
with the current major-minor cycle structure of CLEAN and its evolutions, which in par-
ticular cannot handle the state-of-the-art minimization problems under consideration where
neither the regularization term nor the data term are differentiable functions. We release
a beta version of an SDMM-based imaging software written in C and dubbed PURIFY
(http://basp-group.github.io/purify/) that handles various sparsity priors, in-
cluding our recent average sparsity approach SARA. We evaluate the performance of different
priors through simulations in the continuous visibility setting, confirming the superiority of
SARA.

Key words: techniques: image processing – techniques: interferometric.

1 INTRODUCTION

Radio interferometry is a powerful technique that allows observa-

tion of the radio emission from the sky with high angular resolution

and sensitivity, providing valuable information for astrophysics, as-

trometry and cosmology (Ryle & Vonberg 1946; Blythe 1957; Ryle

et al. 1959; Ryle & Hewish 1960; Thompson et al. 2001). The mea-

surement equation for radio interferometry defines an ill-posed lin-

ear inverse problem in the perspective of signal reconstruction. Un-

der restrictive assumptions of monochromatic non-polarized imag-

ing on small fields of view (FOV), the measured visibilities relates

to Fourier measurements of the observed signal. Next-generation

radio telescopes, such as the new LOw Frequency ARray (LO-

FAR1), or the recently upgraded Karl G. Jansky Very Large Ar-

ray (VLA2), or the future Square Kilometer Array (SKA3), will

⋆ E-mail: rafael.carrillo@epfl.ch
1 http://www.lofar.org/
2 https://science.nrao.edu/facilities/vla
3 http://www.skatelescope.org/

achieve much higher dynamic range than current instruments, also

at higher angular resolution. Also, these telescopes will acquire a

massive amount of data, thus posing large-scale problems. Classi-

cal imaging techniques developed in the field, such as the CLEAN

algorithm and its multi-scale variants (Högbom 1974; Bhatnagar

& Cornwell 2004; Cornwell 2008), are known to be slow and to

provide suboptimal imaging quality (Li et al. 2011; Carrillo et al.

2012). This state of things has triggered an intense research to re-

formulate imaging techniques for radio interferometry in the per-

spective of next-generation instruments.

The theory of compressed sensing (CS) introduces a signal

acquisition and reconstruction framework that goes beyond the tra-

ditional Nyquist sampling paradigm (Donoho 2006; Candès 2006;

Baraniuk 2007; Fornasier & Rauhut 2011). Recently, CS and con-

vex optimization techniques have been applied to image deconvo-

lution in radio interferometry (Wiaux et al. 2009a,b; Wenger et al.

2010; McEwen & Wiaux 2011; Li et al. 2011; Carrillo et al. 2012)

showing promising results. These techniques promise improved

image fidelity, flexibility and computation speed over traditional

c© 2014 RAS

http://basp-group. github.io/purify/
http://www.lofar.org/
https://science.nrao.edu/facilities/vla
http://www.skatelescope.org/


2 Carrillo et al.

approaches. This speed enhancement is crucial for the scalability

of imaging techniques to very high dimensions in the perspective

of next-generation telescopes. However, CS-based imaging tech-

niques have only been studied for low dimensional discrete visibil-

ity coverages. The works in Wiaux et al. (2009a,b) and McEwen

& Wiaux (2011) consider idealised random and discrete visibility

coverages in order to remain as close to the CS theory as pos-

sible. First steps towards more realistic visibility coverages have

been taken by Wenger et al. (2010) and Li et al. (2011), who con-

sider coverages due to specific interferometer configurations but

which remain discrete. Carrillo et al. (2012) consider variable den-

sity sampling patterns, which mimic common generic sampling

patterns in radio-interferometric (RI) imaging but also remaining

discrete. These preliminary works suggest that the performance of

CS reconstructions is likely to hold for more realistic visibility cov-

erages. Therefore, the extension of CS techniques to more realistic

continuous interferometric measurements is of great importance.

In the present work, we extend the previously proposed imag-

ing approaches in Wiaux et al. (2009a), Wiaux et al. (2009b)

and Carrillo et al. (2012) to handle continuous visibilities and

open the door to large-scale optimization problems. We pro-

pose a general algorithmic framework based on the simultaneous-

direction method of multipliers (SDMM) to solve sparse imaging

problems. The proposed framework offers a parallel implementa-

tion structure that decomposes the original problem into several

small simple problems, hence allowing implementation in mul-

ticore architectures or in computer clusters, or on graphics pro-

cessing units. These implementations provide both flexibility in

memory requirements and a significant gain in terms of speed,

thus enabling scalability to large-scale problems. SDMM stands

in stark contrast with the current major-minor cycle structure of

CLEAN and evolutions, which in particular cannot handle the

state-of-the-art minimization problems under consideration (Car-

rillo et al. 2012), where neither the regularization term nor the data

term are differentiable functions. We release a beta version of an

SDMM-based imaging software written in C and dubbed PURIFY

(http://basp-group.github.io/purify/) that handles

various sparsity priors, including our recent average sparsity ap-

proach SARA (Carrillo et al. 2012), thus providing a new powerful

framework for RI imaging. We evaluate the performance of differ-

ent priors through simulations in the continuous visibility setting.

Simulation results confirm the superiority of SARA for continuous

Fourier measurements. Even though this beta version of PURIFY

is not parallelized, we discuss in detail the extraordinary parallel

and distributed optimization potential of SDMM, to be exploited in

future versions.

The remainder of the paper is organized as follows. In Sec-

tion 2, we review the theory of CS briefly. In Section 3, we recall

the inverse problem for image reconstruction from RI data and de-

scribe the state-of-the-art image reconstruction techniques used in

radio astronomy. Section 4 presents the SDMM-based algorithm

for RI imaging, which enables the incorporation of any convex

sparsity regularization prior. In Section 5 we describe the PURIFY

package, including implementation details. Numerical results eval-

uating the different regularization priors included in PURIFY, in

particular SARA, are presented in Section 6. Finally we conclude

in Section 7.

2 COMPRESSED SENSING

CS introduces a signal acquisition framework that goes beyond

the traditional Nyquist sampling paradigm (Donoho 2006; Candès

2006; Baraniuk 2007; Fornasier & Rauhut 2011), demonstrating

that sparse signals may be recovered accurately from incomplete

data. Consider a complex-valued signal x ∈ C
N , assumed to be

sparse in some orthonormal basis Ψ ∈ C
N×N with K ≪ N

nonzero coefficients, and also consider the measurement model

y = Φx + n, where y ∈ C
M denotes the measurement vector,

Φ ∈ C
M×N is the sensing matrix and n ∈ C

M represents the ob-

servation noise. The standard condition M < N characterizes the

incompleteness of the data. The most common approach to recover

x from y is to solve the following convex problem (Fornasier &

Rauhut 2011):

min
ᾱ∈CN

‖ᾱ‖1 subject to ‖y − ΦΨᾱ‖2 6 ǫ, (1)

where ǫ is an upper bound on the ℓ2 norm of the noise and ‖ · ‖1
denotes the ℓ1 norm of a complex-valued vector. The signal is re-

covered as x̂ = Ψα̂, where α̂ denotes the solution to the above

problem. Such problems that solve for the representation of the sig-

nal in a sparsity basis are known as synthesis-based problems.

The standard theory of CS provides results for the recovery

of x from y if Φ obeys a Restricted Isometry Property (RIP) (For-

nasier & Rauhut 2011). A sufficient condition is that M is larger

than roughly the signal sparsity: M > 2K ≪ N . Note that in-

complete Fourier measurements, on discrete or continuous spatial

frequencies, represent a good sampling approach in this context.

In the continuous setting, the theory applies also for M > N .

It is not strictly “compressed” sensing any more but the inverse

problem remains ill-posed. The basic theory also requires Ψ to be

orthonormal. However, signals often exhibit better sparsity in an

overcomplete dictionary (Gribonval & Nielsen 2003; Bobin et al.

2007; Starck et al. 2010). Therefore recent works have begun to

address the case of CS with redundant dictionaries. In this setting

the signal x is expressed in terms of a dictionary Ψ ∈ C
N×D ,

N < D, as x = Ψα, α ∈ C
D. Rauhut et al. (2008) find condi-

tions on the dictionary Ψ such that the compound matrix ΦΨ obeys

the RIP to accurately recover α by solving a synthesis-based prob-

lem. Note that the problem is now more severely undertermined

since the dimensionality of the unknonw has increased from N to

D.

As opposed to synthesis-based problems, analysis-based prob-

lems recover the signal itself solving:

min
x̄∈CN

‖Ψ†
x̄‖1 subject to ‖y − Φx̄‖2 6 ǫ, (2)

where Ψ† denotes the adjoint operator of Ψ. In this paper the super-

script † is used to denote both operator adjoint or conjugate trans-

pose. Candès et al. (2010) provide a theoretical analysis of the ℓ1
analysis-based problem, extending the standard CS theory to coher-

ent and redundant dictionaries. They provide theoretical stability

guarantees based on a general condition of the sensing matrix Φ,

coined the Dictionary Restricted Isometry Property (D-RIP). Note

that in the case when redundant dictionaries are used, the analysis

problem does not increase the dimensionality of the problem as it

solves for the signal itself. Empirical and theoretical studies have

shown clear advantages of the analysis approach over the synthe-

sis approach for imaging problems (Carrillo et al. 2013). See Nam

et al. (2013) and references therein for further discussion of the

analysis model.

c© 2014 RAS, MNRAS 000, 1–14
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3 RADIO-INTERFEROMETRIC IMAGING

3.1 Interferometric inverse problem

A radio interferometer is an array of spatially separated antennas

that takes measurements of the radio emissions of the sky, the so-

called visibilities. The visibility coordinates are given by the rela-

tive position between each pair of antennas. The baseline compo-

nents (u, v, w) are measured in units of the wavelength λ of the

incoming signal. The components u = (u, v) specify the planar

baseline coordinates, while the third component w is associated

with the basis vector of the coordinate pointing towards the cen-

ter of the FOV of the telescope. The sky brightness distribution x
can be described in the same coordinate system as the baseline,

with components (l,m, n) where l = (l,m) denotes the coordi-

nates on the image plane and n(l) =
√
1− l2 −m2. The general

RI equation for monochromatic non-polarized imaging reads as:

y (u) =

∫

A (l,u)x (l) e−2πiu·l d2
l, (3)

where A (l,u) = A′ (l,u)n−1(l) and A′ (l,u) stands for all con-

tributions of direction dependent effects (DDE). Examples of DDEs

are the primary beam, which limits the observed FOV, and the w-

term e−2πiw(n(l)−1) . This general equation defines a linear inverse

problem in the perspective of recovering the intensity signal x from

the measured visibilities (Rau et al. 2009). Under the assumptions

of small FOV (n ≈ 1) or when the array is coplanar (w ≈ 0), each

visibility corresponds to the measurement of the Fourier transform

of a planar signal at the spatial frequency u. This result is known as

the van Cittert-Zernike theorem (Thompson et al. 2001). The total

number of points u probed by all telescope pairs of the array during

the observation provides some incomplete coverage in the Fourier

plane, the so-called u-v coverage, characterizing the interferome-

ter.

To recover the source image from incomplete visibility mea-

surements, we pose the inverse problem (3) for a sampled version

of the image. The band-limited functions considered are completely

identified by their Nyquist-Shannon sampling on a discrete uniform

grid of N = N1/2×N1/2 points in real space. The sampled inten-

sity signal is denoted by the vector x ∈ R
N . We take M visibilities

denoted by the vector y ∈ C
M , which are related to the discrete

image by the following linear model:

y = Φx +n, (4)

where Φ ∈ C
M×N represents the general linear map from the im-

age space domain to the visibility domain, which defines an ill-

posed inverse problem in the perspective of image reconstruction.

In the particular case when the visibilities identify with Fourier

samples the measurement essentially reduces to a Fourier matrix

sampled on M spatial frequencies (see eq. (31) in Section 5). In

a realistic continuous visibility setting, one usually has M > N
and sometimes M ≫ N , which will be increasingly the case for

next-generation telescopes.

3.2 State-of-the-art of classic imaging algorithms

The most standard image reconstruction algorithm from visibility

measurements is called CLEAN, which is a non-linear deconvolu-

tion method based on local iterative beam removal (Högbom 1974;

Schwarz 1978; Thompson et al. 2001). A sparsity prior on the orig-

inal signal in real space is implicitly introduced thus already taking

advantage of CS theory guarantees. Furthermore, as discussed in

Cornwell (2008) and Wiaux et al. (2009a) the CLEAN algorithm

and its variants are examples of the Matching Pursuit algorithm

(Mallat & Zhang 1993), which is well known in the CS commu-

nity. CLEAN can be considered as a steepest descend algorithm to

minimize the objective function χ2 = ‖y − Φx‖22 subject to an

image model regularization (Rau et al. 2009). Most variants oper-

ate iteratively in two steps called the major and minor cycles. The

major cycle computes the residual image r(t) = Φ†(y − Φx(t)),
which is the gradient of the χ2 objective function at iteration t. The

minor cycle regularizes the image update by applying an operator

T, which represents a deconvolution of the operator Φ, to the resid-

ual image yielding updates of the form

x
(t+1) = x

(t) + T(r(t)). (5)

A multi-scale version of CLEAN, MS-CLEAN, has also been

developed (Cornwell 2008), where the sparsity model is improved

by multi-scale decomposition, hence enabling better recovery of

the signal. The MS-CLEAN method was shown to perform better

than the standard CLEAN, but still suffers from an empirical choice

of basis profiles and scales. An adaptive scale pixel decomposi-

tion method called ASP-CLEAN was also introduced to improve

on multi-scale CLEAN by relying on an adaptive choice of scales

(Bhatnagar & Cornwell 2004). ASP-CLEAN models an image as

a superposition of atoms in a redundant dictionary parametrized

by amplitude, location and scale. Thus, this algorithm can be seen

as a Matching Pursuit algorithm with an overcomplete dictionary.

Note that these approaches are known to be slow, sometimes pro-

hibitively so. Variants of CLEAN that addresses wide-band effects,

or atmospheric effects have also been proposed in the literature (see

Rau et al. (2009), Bhatnagar et al. (2008a), Bhatnagar et al. (2013)

and references therein).

Another approach to the reconstruction of images from visi-

bility measurements is the Maximum Entropy Method (MEM). In

contrast to CLEAN, MEM solves a global optimization problem in

which the inverse problem is regularized by the introduction of an

entropic prior on the signal, but sparsity is not explicitly required

(Cornwell & Evans 1985). In practice, CLEAN and variants have

found more widespread application than MEM.

3.3 State-of-the-art of convex imaging algorithms

Reconstruction techniques based on CS and convex optimization

have also been proposed. The relationship between CLEAN and

ℓ1 minimization coupled with a Dirac basis was first studied by

Marsh & Richardson (1987). The first application of CS and con-

vex optimization to radio interferometry was performed by Wiaux

et al. (2009a), where the versatility of the approach and its supe-

riority relative to standard interferometric imaging techniques was

demonstrated. It was reported that an ℓ1 minimization problem of

the form of (1) coupled with a Dirac basis yields similar reconstruc-

tion quality to CLEAN, while including a positivity constraint in a

convex formulation significantly enhances the reconstruction qual-

ity relative to CLEAN. The spread spectrum phenomenon associ-

ated with the w component on wide FOV observations was shown

in Wiaux et al. (2009b) to underpin a significant enhancement of the

imaging quality independently of the sparsity basis chosen. These

considerations pave the way to potential optimization strategies at

the acquisition level in terms of antenna distribution design. A CS

approach was developed and evaluated by Wiaux et al. (2010) to re-

cover the signal induced by cosmic strings in the cosmic microwave

background. McEwen & Wiaux (2011) generalise the previous CS

imaging techniques to a wide FOV, recovering interferometric im-

ages defined directly on the sphere, rather than a tangent plane. All

c© 2014 RAS, MNRAS 000, 1–14
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of these works consider uniformly random and discrete visibility

coverage in order to remain as close to the CS theory as possible.

Wiaux et al. (2010) and McEwen & Wiaux (2011) exploited the fact

that many signals in nature are also sparse or compressible in the

magnitude of their gradient space, in which case the total variation

(TV) minimization problem,

min
x̄∈CN

‖x̄‖TV subject to ‖y − Φx̄‖2 6 ǫ, (6)

has been shown to yield superior reconstruction results. The TV

norm is defined as ‖x̄‖TV = ‖∇x̄‖1, where ∇x̄ denotes the image

gradient magnitude (Rudin et al. 1992).

First steps towards more realistic visibility coverages have

been taken by Suksmono (2009) and Wenger et al. (2010), who

consider coverages due to specific interferometer configurations but

which remain discrete. The aforementioned works use the follow-

ing unconstrained synthesis problem:

min
ᾱ∈CN

1

2
‖y − ΦΨᾱ‖22 + λ‖ᾱ‖1, (7)

where λ is a regularization parameter that balances the weight be-

tween the fidelity term and the regularization term. Wenger et al.

(2010) reports superior reconstruction quality relative to an auto-

matic CLEAN reconstruction and similar results relative to a user-

guided CLEAN reconstruction. Li et al. (2011) studied a CS imag-

ing approach based on (7) and the isotropic undecimated wavelet

transform, reporting results from discrete simulated coverages of

ASKAP. The reconstruction quality of the isotropic undecimated

wavelet transform method was reported to be superior to those of

CLEAN and MS-CLEAN. Minimization of the problem (7) is done

iteratively by a projected gradient algorithm with updates of the

form:

α
(t+1) = Sλ

(

α
(t) + µΨ†

Φ
†(y − ΦΨα

(t))
)

, (8)

where Sλ(·) is the soft-thresholding operator, which will be defined

in Section 4.4. This algorithm can be seen as a major-minor cycle

update where the major cycle computes the gradient of the χ2 data

fidelity term and the minor cycle regularizes the solution by apply-

ing the soft-thresholding operator.

Carrillo et al. (2012) proposed an imaging algorithm dubbed

sparsity averaging reweighted analysis (SARA) based on aver-

age sparsity over multiple bases, showing superior reconstruction

qualities relative to state-of-the-art imaging methods in the field.

A sparsity dictionary composed of a concatenation of q bases,

Ψ = [Ψ1,Ψ2, . . . ,Ψq], with Ψ ∈ C
N×D , N < D, is used and

average sparsity is promoted through the minimization of an anal-

ysis ℓ0 prior, ‖Ψ†x̄‖0. The concatenation of the Dirac basis and

the first eight orthonormal Daubechies wavelet bases (Db1-Db8)

was proposed as an effective and simple candidate for a dictionary

in the RI imaging context. See Carrillo et al. (2013) for further dis-

cussions on the average sparsity model, the dictionary selection and

other applications to compressive imaging.

SARA adopts a reweighted ℓ1 minimization scheme to pro-

mote average sparsity through the prior ‖Ψ†x̄‖0. The algorithm

replaces the ℓ0 norm by a weighted ℓ1 norm and solves a sequence

of weighted ℓ1 problems where the weights are essentially the in-

verse of the values of the solution of the previous problem (Candès

et al. 2008). The weighted ℓ1 problem is defined as:

min
x̄∈RN

+

‖WΨ
†
x̄‖1 subject to ‖y − Φx̄‖2 6 ǫ, (9)

where W ∈ R
D×D denotes the diagonal matrix with positive

weights and R
N
+ denotes the positive orthant in R

N , which rep-

resents the positivity prior on x. Note that problems of the form

(6) and (9) involve the minimization of a constrained problem with

non-differentiable functions, which rules out smooth optimization

techniques and do not fit in the major-minor cycle structure of

CLEAN and the projected gradient algorithm. Therefore one must

resort to more sophisticated optimization techniques to solve these

non-smooth problems.

4 A LARGE-SCALE OPTIMIZATION ALGORITHM

4.1 Proximal splitting methods

Convex optimization problems have many attractive properties,

in particular the essential property that any local minimum must

be a global minimum and thus there exist efficient methods to

solve them. Among convex optimization methods, proximal split-

ting methods offer great flexibility and are shown to capture

and extend several well-known algorithms in a unifying frame-

work. Examples of proximal splitting algorithms include Douglas-

Rachford, iterative thresholding, projected Landweber, projected

gradient, forward-backward, alternating projections, alternating di-

rection method of multipliers and alternating split Bregman (Com-

bettes & Pesquet 2011). Proximal splitting methods solve optimiza-

tion problems of the form

min
x∈RN

f1(x) + . . .+ fS(x), (10)

where f1(x), . . . , fS(x) are convex lower semicontinuous func-

tions from R
N to R, not necessarily differentiable. Note that any

convex constrained problem can be formulated as an unconstrained

problem by using the indicator function of the convex constraint set

as one of the functions in (10), i.e. fk(x) = iC(x) where C rep-

resents the convex constraint set. The indicator function, defined

as iC(x) = 0 if x ∈ C or iC(x) = +∞ otherwise, belongs

to the class of convex lower semicontinuous functions. Also, note

that complex-valued vectors are treated as real-valued vectors with

twice the dimension (accounting for real and imaginary parts).

Proximal splitting methods proceed by splitting the contribu-

tion of the functions f1(x), . . . , fS(x) individually so as to yield

an easily implementable algorithm. They are called proximal be-

cause each non-smooth function in (10) is incorporated in the min-

imization via its proximity operator. The proximity operator is an

extension of the notion of the set projection operator to more gen-

eral functions. Let f be a convex lower semicontinuous function

from R
N to R, then the proximity operator of f is defined as:

proxf (x) , arg min
z∈RN

f(z) +
1

2
‖x − z‖22. (11)

Typically, the solution to (10) is reached iteratively by successive

application of the proximity operator associated with each function.

An important feature of proximal splitting methods is that they of-

fer a powerful framework for solving convex problems in terms of

speed and scalability of the techniques to very high dimensions.

See Combettes & Pesquet (2011) for a review of proximal splitting

methods and their applications in signal and image processing.

4.2 Shortcomings of previously used algorithms

The works in Wiaux et al. (2009b), McEwen & Wiaux (2011) and

Carrillo et al. (2012) solved problems of the form in (9), whereas

Wenger et al. (2010) and Li et al. (2011) solved the unconstrained
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problem (7). Unconstrained problems are easier to handle and there

exist fast algorithms to solve them, such as the FISTA algorithm

(Beck & Teboulle 2009b). However, there is no optimal strategy

to fix the regularization parameter even if the noise level is known,

therefore constrained problems, such as (9), offer a stronger fidelity

term when the noise power is known, or can be estimated a priori.

Hence, we focus our attention on solving problem (9) efficiently.

Wiaux et al. (2009b), McEwen & Wiaux (2011) and Carrillo et al.

(2012) used a Douglas-Rachford splitting algorithm (Combettes &

Pesquet 2007) to solve (9) in a simple discrete setting. However, in

a realistic continuous setting this algorithm presents several short-

comings. In the following we discuss the main limitations of the

Douglas-Rachford algorithm.

The Douglas-Rachford splitting algorithm solves the problem

by iteratively minimizing the ℓ1 norm and then projecting the result

onto the constraint set C′ = {x ∈ C
N : ‖y − Φx‖2 6 ǫ} ∩ R

N
+

until some stopping criteria is achieved. The projection onto the

set C′ is a hard optimization problem which in itself requires an

iterative algorithm such as the generalized forward-backward al-

gorithm. This iterative algorithm requires knowledge of the exact

operator norm (maximum singular value) of Φ or at least a closed

upper bound to guarantee convergence. In the discrete case the ex-

act operator norm can be computed and the algorithm achieves a

fast convergence rate. However, in the continuous case the operator

norm is unknown and its estimation poses a new problem. If the

estimate of the operator norm is not precise enough, the algorithm

takes many sub-iterations to converge. Hence, it would be advanta-

geous to have an algorithm that does not need prior knowledge of

the operator norm to achieve a fast convergence rate. Another tenet

of the Douglas-Rachford algorithm is that it does not offer a parallel

structure, which is a desirable property when solving large scale-

problems such as those envisaged for the upcoming telescopes. For

these reasons, we propose to use the simultaneous-direction method

of multipliers (SDMM) (Combettes & Pesquet 2011) which is also

tailored to solve problems of the form of (10) and circumvents the

shortcomings of a Douglas-Rachford approach.

4.3 Simultaneous Direction Method of Multipliers (SDMM)

SDMM has two important properties: (i) it does not require dif-

ferentiability of any of the functions, and (ii) it offers a parallel

implementation structure where all the proximity operators can be

computed in parallel rather than sequentially (Combettes & Pes-

quet 2011). Such a parallel structure is useful when implementing

the algorithms on multicore architectures or on graphics process-

ing units, thus providing a significant gain in terms of speed and

scalability to large-scale problems. SDMM is a generalization of

the alternating-direction method of multipliers (Boyd et al. 2010)

to a sum of more than two functions. As such, SDMM uses aug-

mented Lagrangian techniques and duality arguments in its deriva-

tion. In the following we highlight the main steps in the derivation

of SDMM tailored to solve (9).

First, observe that the problem in (9) can be reformulated as

in (10) in the following way:

min
x∈CN

f1(L1x) + f2(L2x) + f3(L3x), (12)

where L1 = Ψ
† ∈ C

D×N , L2 = Φ ∈ C
M×N and L3 =

I ∈ R
N×N is the identity matrix. In this formulation, f1(r1) =

‖Wr1‖1 for r1 ∈ C
D , f2(r2) = iB(r2) with B = {r2 ∈ C

M :
‖y − r2‖2 6 ǫ}, and f3(r3) = iC(r3) with C = R

N
+ . This prob-

lem is also equivalent to solving

min
x∈C

N ,r1∈C
D ,

r2∈C
M ,r3∈C

N

f1(r1) + f2(r2) + f3(r3) (13)

subject to Lix = ri, for i = 1, 2, 3.

The augmented Lagrangian associated with (13) is the saddle func-

tion

Lγ(x,r1, r2, r3,z1,z2,z3) = (14)

3
∑

i=1

fi(ri) +
1

γ
z
†
i (Lix− ri) +

1

2γ
‖Lix− ri‖22,

where γ > 0 is a so-called penalty parameter and z1 ∈ C
D ,

z2 ∈ C
M and z3 ∈ C

N are the dual variables or the Langrange

multipliers. SDMM is a primal dual algorithm that proceeds itera-

tively by first minimizing Lγ with respect to the primal variables,

x, r1, r2, r3, and as second step, solving the dual problem

max
z1∈CD,z2∈CM ,z3∈CN

J (z1,z2,z3), (15)

where

J (z1,z2,z3) = min
x∈C

N ,r1∈C
D ,

r2∈C
M ,r3∈C

N

Lγ(x,r1, r2, r3,z1,z2,z3)

(16)

is the dual function. The main difference between SDMM and other

primal-dual algorithms is that the optimization with respect to the

primal variables is done in an alternating fashion by first minimiz-

ing Lγ with respect to x and then with respect to r1, r2, r3. The al-

gorithm is shown to converge to a minimizer of (13). Convergence

results of SDMM are based on convergence of the alternating-

direction method of multipliers and can be found in Boyd et al.

(2010).

The minimizer of Lγ with respect to x with fixed variables ri,

zi is given by

x
∗ = arg min

x∈CN

3
∑

i=1

z
†
i (Lix− ri) +

1

2
‖Lix− ri‖22. (17)

Observe that the above problem is the minimization of a quadratic

function, which is convex and differentiable. Therefore, necessary

and sufficient optimality conditions are

∇xLγ(x
∗) =

3
∑

i=1

[

L
†
izi + L

†
i (Lix

∗ − ri)
]

= 0 (18)

and the matrix Q =
∑3

i=1 L
†
iLi ∈ C

N×N should be invertible. For

our particular problem Q = Φ
†
Φ + ΨΨ

† + I , which is positive-

definite and invertible. Solving (18) for x∗ yields

x
∗ = Q

−1
3

∑

i=1

L
†
i (ri − zi). (19)

The minimization over ri can be carried out for all i simulta-

neously since the problems are decoupled. Assume i is fixed and

also assume that x and zi are fixed. Then the minimizer of Lγ with

respect to ri is

r
∗
i = arg min

ri∈CN
fi(ri)+

1

γ
z
†
i (Lix−ri)+

1

2γ
‖Lix−ri‖22. (20)

After some algebraic manipulations and adding the term 1
2
zH
i zi to

(20) we get

r
∗
i = arg min

ri∈CN
γfi(ri) +

1

2
‖ri − (Lix+ zi)‖22, (21)
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which is nothing but the proximity operator of γfi applied to Lix+
zi. Thus, the minimizer with respect to ri is computed as

r
∗
i = proxγfi(Lix+ zi). (22)

The maximization over the dual variables is performed using

a gradient ascend method. Again the optimization with respect to

zi can be carried out simultaneously for all i since the problems are

decoupled. Thus, for a fixed i the problem becomes

z
∗
i = argmax

zi

J = argmax
zi

z
†
i (Lix

∗ − r
∗
i ). (23)

The gradient of J with respect to zi is given by Lix
∗ − r∗

i . There-

fore, the dual ascend method yields updates of the form

z
(t)
i = z

(t−1)
i + Lix

∗ − r
∗
i , (24)

for each iteration of the algorithm, where t denotes the iteration

variable.

Note that the above described procedure can be easily ex-

tended for S functions, thus providing a flexible framework for

incorporating additional prior information either in the form of con-

vex constraints or as additional convex penalty functions. The ex-

pressions in (19), (22) and (24) constitutes the main iteration steps

in our SDMM based solver, which is detailed in the next section.

4.4 Implementation details

The resulting algorithm is summarized in Algorithm 1 where S =
3. The algorithm is run for a fixed number of iterations, Tmax, or

until a stopping criteria is met. The algorithm is stopped if the rel-

ative variation between the objective function evaluated at succes-

sive solutions, ζ = |f1(L1x̂
(t)) − f1(L1x̂

(t−1))|/|f1(L1x̂
(t−1))|,

is smaller than some bound ξ ∈ (0, 1) and if the normalized resid-

ual ν = ‖y − L2x̂
(t)‖2/ǫ is within the interval [1 − τ, 1 + τ ] for

some tolerance τ ∈ (0, 1), τ ≪ 1. In our implementation we fix

ξ = 10−3 and τ = 10−1.

Algorithm 1 SDMM

1: Initialize γ > 0, x̂(0) and z
(0)
i = 0, i = 1, . . . , S.

2: r
(0)
i = Lix̂

(0), i = 1, . . . , S.

3: x
(0)
i = L

†
ir

(0)
i , i = 1, . . . , S.

4: for t = 1, . . . , Tmax do

5: x̂(t) = Q
−1 ∑S

i=1 x
(t−1)
i .

6: for all i = 1, . . . , S do

7: r
(t)
i = proxγfi

(Lix̂
(t) + z

(t−1)
i ).

8: z
(t)
i = z

(t−1)
i + Lix̂

(t) − r
(t)
i .

9: x
(t)
i = L

†
i (r

(t)
i − z

(t)
i ).

10: end for

11: if x̂(t) meets halting criteria then

12: Break.

13: end if

14: end for

15: return x̂(t)

In the following we detail the computation of the proximity

operators used in Algorithm 1. To compute the proximity oper-

ator of f1, let us first define it entrywise as follows: f1(r1) =
‖Wr1‖1 =

∑D
j=1 ωj |r1,j |, where ωj = Wjj (since W is a diago-

nal positive matrix) and | · | denotes the norm of a complex number.

Since f1 can be split as the sum of independent components of r1,

the proximity operator of γf1(r1) is given by

proxγf1
(r1) = Sγ(r1) = {proxγωj |·|

(r1,j)}16j6D , (25)

where proxλ|·| is the entrywise soft-thresholding operator defined

as proxλ|·|(a) =
a
|a|

(|a|−λ)+, with (·)+ = max(0, ·). The prox-

imity operator of f2(r2) = iB(r2) is the projector onto the convex

set B = {r2 ∈ C
M : ‖y − r2‖2 6 ǫ}, and is computed as

proxγf2(r2) = min(1, ǫ/‖r2‖2)r2, (26)

which is independent of γ. The proximity operator of f3(r3) is the

projector onto the positive orthant and is given by

proxγf3
(r3) =

{

(r3,j)
+}

16j6N
, (27)

which is also independent of γ. See Combettes & Pesquet (2011)

and references therein for derivation of these results.

The bottleneck of Algorithm 1, in terms of computational re-

sources, is the inversion of the matrix Q. To invert this matrix we

use the conjugate gradient algorithm (Saad 2003) to solve the sys-

tem Qx̂(t) =
∑3

i=1 x
(t−1)
i . The conjugate gradient algorithm is

an iterative process that involves one matrix multiplication by Q

at each iteration. Given that Q = Φ
†
Φ + ΨΨ

† + I , in general,

each iteration requires one computation of the sensing operator Φ

and its adjoint, and, one computation of the sparsity operator Ψ and

its adjoint. If we restrict the algorithm to use Parseval frames, i.e.

ΨΨ† = I , the computation time can be considerably reduced since

now Q = Φ
†
Φ+ 2I . Examples of Parseval frames are orthogonal

bases and the concatenation of orthogonal bases used in SARA.

Another important consideration in Algorithm 1 is the choice

of the penalty parameter γ. In theory any γ > 0 guarantees conver-

gence of the algorithm. However, in practice the convergence speed

of the algorithm is severely affected by the value of this parame-

ter. As it can be observed from the augmented Lagrangian func-

tion (14), small values of γ place a large penalty on violations of

primal feasibility, thus enforcing fast convergence of the dual vari-

ables zi. Conversely, large values of γ place more weight on the

original functions fi, thus achieving a faster convergence rate on

the objective function. Before discussing how to set the value of

this parameter note that the proximity operators of f2 and f3, (26)

and (27), are independent of the value of γ since f2 and f3 are

indicator functions and the only effect of γ in Algorithm 1 is in

the proximity operator of f1. Therefore, γ should scale with Ψ
†x∗,

where x∗ denotes the true signal. Since x∗ is unknown, we propose

to set the penalty parameter as γ = β‖Ψ†
Φ

†y‖∞, i.e. a constant

times the peak value of the dirty image in the sparsity domain. In

our implementation we fix β = 10−3.

4.5 Parallel and distributed optimization

The SDMM structure offers several degrees of parallelization that

can be further exploited. Firstly, the proximity operators can be im-

plemented in parallel providing an acceleration factor of three. Sec-

ondly, as can be seen from (25), (26) and (27), the computation of

the proximity operators is very simple and could support a high

level of parallelization since it mostly involves simple entrywise

operations. Finally, in the case of large-scale data problems, i.e.

large number of visibilities M ≫ N , the visibilities can no longer

be processed on a single computer but rather in a computer cluster

thus requiring a distributed processing of the data for the image re-

construction task. In this distributed scenario the data vector y and

the measurement operator can be partitioned into R blocks in the

following manner:

y =







y1

...

yR






and Φ =







Φ1

...

ΦR






, (28)
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where yi ∈ C
Mi , Φi ∈ C

Mi×N and M =
∑R

i=1 Mi. Each yi is

modelled as yi = Φix + ni, where ni ∈ C
Mi denotes the noise

vector.

With this partition the optimization problem in (9) can be

rewritten as

min
x̄∈RN

+

‖WΨ
†
x̄‖1 subject to ‖yi − Φix̄‖2 6 ǫi, i = 1, . . . , R,

(29)

where each ǫi is an appropriate bound for the ℓ2 norm of the noise

term ni. Observe that (29) can be solved by SDMM (Algorithm 1)

if we reformulate the problem as

min
x∈CN

f1(L1x) + . . .+ fS(LSx), (30)

with S = R + 2. In this formulation f1 and f2 denote the ℓ1
sparsity term and the positivity constraint respectively, and f3 to

fS denote the R data fidelity constraints. Thus L1 = Ψ
†, L2 = I

and Li+2 = Φi for i = 1, . . . , S. Note that steps 7 to 9 in Algo-

rithm 1 can be computed in parallel for each i. The advantages of

this distributed optimization approach are: (i) the visibilities yi and

the measurement operators Φi are local to each node in the clus-

ter, therefore the memory requirements are distributed among R
nodes, with a data dimensionality Mi ≪ M ; (ii) the measurement

operators Φi, and their adjoint, are applied locally at each node

thus distributing the processing load, for acceleration of the recon-

struction process; (iii) the central processing node, where the global

update x̂(t) = Q
−1 ∑S

i=1 x
(t−1)
i is computed, and the parallel

nodes, where the local updates x
(t−1)
i are computed, only need

to exchange information of the size of the image vector at each

iteration rather than of the size of the visibilities, thus alleviating

the communication requirements to transfer information between

nodes. Note that the composite operator Φ†
Φ, needed in the conju-

gate gradient solver for the global update, can be applied in parallel

by each node since Φ
†
Φ =

∑R
i=1 Φ

†
iΦi. Although this approach

would distribute the processing load of the conjugate gradient step

into the parallel nodes, it would incur in a communication overhead

since each parallel node needs to communicate its result at each it-

eration of the conjugate gradient algorithm. One approach that can

be used to avoid this situation is to precompute and store the com-

posite operator Φ†Φ in the central processing node. The aforemen-

tioned distributed optimization approach could be very appealing

for next-generation telescopes where massive amounts of data are

acquired. These distributed optimization ideas are not implemented

in the beta version of PURIFY, discussed in Section 5, and are the

subject of ongoing work.

5 THE PURIFY PACKAGE

PURIFY4 is a collection routines written in C that implements dif-

ferent tools for RI imaging including file handling (for both visi-

bilities and fits images), implementation of the measurement oper-

ator and set-up of the different optimization problems used for im-

age deconvolution. The code calls the generic Sparse OPTimization

(SOPT5) package, which is also written in C, to solve the imaging

optimization problems. In the following we describe the different

features included in PURIFY and SOPT. Note that the name PU-

RIFY has no other meaning than that of a powerful alternative to

CLEAN.

4 Package available at http://basp-group.github.io/purify/.
5 Package available at http://basp-group.github.io/sopt/.

The optimization problems solved by SOPT within the

SDMM structure are: (i) the weighted ℓ1 minimization problem in

(9) and (ii) the weighted TV minimization problem similar to (6)

but with the TV norm replaced by a by a weighted TV norm de-

fined as ‖x̄‖WTV = ‖W∇x̄‖1 where W is a matrix with positive

weights applied to the image gradient. The non-reweighted prob-

lems can be solved just by setting the weight matrix to the iden-

tity matrix. In the case of the reweighted TV problem f1(x) =
‖x̄‖WTV, with the proximity operator computed using the fast first

order iterative method described in Beck & Teboulle (2009a). For

the ℓ1 problems a set of different dictionaries is supported, includ-

ing: the Dirac basis, the Daubechies wavelets family and the con-

catenation of any of these bases.

For the measurement operator, PURIFY implements a non-

uniform FFT that maps a discrete image into continuous visibilities

(Greengard & Lee 2004). The operator is defined as

Φ = GFDZB. (31)

The matrix B ∈ R
N×N is the diagonal matrix implementing the

primary beam. The operator Z ∈ R
N′×N denotes the zero padding

operator with N ′ = kN and k > 2 needed to compute the dis-

crete Fourier transform of x on an oversampled grid and achieve

higher accuracy. The unitary matrix F ∈ C
N′×N′

denotes the

discrete Fourier transform. The matrix G ∈ R
M×N′

represents a

convolutional interpolation operator to model the map from a dis-

crete frequency grid onto the continuous plane so that the FFT

can be used to implement F. PURIFY supports a Gaussian ker-

nel in the frequency domain with a compact support, but support

for other convolutional interpolation kernels can easily be included.

Due to the kernel’s compact support, the matrix G is highly sparse

therefore allowing fast matrix-vector multiplications. The operator

D ∈ R
N′×N′

is a diagonal matrix that in practice implements a

discrete version of the reciprocal of the inverse Fourier transform

of the interpolation kernel, i.e. d = 1/ĝ, where ĝ denotes the in-

verse Fourier transform of the continuous interpolation kernel. The

idea behind this procedure is to undo the effects of the convolution

by the interpolation kernel in the frequency domain by dividing by

the inverse Fourier transform of the interpolation kernel in the spa-

tial domain. This operator and its adjoint are implemented in the

package. Although the current version of PURIFY only supports

the Gaussian kernel, other interpolation kernels, such as prolate

spheroidal wave functions (Thompson et al. 2001), will be incor-

porated in future versions.

Also note that our framework can easily incorporate DDEs, in

particular the w-component effect, as additional convolution ker-

nels in the frequency plane entering the matrix G. Again, compact

support of those kernels will ensure sparsity of G, in turn ensuring

its necessary fast implementation. This represents an alternative to

the w-projection and the A-projection algorithms (Bhatnagar et al.

2008b,a). See Wolz et al. (2013) for first steps in these directions.

Careful attention has been paid to the design of the inter-

faces of PURIFY. The solvers receive the measurement operators

as pointers to functions implementing the forward and adjoint op-

erators with a generic signature, thus other measurements opera-

tors can easily be used. Weighting matrices, such as complex an-

tenna gains and natural or uniform weighting matrices, are not sup-

ported in the current implementation but their incorporation into

the measurement operator is straightforward. The same philosophy

is adopted for the sparsity operators allowing the incorporation of

any sparsity dictionary. These interfaces will facilitate direct inte-
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gration with standard packages for interferometric imaging such as

CASA6.

The current version of SOPT does not exploit the parallel

structure of SDMM. Firstly, the proximity operators are imple-

mented in a serial manner rather than in parallel. Secondly, the

computation of each proximity operators is implemented serially

rather than in parallel thus not exploiting its separable structure.

The only parallel structure that is exploited is the implementation

of the sparsity averaging operator in SARA, i.e. each decomposi-

tion on the basis in the operator are computed in parallel. Therefore

the highly redundant dictionary in SARA has an implementation as

fast as a single orthonormal basis, which already represents a sig-

nificant advantage. As discussed in Section 4.4, the computation of

the measurement operator Φ is a major bottleneck for very high di-

mensional problems. In this case the measurement operator Φ can

be parallelized by implementing a parallel matrix-vector product

for the sparse matrix G, e.g. partitioning G into several blocks Gi

as done in (28) for Φ. Similar strategies might be adopted for the

sparsity operator Ψ. As discussed in Section 4.4 the global update

x̂(t) = Q
−1 ∑S

i=1 x
(t−1)
i is the main bottleneck of the algorithm.

One approach that could be implemented here is to precompute

and store the sparse matrix G
†
G =

∑R
i=1 G

†
iGi to accelerate the

conjugate gradient solver7. These optimizations are the subject of

ongoing work.

6 SIMULATIONS AND RESULTS

In this section we illustrate the performance of the imaging algo-

rithms implemented in PURIFY by recovering well known test im-

ages from simulated continuous frequency visibilities. The test im-

ages used in all simulations are M31, based on a HII region in the

M31galaxy, and 30Dor, the 30 Doradus in the Large Magellanic

Cloud. These images present different compact and extended struc-

tures thus being good candidates to evaluate different regularization

priors. Figure 1 shows the 256×256 discrete models of M31 (left)

and 30Dor (middle) used as ground truth images8.

For our evaluation we compare constrained ℓ1 and TV mini-

mization problems, as well as their reweighted versions, in terms

of reconstruction quality and computation time. For the ℓ1 prob-

lems we study three different dictionaries Ψ in (9): the Dirac basis,

the Daubechies 8 wavelet basis and the Dirac-Db1-Db8 concate-

nation highlited for the SARA algorithm in Section 3.3. The asso-

ciated algorithms are respectively denoted BP, BPDb8 and BPSA

for the non-reweighted case. The reweighted versions are respec-

tively denoted RWBP, RWBPDb8 and SARA. We also study the

TV minimization problem in (6) with the additional constraint that

x̄ ∈ R
N
+ , denoted as TV, and its reweighted version, denoted as

RWTV. Recall that ℓ1 minimization with a Dirac basis yields recon-

struction qualities similar to CLEAN, thus we use BP as a proxy for

CLEAN. Also, we use BPDb8 as a proxy for MS-CLEAN recon-

struction quality since Li et al. (2011) reported that the isotropic un-

decimated wavelet transform outperformed MS-CLEAN and Car-

rillo et al. (2012) reported that BPDb8 outperformed the isotropic

undecimated wavelet transform in the discrete setting.

6 http://casa.nrao.edu/.
7 Note that Sullivan et al. (2012) also proposed to precompute G†G to ac-

celerate a CLEAN-based algorithm.
8 Available at http://casaguides.nrao.edu/index.php.

We use as reconstruction quality metric the signal to noise ra-

tio (SNR), which is defined as:

SNR = 20 log10

(

‖x‖2
‖x− x̂‖2

)

(32)

where x and x̂ denote the the original image and the estimated im-

age respectively. The visibilities are corrupted by complex Gaus-

sian noise with a fixed input SNR set to 30 dB. The input SNR is

defined as ISNR = 20 log10(‖y0‖2/‖n‖2), where y0 identifies

the clean measurement vector. Assuming visibilities corrupted by

i.i.d. complex Gaussian noise with variance σn, the bound on the

ℓ2 norm term in (9), ǫ, is identical to a bound on a χ2 distribu-

tion with 2M degrees of freedom. Therefore, we set this bound as

ǫ2 = (2M + 4
√
M)σ2

n/2, where σ2
n/2 is the variance of both the

real and imaginary parts of the noise. This choice provides a likely

bound for ‖n‖2 (Carrillo et al. 2012). We use the measurement op-

erator described in (31) with B = I and an oversampling factor

k = 2.

The first experiment in this section considers incomplete vis-

ibility coverages generated by random variable density sampling

profiles. Such profiles are characterized by denser sampling at low

spatial frequencies than at high frequencies. This choice mimics

common generic sampling patterns in radio interferometry. In or-

der to make the simulated coverages more realistic we suppress the

(0, 0) component of the Fourier plane from the measured visibil-

ities. This generic profile approach allows us to make a thorough

study of the reconstruction quality of the imaging algorithms with

a large numbers of simulations for arbitrary number of visibilities

and without concern for various telescope configurations. We vary

the number of visibilities from M = 0.2N to M = 2N . Recon-

struction results for M31 and 30Dor are reported in the top and bot-

tom rows of Figure 2 respectively. Average values over 30 simula-

tions and associated one standard deviation error bars are reported

for all plots.

The left panel of Figure 2 shows SNR results for M31 (top)

and 30Dor (bottom). The results show that SARA outperforms all

other methods in reconstruction quality for both images. This con-

firms previous results reported by Carrillo et al. (2012) in the dis-

crete case now for the more realistic continuous Fourier setting, in-

cluding the case when M > N . Interestingly, BPSA shows the best

reconstruction quality over all non-reweighted methods for both

images. The results for M31, which exhibits a compact support

with some extended structures, show that the second best method

is RWBPDb8 having SNRs at most 4 dB below SARA. The results

for 30Dor, which is a more complicated image with both extended

structures and compact structures, show that TV and RWTV offer a

good model for continuous extended structures achieving SNRs at

most 2 dB below SARA. Note that BP and its reweighted version

do not achieve good results for this image, as expected since the

Dirac basis is not a good model for extended structures, achieving

SNRs at least 4 dB below all other methods for coverages above

M = 0.2N .

Computation times, on a 2.4 GHz Xeon quad core and us-

ing the current non-optimized software version, are reported in the

right panel of Figure 2 for M31 (top) and 30Dor (bottom). As ex-

pected the reweighted methods are most costly having reconstruc-

tion times ranging from tens of minutes for M = 0.2N to one

hour for M = 2N . Even though the concatenation of bases in

SARA makes the algorithm structure more costly in theory, the

parallel implementation of the bases in SARA yields a compet-

itive algorithm in terms of computation time. In fact, the results

show that RWBPDb8, with a single wavelet basis, is the slowest

c© 2014 RAS, MNRAS 000, 1–14
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Figure 1. Left and middle panels: original 256×256 test images, M31 (left) and 30Dor (middle), shown in a log10 scale with brightness values in the interval

[0.01, 1]. Right panel: Example of a simulated variable density coverage in the Fourier plane (M = 26374 ≈ 0.4N ).
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Figure 2. Reconstruction results for M31 (top row) and 30Dor (bottom row) 256×256 test images. Left column: average reconstruction SNR against nor-

malized number of visibilities M/N . Right column: average computation time. Vertical bars identify one standard deviation errors around the mean over 30

simulations. The input SNR is set to 30 dB. The results show that SARA outperforms all other methods in terms of reconstruction quality for both images.

method and the most unstable with respect to convergence rate,

as can be observed from the large error bars. This result indicates

that RWBPDb8 might need more iterations to achieve convergence

than other methods. RWTV reports similar reconstruction times to

SARA. The results also show that the non-reweighted methods are

fast, achieving reconstruction times below 10 minutes for all cov-

erages, except for TV in 30Dor which has a similar behaviour as

the reweighted methods. An interesting observation is that the re-

construction times scale linearly with the number of visibilities for

the reweighted methods. This is due to the fact that the complexity

c© 2014 RAS, MNRAS 000, 1–14
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of the SDMM algorithm is dominated by the cost of solving the

linear system at step 5 of Algorithm 1, which needs to apply the

sensing operator Φ and its adjoint at every iteration of the conju-

gate gradient algorithm. Therefore beyond having a fast implemen-

tation of Φ, alternative strategies to accelerate the solution of the

linear system should be explored such as the use of preconditioned

conjugate gradient solvers and faster implementations of the Gram

matrix Φ
†
Φ.

Next we present a visual assessment of the reconstruction

quality of the different algorithms. Figure 3 and Figure 4 show

the results from M31 and 30Dor respectively for a u-v cover-

age of M = 26374 ≈ 0.4N visibilities. The results are shown

from top to bottom for SARA, RWBPDb8, RWTV and RWBP re-

spectively. The first column shows the reconstructed images in a

log10 scale, the second column shows the error images, defined as

x− x̂, in linear scale, and, the third column shows the real part of

the residual dirty images, defined as the difference between dirty

images and dirty images constructed from recovered images, i.e.

r = Φ†y − Φ†Φx̂, also in linear scale. These images confirm the

previous results found by examining recovered SNR levels; SARA

yields reconstructed images with fewer artifacts in the background

regions and smaller errors in the structured inner regions than the

other methods. Interestingly RWBPDb8 yields a nearly flat resid-

ual map for 30Dor. However, this does not necessarily translate into

a better reconstruction quality as can be observed in the error im-

age. This phenomenon can also be seen in the reconstructed image

by RWTV of 30Dor, which shows a small error image compared

to RWBPDb8 but showing a residual map with a lot of structures.

This highlights the fact that the common criterion of flatness of

residual image is not an optimal measure of reconstruction fidelity

as emphasized in our previous work (Carrillo et al. 2012).

The last experiment presents an illustration with a realistic ra-

dio telescope coverage. We use a simulation of the Arcminute Mi-

crokelvin Imager (AMI) (Zwart et al. 2008) array to obtain a u-v
coverage with M = 9413 points. For this experiment we use a low

resolution 128×128 version of M31. The top row in Figure 5 shows

the original test image in log10 scale, the u-v coverage and the

corresponding dirty image in linear scale. The SNR of the recov-

ered image for each algorithm is as follows: BP (10.7dB), RWBP

(SNR=10.9 dB), BPDb8 (11.6 dB), RWBPDb8 (SNR=12.3 dB),

TV (10.6 dB), RWTV (10.5 dB), BPSA (12.4 dB) SARA (14.3 dB).

The second and third rows in Figure 5 show the reconstructed im-

ages along with the corresponding error and residual dirty images

images for SARA, RWBPDb8 and RWBP. SARA provides not only

a SNR increase but also a significant reduction of visual artifacts

relative to all other methods.

7 CONCLUDING REMARKS

In this paper we have proposed an algorithmic framework based on

the simultaneous-direction method of multipliers to solve sparse

imaging problems in RI imaging. The new algorithm provides a

parallel implementation structure, therefore offering an attractive

framework to handle continuous visibilities and associated high

dimensional problems. A variety of state-of-the-art sparsity reg-

ularization priors, including our recent average sparsity approach

SARA, as well as discrete and continuous measurement operators

are available in the new PURIFY software. Source code for PU-

RIFY is publicly available. Experimental results confirm both the

superiority of SARA for continuous Fourier measurements and the

fact that the new algorithmic structure offers a promising path to

handle large-scale problems.

In future work we will extend the current PURIFY implemen-

tation to take full advantage of the parallel and distributed struc-

ture of SDMM as discussed in Section 4.5. We expect that paral-

lel and hardware implementations of the measurement and sparsity

operators as well as the proximity operators could achieve drastic

accelerations of the algorithms. Also, different strategies will be

explored to accelerate the convergence of the conjugate gradient

solver, e.g. using preconditioners for the operator Q and precom-

puting the sparse matrix G†G to avoid multiplications by G and G†

separately, which involve an intermediate high dimensional vec-

tor of length M > N , at each iteration of the conjugate gradient

solver. Finally, DDEs will be incorporated into PURIFY. Recall that

DDEs can easily be included in the matrix G as additional convolu-

tion kernels in the frequency plane. Compact support kernels will

ensure sparsity of G and a fast matrix-vector multiplication. Inte-

gration with standard packages for interferometric imaging, such as

CASA, will allow to take advantage of their built-in real data han-

dling and also to have a full comparison with standard algorithms

such as MS-CLEAN and ASP-CLEAN.
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Figure 3. Reconstruction example of M31 (256×256) for a u-v coverage with M = 0.4N sampling frequencies. The results are shown from top to bottom for
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Figure 4. Reconstruction example of 30dor (256×256) for a u-v coverage with M = 0.4N sampling frequencies. The results are shown from top to
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Figure 5. AMI coverage example. First row from left to right: original M31 128×128 test image in log10 scale, u-v coverage in normalized angular fre-

quency units (M = 9413) and corresponding dirty image in linear scale. Second to last rows: reconstruction results for SARA (SNR=14.3 dB), RWBPDb8

(SNR=12.3 dB) and RWBP (SNR=10.9 dB). The first column shows the reconstructed images in a log10 scale, the second column shows the error images in

linear scale, and the third column shows the residual dirty images also in linear scale.
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