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Summary

We present in this study results from X-ray tomographic mi-
croscopy with synchrotron radiation performed both in at-
tenuation and phase contrast modes on a limestone sample
during two stages of water drying. No contrast agent was
used in order to increase the X-ray attenuation by water. We
show that only by using the phase contrast mode it is pos-
sible to achieve enough water content change resolution to
investigate the drying process at the pore-scale. We performed
3D image analysis of the time-differential phase contrast to-
mogram. We show by the results of such analysis that it is
possible to obtain a reliable characterization of the spatial re-
distribution of water in the resolved pore system in agree-
ment with what expected from the theory of drying in porous
media and from measurements performed with other ap-
proaches. We thus show the potential of X-ray phase contrast
imaging for pore-scale investigations of reactive water trans-
port processes which cannot be imaged by adding a contrast
agent for exploiting the standard attenuation contrast imaging
mode.

Introduction

The visualization of water transport processes in porous ma-
terials is relevant in several fields of natural and engineering
sciences. An incomplete and limited list of examples would
include water transport in polymer electrolyte membrane fuel
cells during operation (Bazylak, 2009; Wang et al., 2011),
water drainage and evaporation in hydrogeology and soil
physics and their relations with evolving climatic conditions
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(Or et al., 2013) and a manifold of contaminated water trans-
port mechanisms of interest in civil and environmental engi-
neering (Wildenschild et al., 2002; Dann et al., 2011).

The list would also include water imbibition and drying in
porous building materials, with associated degradation (Lee-
mann & Loser, 2011) and shrinkage processes (Lura et al.,
2007), respectively, water redistribution in trees and plants
(Lee & Kim, 2008) and the displacement of nonwetting liquid
phases, e.g. oil or liquefied CO2, by water in rocks, for the ex-
ploitation of hydrocarbons and for carbon capture and storage
(Brown et al., 2014; Andrew et al., 2013).

In most cases, the transport process itself cannot be under-
stood if the internal porous architecture is not studied simul-
taneously. Therefore, an increasing number of investigations
have been dedicated to capturing the water transport features
at length scales comparable with those of the pores (Wilden-
schild & Sheppard, 2013).

In this work, the focus is on drying of porous materials
containing distilled water. We use drying as a case study for
proposing and characterizing a specific approach to the pore-
scale imaging of water transport in porous materials.

The spatio-temporal dynamics of a drying front in a porous
material highly depends upon the pore space features (poros-
ity, pore size distribution, pore space morphology and topol-
ogy; Prat, 2002) and on pore scale processes, e.g. capillary
forces-driven liquid transport (Scherer, 1990; Le Bray & Pratt,
1999; Xu et al., 2008), in-pore evaporation and vapour diffu-
sion (Lehmann et al., 2008) and formation of liquid films on
the pore surface (Yiotis et al., 2003; Lehmann et al., 2008).

Among the most used techniques for imaging water trans-
port in porous materials we list neutron imaging, nuclear
magnetic resonance and X-ray attenuation contrast imaging
(XACI).

Neutron imaging allows achieving very high contrast be-
tween regions with different water content. The temporal res-
olution for a full tomography can be sufficient for investigating
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water drying (Kaestner et al., 2007) and also faster processes
(Schaap et al., 2008; Kaestner et al., 2011) but a trade-off is in-
evitable with the spatial resolution, which, in standard setups,
has not yet overcome the threshold of about 10 μm (see table 1
in Perfect et al., 2014). Such spatial resolution threshold does
not allow for imaging a large fraction of the pore space in most
porous materials. Another limitation of neutron imaging con-
sists in the small number of facilities where it can be performed
and their respective temporally limited access.

Nuclear magnetic resonance methods are very useful for the
simultaneous spatial mapping of water content (by magnetic
resonance imaging) and spatially resolved pore size distribu-
tion estimation (by nuclear magnetic resonance relaxometry)
during drying (Choi et al., 2000; Valckenborg et al., 2001;
Faure et al., 2012). Magnetic resonance imaging achieves as
well very high sensitivity to small changes in local water con-
tent. The spatial resolution strongly depends upon the range
of the applied magnetic field gradient and upon the presence
of magnetic impurities in the materials. As a result, direct
imaging of the micron scale pores may not be feasible with
conventional instruments (Pel & Huinink, 2012). In terms of
temporal resolution, nuclear magnetic resonance methods are
more limited than neutron imaging, still they can be used to
investigate both slow processes as drying and faster ones as
capillary imbibition (Mitchell et al., 2013).

Standard X-ray imaging, at the laboratory scale or with
synchrotron radiation, has been extensively and successfully
used for investigating water transport in porous materials, in-
cluding drying (Shokri et al., 2009; Shokri & Sahimi, 2012).
Contrary to neutron and magnetic resonance imaging, high
spatial (hundreds of nanometers; Stampanoni et al., 2010)
and temporal (a few seconds with synchrotron radiation; Berg
et al., 2013; Mokso et al., 2013; Youssef et al., 2013; half-
minute or slightly less with laboratory sources; Myers et al.,
2011; Bultreys et al., 2015) resolutions are nowadays achiev-
able by many tomography instruments/facilities, making it
possible to systematically and extensively investigate pore-
scale mechanisms (Wildenschild & Sheppard, 2013).

Standard X-ray imaging is mainly based upon the atten-
uation of the X-ray beam transmitted through the object.
Typically, photon photoelectric absorption and Compton
scattering are considered as the main interaction processes
responsible for the X-ray beam overall attenuation, up to an
energy of 1 MeV (Attix, 1986; Banhart, 2008). In this view,
other processes as diffuse scattering or X-ray refraction are
neglected, even though, physically, they are always present.

The contrast in the images due to X-ray attenuation is typi-
cally described as based upon the spatial distribution of β, the
imaginary part of the complex index of refraction n, usually
written for the X-ray energies as n = 1 − δ + i · β.β is propor-
tional to Z n, with n ∼= 4 − 5, and to E −m, with m ∼= 3 − 3.5,
Z being the atomic number of the element and E the photon
energy (Banhart, 2008). We term standard X-ray imaging as
XACI.

XACI of water transport in porous materials is typically per-
formed in the hard X-ray range (E ≥ 5 keV). Lower energies
are typically not suitable to achieve sufficient signal-to-noise
levels in photon detection within reasonable measurement
times. Furthermore, because of representative element vol-
ume constraints, it is not possible to reduce arbitrarily the size
of such heterogeneous samples as porous materials, to try to
increase the X-ray transmission at lower energies.

With XACI, spatio-temporal changes in pore-scale water
content can be resolved only when the pores are at the hun-
dreds of μm – mm scale and/or the transport process leads
to a large change in the saturation degree (fraction of pore
volume filled in by water), e.g. from complete saturation to
empty pores (Ketcham & Iturrino, 2005; Kohout et al., 2006;
Sant & Weiss, 2009; Pease et al., 2012; Wang et al., 2012). For
porous materials with pore size distribution extending into the
μm and sub-μm ranges, as in the case studied in this work, it
may be unfeasible to resolve the local water content changes,
due to (1) the small X-ray attenuation by water compared
with the one by the porous substrate and (2) the small water
volume changes at the pore-scale.

In the latter case, the most frequently adopted work-around
consists in using a water-based salt solution, containing el-
ements with high Z , instead of distilled water. For example,
concerning visualization of drying in porous media, water-
based solutions of CaI (Shokri et al., 2009; Shokri & Sahimi,
2012) and a suspension of limestone powder in water (Prime
et al., 2015) have been used. Salt precipitation during drying of
porous media has been successfully imaged with XACI for NaCl
solutions (Norouzi Rad et al., 2013; Norouzi Rad & Shokri,
2014). Concerning other water (and more generally liq-
uid) transport processes, pore-scale, multiphase (wetting and
nonwetting) fluid displacement/interfacial mechanisms have
been investigated by XACI using CsCl (Berg et al., 2013; Arm-
strong et al., 2014a, b; Brown et al., 2014) and KI (Youssef
et al., 2013; Andrew et al., 2013, 2014) solutions. In those
studies, the solution contributed also to increase the differ-
ence in X-ray attenuation between the wetting phase (the
water-based solution) and the nonwetting one (e.g. oil). XACI
plus a CsCl solution (Boone et al., 2014) or a mixture of di-
iodomethane and toluene (Ghous et al., 2007) have been used
to identify the spatial distribution of pores with size below the
spatial resolution in rocks.

When the target of investigation is a water transport pro-
cess, the use of water-based salt solutions to increase the
X-ray attenuation of the liquid implies a careful and com-
plicated choice of the salt and of its concentration in order to
reduce as much as possible the mismatch between pure wa-
ter and the solution interfacial, e.g. surface tension and con-
tact angle, and transport, e.g. density and viscosity, properties
(Franzoni et al., 2014). This represents a strong limitation
in using XACI in combination with water-mimicking liquids
leading to enhanced X-ray attenuation. An additional limi-
tation consists in the increase of beam hardening artefacts,
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as thoroughly documented by Nakashima & Nakano (2012),
Nakashima (2013) and Nakashima & Nakano (2014).

Finally, the use of solutions instead of distilled water for
XACI is not feasible in the case of chemically reactive transport
processes, e.g. most of water transport processes in cement-
based materials, due to cement hydration reactions, and water
transport in polymer electrolyte membrane fuel cells under
operation conditions.

In order to visualize water transport processes for porous
materials with pore size distribution extending in the μm
and sub-μm range and/or for partial pore-scale satura-
tion/desaturation, other X-ray imaging approaches should
be adopted. Potentially useful alternative methods are those
based upon the direct or indirect spatial mapping of the decre-
ment of the real part of the index of refraction, δ.

X-ray dark-field contrast imaging exploits the reduction in
spatial coherence of the X-ray beam transmitted through the
sample due to the heterogeneity of δ’s spatial distribution at a
length scale smaller than the imaging system spatial resolu-
tion. Such heterogeneity leads to multiple refraction (scatter-
ing) of the X-ray photons, breaking up the spatial coherence
of the inspecting beam. Yang et al. have shown that water
displacements in a porous material with pore size distribu-
tion covering a range falling below the spatial resolution lead
to a decrease in the local multiple scattering, thus enhanc-
ing the contrast between regions of the material with empty
pores and regions with partial or complete saturation (Yang
et al., 2014). The proof-of-concept of that approach was im-
plemented via Talbot–Lau interferometry (Yang et al., 2014).
Another possible implementation of that approach could be
based upon the edge illumination technique (Endrizzi et al.,
2014). With either technique for performing X-ray dark-field
contrast imaging, the main limitation with the current tech-
nology/methodology lies in the small temporal resolution for
performing tomography.

X-ray phase contrast imaging (XPCI) promises to have a very
high success potential. It is based upon the retrieval of the con-
tributions by X-ray refraction to the transmitted photon inten-
sity distribution. It consists in the qualitative or quantitative
(phase imaging) mapping of the spatial distribution of δ at a
length scale larger than the spatial resolution. Several possible
implementations for XPCI exist, namely, Talbot–Lau interfer-
ometry (Clauser & Reinsch, 1992; Momose, 1995; Weitkamp
et al., 2005; Pfeiffer et al., 2006), edge illumination (Olivo &
Speller, 2007; Olivo et al., 2009; Munro et al., 2012), crys-
tal analyzer-based imaging (Chapman et al., 1997; Bravin,
2003), crystal interferometry (Bonse & Hart, 1965; Momose
et al., 1996) and free-space propagation (FSP) (Nugent et al.,
1996; Cloetens et al., 1997; Gureyev et al., 2009). The last
technique is the most promising for the targets of this work
because it allows achieving very high temporal and spatial
resolutions, especially when implemented at synchrotron ra-
diation beamlines. At the same time, it allows achieving high
contrast to the local, spatio-temporal variations in the distribu-

tion of material phases made up of low Z elements (Mokso et al.,
2013). These features imply the potential of simultaneously
imaging the porous substrate and the water transport process.
Finally, FSP-XPCI has higher sensitivity to partial changes in
pore-scale water content compared with XACI (see section S1
of Yang et al., 2015, for a physical explanation and respective
quantitative examples).

The potential of FSP-XPCI of pure water in natural and en-
gineering materials was already hinted at by Mayo (2012),
as well as Wildenschild & Sheppard (2013). Derluyn et al.
showed that a Na2SO4 solution and respective crystals, pre-
cipitated within a limestone pores due to either wetting/drying
cycles or cooling, could be identified with FSP-XPCI and not
with XACI (Derluyn et al., 2014).

In this paper, we systematically show the potential and
advantages of FSP-XPCI in visualizing pure water transport
processes in porous materials. We performed both XACI and
FSP-XPCI of the same exact sample of a natural porous ma-
terial (Globigerina limestone), at two different stages of water
drying, in the absence of any contrast agent. By 3D image
analysis of the time-differential tomogram (described in the
section ‘Materials and methods’), we show the advantages of
XPCI over XACI and that pore-scale features of the drying
process can be identified and quantitatively analysed (section
‘Results’). In section ‘Discussion, outlook and conclusions’, we
build upon the results to draw conclusions about what can be
gained by the combined use of tomographic XPCI and 3D im-
age analysis in terms of a better understanding of pure water
drying in porous materials and which are the possible gains for
pore-scale investigations of other water transport processes.

Materials and methods

Materials, sample preparation and measurement protocols

Globigerina limestone is a soft and highly porous (up to 41%
in total open porosity, see Franzoni et al., 2014) limestone
coming from Malta. It has been used as a building material
for about 6000 years (Cassar, 2002). It is frequently adopted
as a model system to investigate environmental weathering of
building stones (Franzoni et al., 2013). From a chemical point
of view, it is composed of carbonates (about 90% by mass),
by small amounts of quartz (8%) and by some clay traces
(12%) (Franzoni et al., 2014). The high content in carbonates
is due to CaCO3 crystals, calcareous cementitious layers and
different types of fossils, e.g. shells, algae and planktonic fossils,
for example, foraminifera Globigerina. Its large open porosity,
compared with other limestones, is due to a large fraction of
coarse pores (average pore radius from 2 to 3 μm, measured by
mercury intrusion porosimetry, MIP, by Franzoni et al., 2013,
2014).

We used a Globigerina limestone cylinder 35 mm high and
about 4.5 mm in diameter, cored while being flushed with
water from a larger sample (a cuboid with lateral size of about
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Fig. 1. Representative picture of the sample mounted on the stage of the TOMCAT X-ray tomographic microscope with indication of the coordinate
system and the detector positions for attenuation and phase contrast imaging measurements, respectively.

50 mm). After 4 days of oven drying at 50°C, the sample was
glued on a metallic sample holder.

The drying + imaging experiments consisted in performing
X-ray tomographic microscopy (XTM) with synchrotron radi-
ation, at two water saturation stages (high saturation degree
and after drying for a given time �tdrying). The high level of
saturation was achieved by submerging the sample into dis-
tilled water for about 1 h at low vacuum (about 5 mbar), in
order to remove as much as possible air bubbles from the pore
space. After water saturation the lateral surface of the sample
was covered with a 70 μm thick polyimide film, except for
the top surface, in order to constrain the evaporative drying
mainly along the symmetry axis of the sample and make only
one lateral surface (top) available for evaporation. Polyimide
is a material with a high degree of X-ray transparency. The
sample was then kept immersed in de-ionized water at room
conditions till the first set of XTM measurements, after which
it was moved into a container with internal relative humidity
(RH) of the order of 1–5%, flushed with N2 gas, to accelerate
drying as much as possible. After about �tdrying = 2.5 h we
performed the second set of XTM measurements.

X-ray tomographic microscopy

According to the transport of intensity equation, the trans-
mitted X-ray intensity distribution on the detection plane is
related only to the linear projection (also called Radon trans-
form) of β, Pβ , when the detection plane coincides with the
exit plane of the object (Paganin, 2006). When the detection
plane is far away from the sample’s exit plane, the transmitted
intensity distribution encodes information about both Pβ and
the second-order partial derivatives of Pδ calculated on the
detection plane (Paganin, 2006).

We performed XTM at the TOMCAT beamline of the Swiss
Light Source, at the Paul Scherrer Institute. At each satura-
tion stage (before and after drying), we performed six XTM
scans. Figure 1 shows an example of sample mounting, the
measurement configuration and the coordinate system.

Three scans were performed with the detector as close as
possible to the sample (about 1 mm distance along the X-
axis) and differed for the region of interest (ROI) scanned.
These scans were used for XACI. The three ROIs were ad-
jacent to each other along the Z-axis, starting from the
top evaporation surface. The same three ROIs were then
scanned again but positioning the detector at 90 mm from
the sample along the X-axis. These other scans were used for
XPCI.

At the TOMCAT beamline the X-ray source is a super-
bend magnet (2.9 T) followed downstream by a multilayer
monochromator, by which the X-ray beam energy in our study
was tuned to E = 30 keV (λ � 0.04 nm) with a bandwidth
�E/E of 2%. The choice of this X-ray energy resulted from
optimization of the raw radiograph signal-to-noise ratio and
temporal resolution.

The detection system consisted in a 300 μm thick Ce-doped
LAG scintillator, converting the X-ray photons into visible
light photons, then conveyed onto a pco.edge 5.5

TM
sCMOS

detector by lenses with optical magnification factor M � 2.96.
The sCMOS detector has physical pixel size p = 6.5 μm and
2560 × 2160 pixels in the Y- and Z-directions, respectively.
Taking M into account, the field of view (FOV) was 5.621 mm
in Y- and 4.743 mm in Z-directions, respectively, with effec-
tive pixel size pe = 2.196 μm. The actual FOV was restricted
to 1520 pixels in the Z-direction, corresponding to about
3.338 mm. Such restriction was due to the choice of the
operating beam energy (the Z-size of the beam is energy de-
pendent). The exposure time for the detector was 50 ms for
each radiograph. Each XTM scan consisted of 1501 radio-
graphs of the sample at different orientation angle θ (ro-
tation angle around the Z-axis) in respect to the detection
plane, with θ between 0° and 180°. In addition, for each
scan, we acquired 10 radiographs in the absence of the beam
(dark fields) and 100 radiographs in the absence of the sam-
ple (flat fields), to correct the radiographs for the illumina-
tion beam spatial inhomogeneity and any pixel-wise offset
signal.
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The overall time for each single scan was about 9 min, con-
sidering 100 ms detector stabilization time for each radiograph
and the sample rotation time.

Tomographic reconstruction and datasets

For each saturation stage and each ROI, we performed
the XACI datasets tomographic reconstruction assuming the
Beer–Lambert law describing the relationship between the ra-
diographs’ pixel values and the linear projection of β, Pβ .

The reconstruction of the spatial distribution of β inside
the sample from the set of radiographs at different θ ’s, was
performed with the Gridrec algorithm as implemented at the
TOMCAT beamline (Marone & Stampanoni, 2012).

For each saturation stage and each ROI, the first XPCI pro-
cessing step consisted in the phase retrieval, i.e. calculating
the linear projection of δ, Pδ , as a function of the detector pixel
values. We chose the phase retrieval equation proposed by
Paganin et al., based upon the transport of intensity equation
and some restrictive assumptions (Paganin et al., 2002). The
assumptions are (1) the sample is made of material phases hav-
ing the same ratio δ

β
, being it a known parameter, and (2) the

detector must be located in the near-field (Fresnel diffraction)
region along the beam path. Assumption (2) is a direct neces-
sity for using a formalism based upon the transport of intensity
equation and was satisfied in our case by choosing the sample-
to-detector distance dsd = 90 mm. Assuming a level-of-detail l
to be resolved in the reconstructed XPCI images equal to two
times pe (l � 4.4 μm), at the chosen beam energy the Fres-
nel number NF ≡ l2

λdsd
� 5 > 1 (value delimiting the Fresnel

diffraction region). Assumption (1) is not respected by the type
of sample due to the presence of two material phases (other
than air) with different δ

β
values, water and (mainly) CaCO3.

However, the degree of violation of that assumption is limited
by the high degree of chemical and spatial homogeneity of
the porous substrate (local changes in mass density for the
limestone do not affect the spatial distribution of δ

β
).

Despite the fact that the Paganin et al. (2002) algorithm
can be used mainly for qualitative phase contrast imaging in
the case of nonpure phase objects, it has the advantage of
being very robust in terms of a reduced number of artefacts
when applied to case studies not satisfying completely its two
basic assumptions, especially the constant δ

β
one (Beltran et al.,

2010; Weitkamp et al., 2011; Boone et al., 2012; Irvine et al.,
2014).

Since the sample is not made of material phases with equal
δ
β

values, the δ ( = 6.3 × 10−7) and β ( = 7.5 × 10−10) val-
ues were chosen by a coarse, direct exploration of the (δ; β)
space, having as starting point the theoretical values for CaCO3

calculated at the given beam energy E by using the LBNL
CXRO database of photon interaction cross-sections (Henke
et al., 1993), and searching for a point maximizing the im-
ages’ signal-to-noise ratio (see the section ‘Results’, Eq. (1), for
its definition) for pore regions and contrast-to-noise ratio (see

Section ‘Results’, Eq. (2)) between voxel values of pores and the
solid limestone skeleton. The procedure followed for evaluat-
ing such signal-to-noise and contrast-to-noise ratios for those
material phases was similar as the one reported in the ‘Results’
section, used to compare XACI and XPCI images. The phase
retrieval in correspondence of each (δ; β) was performed by
using the implementation of Weitkamp et al. (2011), of the
Paganin et al. algorithm.

After phase retrieval, tomographic reconstruction of the
δ spatial distribution was performed with the same Gridrec
algorithm.

Tomographic datasets: processing and analysis

In what follows ‘3D image’ will be used with the same meaning
of ‘tomographic dataset’.

The main goals of the 3D image analysis were (1) the 3D
visualization of pores with equivalent diameter larger than the
spatial resolution (about 9–10 μm, due to voxel rebinning, see
below) and (2) mapping the spatial redistribution of water as
a consequence of the drying process. Related with point (2),
we focused only on identifying (segmenting) regions affected
by water loss during the evolution between the two satura-
tion stages, since that is one of the major pore-scale effects of
drying.

We restricted the analysis, for both the XACI and XPCI im-
ages and for both saturation stages, to the first top ROI. We
thus analysed four 3D images.

We performed mutual 3D image registration (alignment) of
the four images assuming as deformation model only a rigid
body (translation + rotation) one. The registration was per-
formed with software in ImageJ/Fiji (Schindelin et al., 2012).
After alignment, we selected only the top 900 (out of the 1520)
digital cross-sections composing the 3D images and orthogo-
nal to the Z-axis of the sample. Such cross-sections will be
termed ‘slices’ from now on.

We cropped each slice to a size of 2280 × 2280 pixels. We
then applied a 2 × 2 × 2 voxel rebinning. The cropping and
rebinning was needed to reduce the computing time and RAM
memory required for each analysis step. The actual size of the
analysed 3D images was then 1140 × 1140 × 450 (X, Y, Z
directions, respectively) and the bit depth was 32.

In order to automatically exclude from any voxel-based cal-
culation the region surrounding the sample in each image,
we segmented that region by a constrained region growing
algorithm implemented in the Empa Bundle of ImageJ Plug-
ins for Image Analysis, EBIPIA (plugin ‘Segment Phases 3D’)
(Münch, 2014) and created a 3D binary (8-bit) image identi-
fying it. The region surrounding the sample will be called in
the following R.

We achieved goal number (1) (pore segmentation) using
both XACI 3D images in combination with R, i.e. considering
for each image only voxels not belonging to R. Considering
those voxels of the two XACI images as statistical ensembles
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of voxels, we applied to each of them a K-means clustering al-
gorithm (MacQueen, 1967; Jain et al., 1999) with 1D feature
space consisting in the voxel value axis only, i.e. character-
izing each voxel only by its value. The algorithm is imple-
mented as well in the EBIPIA (plugin ‘Cluster image’ based
upon the approach by Kanungo et al., 2002). We searched for
K = 3 clusters, corresponding to three sets of voxels (material
phases): pore voxels, low density CaCO3 voxels and high den-
sity CaCO3 ones. At the end of the algorithm’s iterations, we
chose the cluster with lower average voxel value as the one
corresponding to the subset of pore voxels. This procedure led
to a new voxel subset for each XACI image.

We created then a 3D binary image as a mask identifying
the pore voxels. Figure S3 in Yang et al. (2015), shows such
mask.

The choice of XACI 3D images for the pore voxel segmen-
tation was motivated by their availability in our case and by
their higher spatial frequency content compared with XPCI
ones (Irvine et al., 2014).

Any quantitative analysis of the pore space, based upon the
segmented pores, should thus be more precise if performed on
segmentation results from XACI datasets.

We addressed goal (2) by using the XPCI images in asso-
ciation with the mask R, i.e. considering only voxels inside
the sample volume, as done for the XACI images. We calcu-
lated then a new 3D image obtained as the voxel-wise dif-
ference between the XPCI image before drying and the one
after drying. Voxels in such time-differential image belonging
to R were assigned a constant equal value. Classification into
different subsets of the time-differential voxel values for the
pore voxels was performed by best fit of the time-differential
voxel value histogram with a Gaussian mixture model and by
choosing as thresholds the best fit estimates of the Gaussian
averages ± the respective standard deviations. We performed
the histogram best fit with the expectation maximization (EM)
method (Dempster et al. 1977) implemented in Matlab by
Roughan (2009).

Finally, we analysed the pore size cumulative distribution
(PScD), in order to establish correlations between the water
loss regions, the pores and their geometrical features. For such
purpose, we performed on the pore binary image a ‘contin-
uous’ PScD analysis (Torquato, 2002; Ye, 2003; Münch &
Holzer, 2008), implemented according to the algorithm of
Münch & Holzer (2008), in the plugin ‘Pore size distribution’
of the EBIPIA (Münch, 2014). This method allows achieving
(1) PScD curves from binary images of segmented pore systems
which can be compared with experimental MIP ones, since re-
lying on an analogous definition of PScD, and (2) a physically
meaningful PScD estimate for pore systems characterized by
a high degree of interconnectivity, for which ‘discrete’ PScD
estimates based upon calculation of individual pore equivalent
sphere radius are not meaningful since the pores are not actu-
ally separated distinct objects with spheroidal shape. Moreover

the ‘discrete’ PScD definition is not even geometrically com-
parable with a MIP process (Münch & Lorenz, 2008).

To compare the cumulative PScD obtained from the image
analysis with experimental data we performed 2-cycle MIP
measurements with a Pascal 440

TM
(Thermo Fischer Scien-

tific Inc.) porosimeter on additional crushed samples from the
same batch of the tomographed sample. Finally, we also mea-
sured the total open porosity on five independent samples, still
from the same batch, by gravimetric measurements and water
submersion under low vacuum conditions (5 mbar).

The ‘continuous’ PScD definition of Münch and Holzer and
the respective code implemented in EBIPIA also allows pro-
ducing a 3D spatial map of ‘pore size’ (also called ‘pore radius’)
by associating to each voxel belonging to the pore binary im-
age a value corresponding to the maximum radius of a sphere
containing that voxel and still fitting inside the pore system.
Exploiting this feature, we could calculate for each discon-
nected region of the pore binary image, i.e. for each pore, the
average pore radius, r (average of all the voxel pore radius
values) and its degree of desaturation, DS, defined as the ratio
between the total number of its voxels classified as water loss
voxels (in-pore water loss volume, as obtained from the pore
segmentation) and its total number of voxels (pore volume).
The curve DS versus r is used to assess whether the water loss
spatial distribution is physically meaningful from the point
of view of the pore-scale drying process, thus assessing the
usefulness of pore-scale XPCI of water drying.

Results

Comparison of attenuation and phase contrast images, before and
after drying

The visual inspection and qualitative analysis of the raw 3D
images did not allow a complete identification of water loss
regions (goal number 1).

Figures 2(A) and (B) show two slices taken at the same
position from the XPCI images before and after drying, respec-
tively. Figures 2(C) and (D) show corresponding slices taken
from the XACI images.

Each slice, for each image type, was actually taken from the
respective image after some preprocessing used only with the
purpose of allowing for a fair visual comparison between the
images at the two drying stages (see section S2 of Yang et al.,
2015, for the details).

The visual comparison between Figures 2(A, B) and (C, D),
respectively, shows that a slight decrease in the average voxel
value is observable in the XPCI images, from Figures 2(A) to
(B), although less can be perceived in the XACI images, from
Figures 2(C) to (D). A decrease in voxel value is expected for
both datasets because drying leads mainly to water loss, thus
a voxel-wise decrease both in β and δ. Such drying effect can
be better appreciated by looking at the inset in each column of
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Fig. 2. X–Y cross-section (slice) from the X-ray phase (A and B) and attenuation (C and D) contrast tomographic datasets, respectively, all taken at the
same position. Blocks (A) and (B) refer to the water saturated stage, whereas (B) and (D) after drying, respectively. The top-left inset in each block is a zoom
into a small ROI indicated by the dashed rectangle. Each 3D image of a given type was rescaled to a common dynamic range according to the procedure
described in section S2 of Yang et al. (2015), for visual comparison only. Voxels belonging to the region surrounding the sample were automatically
assigned the same value equal to 0. Pores are darker in each image type, while the limestone is brighter. Very bright regions in the porous substrate
correspond to either higher density CaCO3 regions or regions with quartz or clay inclusions.

Figure 2, highlighting the same small ROI for each dataset. In
the XPCI slices (Fig. 2A and B) drying contributed to decreasing
the level of blurring, especially inside the pores and at their
boundaries with the solid matrix. In the XACI slices (Fig. 2C
and D) no significant change is noticed.

We also observe that in general, at any drying stage, the
XPCI slices are more blurred than the XACI ones, due to the
fact that phase retrieval algorithms usually act as low pass
(spatial) frequency filters (Irvine et al., 2014). Thus, the spa-
tial resolution is expected to be better in the XACI images.
This is the reason why they were chosen for segmenting the
pores (fig. S3 in Yang et al., 2015). However, the XPCI images
exhibit larger contrast between different material phases and,
of particular interest in this work, between pores and solid
matrix.

We characterized such differences between the two types
of images by calculating the signal-to-noise and contrast-to-
noise ratios, SNRi and CNRi− j , respectively, for different ma-
terial phases i and j . The parameters are defined as

SN Ri = |Si | /σi , (1)

C N Ri− j = ∣∣Si − Sj

∣∣ /
√

σ 2
i + σ 2

j , (2)

Table 1. Signal-to-noise ratio (SNR) of pore, solid limestone and air re-
gions and contrast-to-noise ratio (CNR) between pore and solid regions,
calculated via Eqs. (1) and (2). The values are calculated over several ROIs
defined on slices (the first one every 50). The ROIs were equal for each
type of dataset and at each drying stage.

Dataset (3D image) SNRpore SNRsolid SNRair CNRpore-solid

XPCI, before drying 11.69 17.36 0.85 11.50
XPCI, after drying 9.46 17.45 0.93 9.32
XACI, before drying 8.75 12.67 0.14 7.76
XACI, after drying 7.75 12.50 0.11 6.88

where Si and σi are the average and standard deviation of
the voxel value over a set of ROIs covered by the material
phase i . The material phases we considered are (1) air outside
the sample, (2) pores (filled in with air and/or water) and (3)
the solid material of the limestone. The two parameters of
Eqs. (1) and (2) were calculated from a set of ROIs defined on
the first of every 50 slices from the 3D images. For a given
slice, the ROIs were chosen identical for each image. Table 1
reports the results of such analysis. The XPCI images exhibit
larger SNR compared with the XACI ones, for all the three
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material phases considered, in agreement with the higher level
of blurring visible in Figure 2(A). This difference may simply
be due to the above cited low-pass filter nature of the type
of phase retrieval used and may not bring any advantage for
distinguishing between filled and empty pores.

We also notice that the SNR for the pore only ROIs undergoes
in both image types a drop in correspondence of drying, due to
an increase in physical properties mismatch between the pore
and the stone matrix, which leads to stronger microscopic
photon scattering. Since the image formation models XPCI is
based on are more sensitive to the macroscopic effects of such
microscopic scattering. although the models XACI is based on
are less, in correspondence of the water content change the
SNR drop is larger in the XPCI images than in the XACI ones
(19% vs. 11%, respectively). This indicates that XPCI images
undergo larger changes due to water content changes than
the XACI ones.

The CNR between pores and the limestone substrate (the
two material phases of interest from the point of view of pore-
scale water visualization) is larger in the XPCI images as well,
indicating a better distinction between pores and the solid
phase of the porous medium.

Despite the larger CNR between pores and solids and larger
changes due to drying in the XPCI images compared with the
XACI ones, none of them could be used alone for a reliable
and absolute identification of water loss regions. This fact is
additionally documented by figures S4 and S6 in Yang et al.
(2015), which report the cumulative distribution functions
(CDFs) of the voxel values for the four images shown in Figure
2. Those CDFs better show the slight decrease in voxel value
for the XPCI images while a smaller decrease for the XACI
ones is observed. Still the difference is very small even for the
XPCI images. In addition, the CDFs indicate that the voxel
value distribution function is, for both image types and at any
drying stage, a univariate Gaussian function (see also figs. S5
and S7 in Yang et al., 2015). Thus, segmentation of water
regions (voxels) from any raw 3D image, of any type and at
any drying stage, was not feasible.

Time-differential phase contrast imaging results

Figure 3 shows the slice taken at the same position as
that of Figure 2 but from the time-differential XPCI (inset
(A)) and XACI (inset (B)) images. For any contrast type,
the time-differential image was calculated as the voxel-wise
subtraction between the image before drying and the im-
age after. Such images were already corrected for the dif-
ferent offsets but not rescaled to the integer value interval
[0; 65535] before the subtraction was performed. After sub-
traction, each time-differential image was then rescaled such
that the minimum/maximum voxel value range of pore vox-
els was remapped to the integer interval [0; 65535]. Vox-
els belonging to the out-of-sample region R were assigned
value 0.

Brighter voxels in Figure 3(A) or (B) indicates a local, larger
decrease inδ andβ, respectively, which can be due to water loss
during drying. Darker voxels can indicate either no change or a
small increase in δ and β, respectively. An increase may be due
to local water gain produced by water displacements driven
by capillary forces (Lehmann et al., 2008; Xu et al., 2008). The
visual comparison of Figures 3(A) and (B) is already sufficient
to highlight the large difference between the XPCI and XACI
time-differential images. Very well defined regions character-
ized by a decrease in voxel value appear clearly in the XPCI
time-differential image, with strong voxel value contrast to
the surrounding regions, although such high contrast is not
achieved in the XACI time-differential image, where the voxel
value is more homogeneously distributed, thus the image is
noisier. This result is expected, as mentioned in section S1 of
Yang et al. (2015), if one considers water redistribution and
what it brings to a voxel value in the two types of images.
At 30 keV, the relative difference in β between water and
CaCO3, (βCaCO3 − βwater)/βwater, has value 29.676, whereas
the corresponding relative difference for δ, (δCaCO3 −
δwater)/δwater, is 1.435. See also figure S2 in Yang et al. (2015).
This means that a volume of water moving from a source voxel
to a destination one or simply disappearing in a voxel because
of evaporation results in a larger voxel value change and con-
trast enhancement between a water-filled pore and the solid
matrix for the image based upon δ than for the one based upon
β. As a consequence, the time-differential XPCI image of Fig-
ure 3(A) allows for an unambiguous and direct visualization of
pore-scale water loss regions while the time-differential XACI
image does not.

A quantitative confirmation of the difference between the
two types of time-differential images comes from the value his-
tograms for the pore voxels. Figure 4 shows such histograms
for the time-differential images after the 16 bit unsigned in-
teger encoding. For the XPCI time-differential 3D images,
a multimodal voxel value distribution clearly appears (Fig.
4A), suggesting the possibility of identifying different types of
voxels, although the XACI time-differential image is charac-
terized by a unimodal, Gaussian-like distribution (Fig. 4B),
indicating just a noise-like distribution.

Segmentation of water content change regions

We sorted out the pore voxels into different subpopulations
based upon the histogram in Figure 4(A), assuming each sub-
population to be Gaussian-like distributed. Figure 5 shows the
results of the Gaussian mixture best fit based upon the assump-
tion of three subpopulations and the EM method. The Gaussian
distribution of each subpopulation is plotted along with their
sums and the data from Figure 4(A). The best fit was better
with three subpopulations than just with two (see section S5
in Yang et al., 2015 for the comparison of the two best fits).
The subpopulations with the lowest and the highest average
values can be interpreted as containing water gain and water
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Fig. 3. Time-differential phase (A) and attenuation (B) contrast 3D images, obtained by voxel-wise subtraction of the image after drying from the image
before drying. For each contrast type, the voxel value range was remapped from its minimum/maximum range inside the pore 3D binary image to the
integer value interval [0; 65535], assigning value 0 to any voxel belonging to the out-of-sample region. The top-left insets in each column show a zoom
into the same ROI as for Figure 2. Brighter voxel values correspond to a decrease in δ and β, respectively, for (A) and (B), while darker to either no change
or an increase.

Fig. 4. Histograms for the values of the voxels belonging to the pore binary image, segmented from the attenuation contrast images, for the time-differential
phase (A) and attenuation contrast 3D images, respectively.

loss pore voxels, respectively. The subpopulation with inter-
mediate average value can be thought of as including voxels
with either no change in water content or partial change or
initial partial saturation degree (pores not completely filled up
at the time of the first set of measurements).

As criterion to identify only the pore voxels characterized by
a complete or partial water loss, we chose to fix a voxel value
threshold Ṽ0defined as the average value of the intermediate
subpopulation minus its standard deviation (vertical dashed
line in Fig. 5) and to consider only voxels with value above that
threshold. This choice may lead to overestimate the amount
of pore volume characterized by water loss. However, as seen
in Figure 5, it allows for a clear distinction between the pore
voxels with predominant water gain and those with partial or
complete water loss, since the threshold falls approximately
in the middle between the two Gaussian functions with the
lowest and the largest average value, respectively.

Figure 6(A) provides an example of which pore voxels have
been identified as water loss voxels. A slice, at the same posi-
tion, is taken from three different 3D images, the XACI image

after drying, the pore binary image and the 3D binary image
containing the segmented water loss voxels. We chose the
XACI image after drying to show the sample microstructure
because the spatial resolution is supposed to be higher for that
image than for any other, given the lower spatial resolution of
the XPCI datasets and a slightly larger blurring due to water
saturation in the XACI image before drying than after. It can be
seen that most, but not all, of the segmented pores underwent
water loss, suggesting that drying, up to the stage of the sec-
ond measurements, did not empty completely all the pores or,
alternatively, some pores were not filled in with water already
before drying or some pores got refilled with water.

Water loss appears to have occurred rather isotropically,
with no specific localization or preferential orientation, both
on the slice plane and in 3D (see Fig. 6B for volumetric
rendering of a corresponding 3D ROI including the slice in
Fig. 6A and fig. S11 of Yang et al., 2015, for a vertical slice).
Once water loss regions inside pores are segmented by exploit-
ing the time-differential XPCI image, it is possible to expand
the comparative analysis of XPCI and XACI images in terms of
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Fig. 5. (colour in the online version). Gaussian mixture best fit of the voxel value histogram (open circles) for the time-differential phase contrast 3D
image, excluding the out-of-sample voxels and considering only pore voxels. A 3-Gaussian model allowed achieving the best fit of the original histogram.
Each Gaussian distribution (dashed, dotted and dot-crossed lines) is plotted as well as their sum (solid line). The vertical dashed line represents the voxel
value threshold Ṽ0 to sort out pore voxels characterized by partial or complete water loss (voxels with value V0 ≥ Ṽ0). Ṽ0 was calculated as the average
value of the center Gaussian (dotted line) minus its standard deviation.

Fig. 6. (colour in the online version). (A) Slice from the attenuation contrast 3D image after drying, taken at the same position of the slices in Figures
2(C) and 3(B), with the segmented pore and water loss voxels visualized on top of it (blue and purple, respectively); (B) volumetric rendering of a 3D ROI
for the same 3D images. The dashed rectangle in (A) indicates a small ROI magnified in the top-left inset. The solid rectangle in (A) shows the extent in
the cross-sectional plane of the 3D ROI rendered in (B). The 3D ROI rendered in (B) consists of 100 slices, including the one shown in (A). Part of the
attenuation contrast 3D image is cut away in (B) in order to be able to show the pore and water loss segmented voxels.

voxel value contrast to changes due to drying. For each type
of 3D image and at any drying stage, we considered two voxel
binary masks: the one for water loss pore voxels and the one
for pore voxels characterized by water gain. For each 3D image
we computed the contrast-to-noise metric of Eq. (2) with i and
j corresponding to the water loss pore voxels and water gain
pore voxels, respectively. Table 2 reports the values of such
metric for the images. Before drying, both XPCI and XACI im-
ages exhibit the same degree of contrast between the two types
of regions, while, after drying, the XPCI image shows higher
contrast, only slightly perceivable by simple visual compari-
son of Figures 2(A) and (B). Drying produced a 31.5% increase
in that CNR for the XACI images while a 97.5% for the XPCI
ones, directly reflected in the fact that only the time-differential
XPCI image allows locating unequivocally the changes, while
the XACI one does not (Fig. 3).

Table 2. Contrast-to-noise ratio (CNR) between pore voxel regions char-
acterized by water loss and pore regions with water gain. The definition
of the CNR is given in Eq. (2), where the indexes i and j refer to the two
subpopulations of voxels for any raw 3D image

Type of dataset Before drying After drying

XPCI 0.40 0.78
XACI 0.41 0.53

Reliability of the segmentation results

In order to get a qualitative assessment of the in-pore water
loss segmentation reliability, from the physics of drying
point of view, we needed to evaluate whether (1) the pore
segmentation is reliable or not and (2) the in-pore water loss
spatial pattern is in agreement with the pore geometrical
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Fig. 7. (colour in the online version). Pore size cumulative distribution (PScD) curves obtained by the first cycle mercury intrusion porosimetry (MIP,
solid circles) and by continuous PScD analysis of the segmented pores from the attenuation contrast 3D images (open circles). On the vertical axis the
cumulative pore volume divided by the sample volume (cumulative porosity) is plotted. The horizontal, dashed line represents the total open porosity as
measured by the water submersion method.

properties. In Figure 7 we have plotted the cumulative pore
volume fraction (cumulative pore volume up to a certain
pore size level divided by total sample volume, also called
cumulative porosity), as a function of the pore size (the radius
of the overlapping spheres used to cover the pore volume,
according to the ‘continuous’ PScD method), obtained from
the image analysis (open circles) and from the first cycle MIP
intrusion measurement (solid circles).

The dashed horizontal line represents the cumulative (open)
porosity as obtained by gravimetric measurements on five dif-
ferent Globigerina limestone samples from the same batch
of the tomographed sample, measuring their mass before
and after submersion in water under low vacuum conditions
(5 mbar).

Although MIP can measure the PScD up to the nanometer
scale, the curve obtained from the pore segmentation is bound
by the spatial resolution (about 5 μm for the equivalent pore
radius). As the water absorption measurement shows, the pore
volume that can be assessed by X-ray imaging, at the given
spatial resolution level, is about only one-third of the total pore
volume that water can actually occupy. This means that, in
the saturated stage, most of the water occupies pores much
smaller than 5 μm in radius.

A clear difference can be seen between the image analy-
sis results and the MIP ones. Such difference is expected since
MIP measurements are known to associate larger volume frac-
tions to smaller pore (intrusion) radiuses due to the ink-bottle
effect (Kaufmann, 2009). Such effect leads MIP to systemati-
cally produce distribution curves which are spuriously later-
ally shifted towards smaller pore radius values. According to
the first cycle intrusion MIP curve of Figure 7, the average
pore radius is 1.98 μm, smaller than the spatial resolution
and of what one would expect from the image analysis distri-
bution curve. For our sample, the ink-bottle effect was rather
strong. See section S6 of Yang et al. (2015), for a semiquan-
titative assessment of the ink-bottle effect degree based upon
the two-cycle MIP measurements.

Taking into consideration the ink-bottle effect, the MIP and
image analysis pore radius cumulative distribution curves look
qualitatively in agreement with each other, leading to more
similar values for the average pore radius, allowing us to con-
sider the pore segmentation results as reliable.

As mentioned in section ‘Tomographic datasets: processing
and analysis’, we then used the results of the ‘continuous’
PScD analysis according to the method proposed by Münch &
Holzer (2008), to evaluate the amount of in-pore water loss for
each range of the average pore size (radius) r. Figure 8 reports
the plot of the water desaturation degree, DS, a measure of
how much water volume per total pore volume an initially
saturated pore region has lost due to drying, as a function of r.
The range of r values was divided in a total of 49 bins. For each
bin, we counted the number of pores falling in it and computed
the respective volume sum.

Figure 8 shows an increase in the desaturation degree with
increasing r. The only exception to such monotonic behaviour
occurs in the neighbourhood of r � 41–42 μm, where a drop
in desaturation degree occurs in correspondence of one bin.
We could not find any reason related to image processing
artefacts or specific microstructural properties of the sample
for such drop. Thus, we consider such point in the curve of
Figure 8 as a statistical outlier. We also observe that with
increasing r the fluctuations in the desaturation degree values
become larger due to smaller statistics (less large pores).

The trend shown in Figure 8 is expected considering the
basic physics of drying in porous media. Water evaporation
leads to the formation of air–water menisci interfaces. Such
menisci are accompanied by capillary forces which are larger
in smaller pores, according to the Young–Laplace equation.
As evaporation progresses, the saturated pore space gets in-
creasingly occupied by air via bursts of air invasion following
typical patterns of invasion percolation (Wilkinson & Willem-
sen, 1983). Smaller pores tend to be air-invaded later than
larger pores because in addition to air invasion there is water
flow, driven by the large spatial gradients in capillary forces,
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Fig. 8. Water desaturation degree, DS, as a function of the average pore radius as calculated by the ‘continuous’ pore size cumulative distribution method
of Münch & Holzer (2008), applied to the pore 3D binary image and to the in-pore water loss regions segmented from the time-differential phase contrast
image.

from the larger pores, with smaller meniscus curvature, to the
smaller pores, with larger curvature (Xu et al., 2008). This
means that smaller pores are more frequently characterized
by a continuous inter-play between emptying (air invasion)
and replenishing (water displacement).

The overall expected results is a smaller degree of desatura-
tion for the smaller pores than for the larger ones, at any given
drying stage, as observed in our results reported in Figure 8.
Thus, the segmentation of water loss regions based upon the
time-differential XPCI can be considered physically meaning-
ful, in terms of some of the basic pore-scale drying processes.

Discussion, outlook and conclusions

Figure 3 and the 3D image analysis clearly demonstrate
higher sensitivity of XPCI in detecting pore-scale water con-
tent changes and in mapping where these changes are located,
compared with XACI. This was one of the main targets at the
beginning of this work.

Regarding the 3D image analysis, we have focused only
on water changes inside segmented pores. From the point
of view of the drying investigation, the analysis has allowed
distinguishing three categories of water content change re-
gions (Figs. 4A and 5). We have interpreted those categories
as water loss, water gain and no water change regions. Such
interpretation is driven by what is expected by the physics of
drying at the pore scale.

Evaporative drying leads to the gradual substitution of liq-
uid water by air. Even for a configuration as in our experiment,
where only one boundary surface is open for vapour transfer to
the environment and the sample has large aspect ratio along
the direction orthogonal to that surface, the progression of the
so-called ‘drying front’ (the ideal surface separating the part of
the sample with almost no water left and the part partially or
yet completely saturated) should not be expected to be spatially
uniform, with a clear cut distinction between dry regions and
partially saturated ones. Rather, as shown in many studies

with neutron imaging (Shokri et al., 2009; Shokri & Sahimi,
2012), confocal scanning laser microscopy (Xu et al., 2008)
and computational modeling (Prat, 2002; Yiotis et al., 2003),
the drying front can either be a very ‘rough’ and discontinuous
surface or can actually be an extended region where percolat-
ing air invasion regions (Wilkinson & Willemsen, 1983) are
intertwined with small water clusters, mainly associated with
small pores (Xu et al., 2008). Such clusters play a relevant
role in determining the drying kinetics during the early stage
of the process, when a characteristic constant drying rate is
typically observed (Lehmann et al., 2008; Or et al., 2013).
Such water clusters are thought of supporting hydraulic liq-
uid transport, via capillary forces, from the part of the sample
with higher water content (or completely saturated) till the
top, evaporating surface. The observation of such clusters in
numerical simulations and by neutron imaging (Shokri et al.,
2009; Shokri & Sahimi, 2012) is compatible with our identifi-
cation of water gain regions. Such identification matches also
the characterization of the sample drying kinetics by gravi-
metric measurements performed after the beamtime in similar
environmental conditions (temperature and RH) and with the
same time interval (see section S7 in Yang et al., 2015 for the
results and their analysis). The gravimetric measurements in-
dicate that at the start of the second scan the sample was very
likely still within the constant rate drying period, implying the
persistence of interconnected water clusters up to the sam-
ple top surface. This fact could also help understanding why
differences in in-pore water content could be detected only in
the time differential XPCI image and not by visual inspection
of the two XPCI images separately, due to the lack of complete
drying.

We remark that sorting out the in-pore water change re-
gions in three categories leads only to a qualitative classifi-
cation. As it can be observed in Figure 5, each of the three
best fit Gaussian functions has a large overlap with its nearest
neighbour, implying the impossibility of a clear-cut distinc-
tion between voxels with no water change and voxels with
change. However, the water loss and water gain Gaussians
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(dot-crossed and dashed lines in Fig. 5, respectively) show al-
most no overlap, allowing for better distinction between vox-
els of the two types. Thus, further analysis should focus not
only on the spatial distribution of in-pore water loss regions
but also on in-pore water gain regions as key players in the
capillarity-driven hydraulic transport that support the con-
stant, high drying rate at the beginning of the process.

This work focused on characterizing the potential of XPCI
for studying pure water drying in a porous medium. However,
the performed measurements (including the two other vertical
ROI of the sample scanned), the 3D image analysis results
and the developed 3D image analysis workflow allow us for a
more complete study of evaporative drying in the investigated
limestone. Beyond the analysis of the spatial distribution of
water gain regions, work should also focus on water change
regions outside of the segmented pores. Such regions may
provide information about the part of the pore space below
the spatial resolution. As mentioned in the ‘Results’ section,
when the sample is highly saturated, most of water permeates
pores which could not be resolved in our 3D images. The use of
segmented water change regions outside the segmented pore
space was already shown and exploited by Boone et al. for
analyzing the full pore space of different types of stones (Boone
et al., 2014). However, a different segmentation approach for
the time-differential XPCI 3D images would be needed for such
purpose.

In this work, the drying process was investigated only at
two stages because a similar study was performed on a broad
range of different porous materials, including mortars. In ad-
dition, these experiments were designed to demonstrate the
advantages of XPCI over XACI. A new experimental campaign
dedicated to imaging water displacement during evaporative
drying should include only XPCI and a larger number of suc-
cessive scans, in order to improve the temporal sampling of
the process from a 3D imaging point of view. The scans should
be performed by keeping the sample continuously on the
X-ray tomographic microscope sample holder, installed inside
a small climatic chamber connected with a circuit of air condi-
tioned at a fixed and constant RH and temperature, as used in
Derome et al. (2011). The first scan (or set of scans, for multiple
ROIs along the Z-axis) should be performed with completely
wet air, in order to avoid as much as possible any initial drying
occurring during the scan(s) time. Then, the air RH should be
set to very low levels, equivalently to what we did by moving
the sample into the desiccator, in order to drive the evaporative
drying. The single scan time could be reduced to less than the
9 min necessary for our measurements, using sCMOS cameras
with higher frame rate available at the TOMCAT beamline.
However, a suitable trade-off should be found between tem-
poral resolution of the tomographic scan and the achievable
dynamic range of the acquired images, in order to fully ex-
ploit the advantages of the phase contrast sensitivity to small
changes in pore scale (or even subpore scale) water content. In

this work, we opted for a camera guaranteeing larger dynamic
range at the cost of smaller temporal resolution.

The same considerations about trade-off between sensitivity
to pure water changes and temporal resolution apply to XPCI
of other water transport processes. FSP-XPCI performed with
synchrotron radiation can provide an alternative to standard
XACI of processes faster than drying, e.g. capillary imbibi-
tion or drainage, without the need of substituting pure water
with solutions containing contrast agents, a strict necessity
when dealing with reactive transport mechanisms as those
occurring in cement-based materials or in polymer electrolyte
membrane fuel cells. This possibility is reinforced by recent
advancements in the field of phase retrieval algorithms re-
quiring radiographic acquisition at no more than one or two
sample-to-detector distances (Langer et al., 2008; Davidoiu
et al., 2011; Moosmann et al., 2011; Mokso et al., 2013), which
speeds up the overall tomographic acquisition procedure.

In conclusion, we have performed XTM measurements with
synchrotron radiation on a limestone sample at two different
saturation stages during its drying, with two different sample-
to-detector distances in order to be able to produce two sets
of 3D images with distinct contrast, either based upon X-ray
attenuation or refraction (phase shift). We could identify wa-
ter content change regions only in the time-differential phase
contrast images, demonstrating that XPCI can empower the
pore-scale 3D visualization of water spatio-temporal distribu-
tion during transport processes, thus avoiding the need of
contrast agents added to the water, as typically used in XACI.
The 3D image analysis of the phase contrast images allowed
us obtaining some features of the pore-scale drying process in
agreement with what observed with other microscopy tech-
niques, computational modelling results and the basic theory
of drying in porous media. The results of this work suggest
that XPCI provides new opportunities for any investigation
where it is needed to visualize pure water in a porous material,
especially in the case of reactive water transport processes.
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Supporting Information

Additional Supporting information may be found in the online
version of this article at the publisher’s website:

Fig. S1. Plot of the ratio between the decrement δ of the real
part of the index of refraction and its imaginary part β as a
function of the photon energy E.
Fig. S2. Individual plots of the decrement δ of the real part
(inset (a)) and the imaginary part β (inset (b) of the in-
dex of refraction n for the same photon energy E as in
Fig. S1.
Fig. S3. Overlapping of the 1st slice of the XACI 3D image
after drying (grey tones) and of the corresponding slice of the
pore 3D binary image (semi-transparent blue color), the latter
obtained by k-means clustering of the two XACI 3D images
with a 1D feature space based on the voxel value only.
Fig. S4. Voxel value, V0, cumulative distribution functions
(CDFs) for the XPCI ((a)) and XACI ((b)) 3D images, before
(blue curve) and after (red curve) drying. P (V ≤ V0) means the
probability for the event V ≤ V0, where V indicates generically
the voxel value as a random variable.
Fig. S5. Voxel value histograms the CDFs of Fig. S4 are derived
from. (a) and (b): XPCI 3D images, before and after drying,
respectively. (c) and (d): XACI 3D images, before and after
drying, respectively.
Fig. S6. Voxel value cumulative distribution functions (CDFs)
for the raw XPCI (a) and XACI (b) 3D images, with the blue
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line indicating the image before drying while the red line after
drying.
Fig. S7. Voxel value histograms the CDFs of Fig. S6 are derived
from. (a) and (b): XPCI 3D images, before and after drying,
respectively. (c) and (d): XACI 3D images, before and after
drying, respectively.
Fig. S8. Voxel value histogram (open circles) from the time-
differential XPCI 3D image considering only the segmented
pore voxels. 2-Gaussian mixture best fit using the expectation
maximization (EM) method.
Fig. S9. Comparison between pore size (complementary) cu-
mulative distribution functions obtained by 2-cycle mercury
intrusion porosimetry and 3D image analysis. The red curve
refers to the first cycle intrusion and is the same one reported
in Fig. 7 within the article.

Fig. S10. Drying rate, e, time series measured during a drying
experiment with the same sample used during the beamtime
but performed after the beamtime, in environmental and load-
ing conditions similar to those occurred during the beamtime
itself. During the first 1.5 hours, the sample was kept at about
50% RH and 23°C.
Fig. S11. Vertical (Y-Z) slice from the dried XACI dataset,
taken in the middle of the sample, with the segmented pore
and water loss voxels visualized on top of it (blue and purple,
respectively).
Table SI: Values for three different goodness-of-fit metrics ap-
plied to the best fit of the voxel value histogram of the time-
differential XPCI 3D image, considering only voxels belonging
to the pore region, and using two best fit models, a 2-Gaussian
mixture and a 3-Gaussian one.
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