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Diabetes mellitus has negative impacts on the central nervous
system leading to diabetic encephalopathy and concomitant
augmented incidence of cognitive problems (Brands et al.
2005), which are particularly associated with atrophy of the
hippocampal formation that is involved in learning and
memory processing (Convit et al. 2003; Gold et al. 2007).
The frequently used model of type 1 diabetes, streptozotocin
(STZ)-induced diabetic rats, is characterized by chronic
hyperglycemia associated with impaired hippocampal-depen-
dent learning and memory as well as defective synaptic
plasticity in the hippocampus (Biessels et al. 1996). The
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Abstract

Type 1 diabetes can affect hippocampal function triggering

cognitive impairment through unknown mechanisms. Caf-

feine consumption prevents hippocampal degeneration and

memory dysfunction upon different insults and is also known

to affect peripheral glucose metabolism. Thus we now

characterized glucose transport and the neurochemical

profile in the hippocampus of streptozotocin-induced dia-

betic rats using in vivo 1H NMR spectroscopy and tested

the effect of caffeine consumption thereupon. We found that

hippocampal glucose content and transport were unaltered

in diabetic rats, irrespective of caffeine consumption. How-

ever diabetic rats displayed alterations in their hippocampal

neurochemical profile, which were normalized upon resto-

ration of normoglycaemia, with the exception of myo-inositol

that remained increased (36 ± 5%, p < 0.01 compared to

controls) likely reflecting osmolarity deregulation. Compared

to controls, caffeine-consuming diabetic rats displayed in-

creased hippocampal levels of myo-inositol (15 ± 5%,

p < 0.05) and taurine (23 ± 4%, p < 0.01), supporting the

ability of caffeine to control osmoregulation. Compared to

controls, the hippocampus of diabetic rats displayed a re-

duced density of synaptic proteins syntaxin, synaptophysin

and synaptosome-associated protein of 25 kDa (in average

18 ± 1%, p < 0.05) as well increased glial fibrillary acidic

protein (20 ± 5%, p < 0.05), suggesting synaptic degenera-

tion and astrogliosis, which were prevented by caffeine

consumption. In conclusion, neurochemical alterations in the

hippocampus of diabetic rats are not related to defects of

glucose transport but likely reflect osmoregulatory adapta-

tions caused by hyperglycemia. Furthermore, caffeine con-

sumption affected this neurochemical adaptation to high

glucose levels, which may contribute to its potential neuro-

protective effects, namely preventing synaptic degeneration

and astrogliosis.

Keywords: caffeine, diabetes, glucose, hippocampus, nu-

clear magnetic resonance, streptozotocin.
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mechanisms linking diabetes to dysfunction of brain circuits
are still unclear. One possibility is that hyperglycemia is
responsible for deregulation of brain metabolism involving
inadequate glucose utilization, which is the hallmark of
diabetic conditions in peripheral tissues. However, published
studies report inconsistent effects of hyperglycemia on
substrate transport into the brain. In particular, glucose
transport into the brain was suggested to be reduced (McCall
et al. 1982), augmented (Duelli et al. 2000) or unaffected
(Simpson et al. 1999) by chronic hyperglycemia. A second
possibility to explain hyperglycemia-induced hippocampal
dysfunction and damage resides in the disruption of osmotic
balance, which is of fundamental importance for the viability
of cells, in particular of neurons (Tomlinson and Gardiner,
2008).

As important as understanding the mechanisms linking
diabetes to memory dysfunction is devising novel strategies
to alleviate diabetes-induced memory impairment, which
may also shed light on key mechanistic processes. A likely
candidate is caffeine as chronic caffeine consumption
abrogates memory impairment upon different insults (Cunha
2008; Takahashi et al. 2008) and affords robust neuropro-
tection (Cunha 2005; Chen et al. 2007). These effects are
mimicked by antagonists of adenosine A2A receptors, which
are the main molecular targets of chronic caffeine consump-
tion (Fredholm et al. 1999). Adenosine receptors can control
neuronal metabolism (Hammer et al. 2001) and osmolarity
perturbations in the brain (Hada et al. 1998; Wurm et al.
2008), which may occur upon chronic hyperglycemia (see
above). Furthermore, the observation that the density of A2A

receptors is increased in the hippocampus of STZ-induced
diabetic rats (Duarte et al. 2006) bolters the interest of
exploring the potential of chronic caffeine consumption to
mitigate central diabetic encephalopathy.

The first aim of the present work was to determine the
effect of a diabetic condition characterized by chronic
hyperglycemia on the transport of glucose across the
blood-brain barrier (BBB) and on the neurochemical profile
in the hippocampus. The second aim was to determine if
chronic caffeine consumption affects metabolic alterations in
the hippocampus of STZ-induced diabetic rats. This was
achieved using high-field in vivo NMR spectroscopy, which
allows reliably measuring many metabolite concentrations
that compose the neurochemical profile (Mlynárik et al.
2006) and quantify glucose uptake in hippocampal tissue.
The final aim is to test if caffeine consumption could also
counteract morphological features of neurodegeneration in
the hippocampus of diabetic rats. In fact, chronic hypergly-
cemia triggers synaptic degeneration in the hippocampus of
STZ-induced diabetic animals, in particular decreasing the
density of synaptic proteins (Duarte et al. 2006; Grillo et al.
2005; Malone et al. 2006), and causes astrocyte reactivity
and proliferation (Baydas et al. 2003; Saravia et al. 2002).
Thus, we tested if long-term caffeine consumption might also

prevent synaptic alterations and astrogliosis induced by
chronic hyperglycemia in the hippocampus of STZ-treated
rats.

Methods

Animals
All experimental procedures involving animals were approved by

the local ethics committee. Type 1 diabetes mellitus was induced in

male Sprague–Dawley rats (8 weeks old, obtained from Charles

River Laboratoires, Lentilly, France) by intra-peritoneal injection of

STZ (65 mg/kg, prepared in sodium citrate buffer 10 mM, pH 4.5),

which resulted in blood glucose levels above 300 mg/dL after

3 days as in previous studies (see Duarte et al. 2006) upon weekly

measuring pre-prandial glycaemia from tail blood, using a glucom-

eter based on the glucose oxidase method (Ascencia Contour, Bayer,

Switzerland). Rats were maintained for 4 weeks with food and water

ad libitum, and the NMR study was carried out 30 days after STZ-

treatment, when sustained and chronic hippocampal alterations are

observed (Alvarez et al. 2009; Duarte et al. 2006). Sham-treated

age-matched control rats received vehicle injection and were

maintained in the same conditions. Half of the animals were

allowed to consume caffeine that was administered in the drinking

water at 1 g/L for a period of 6 weeks starting 2 weeks before STZ

administration. Because of polydipsia, STZ-induced diabetic rats

received variable caffeine concentration to achieve similar caffeine

consumption levels. Thus, in this experimental design we have four

animal groups: control, caffeine-treatment, STZ-treatment, and STZ

plus caffeine-treatment. Both body weight and caffeine consumption

were monitored throughout the treatment period.

For the NMR studies, animals were anaesthetized using 2%

isoflurane (Attane, Minrad, NY, USA) in oxygen gas for surgery,

and then intubated and ventilated with a pressure-driven ventilator

(MRI-1, CWE incorporated, Ardmore, PA, USA). Catheters were

inserted into the femoral artery for monitoring blood gases, glucose

and arterial blood pressure, and into the femoral vein for infusion of

a-chloralose (Acros Organics, Geel, Belgium), D-glucose (Sigma-

Aldrich, Basel, Switzerland) and insulin (Humulin Normal, Eli Lilly,

Switzerland). A blood sample (200 lL) was collected and the serum

was separated by centrifugation and stored for quantification of

insulin and caffeine.

Animals were immobilized in a home-built holder with a bite bar

and two ear inserts to minimize potential motion. Body temperature

was maintained at 37.5�C with a warm water circulation system

based on the feedback obtained from a rectal temperature probe.

Arterial blood pressure, heart rate and respiratory rate were

continuously monitored with an animal monitoring system (SA

Instruments, Stony Brook, NY, USA). Before inserting the animal in

the bore of the magnet, anesthesia was switched to a-chloralose
(intravenous bolus of 80 mg/kg and continuous infusion rate of

25 mg/kg/h). Insulin (0.5 U/mL solution) and D-glucose [20% (w/v)

solution] were infused at a rate adjusted based on concomitantly

measured arterial plasma glucose concentrations to achieve stable

target glycaemia levels. NMR measurements were performed after

each glucose level had been stable for more than 15 min. Arterial

pH and pressures of O2 and CO2 were measured using a blood gas

analyzer (AVL Compact 3, Diamond Diagnostics, Holliston, MA,
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USA). These physiology parameters were similar in the four

experimental groups (Table 1). Plasma glucose concentration was

quantified with the glucose oxidase method, using a multi-assay

analyzer (GW7 Micro-Stat, Analox Instruments, London, UK).

1H NMR spectroscopy and quantification of metabolites
All experiments were carried out using an INOVA spectrometer

(Varian, Palo Alto, CA, USA) interfaced to an actively-shielded 9.4

T magnet with a 31 cm horizontal bore (Magnex Scientific,

Abingdon, UK) using a homebuilt 10 mm 1H quadrature surface

coil. The rat brain was positioned in the isocentre of the magnet and

fast-spin-echo images with repetition time of 5 s, echo time of

52 ms and echo train length of 8 were used to identify the

hippocampus based on anatomical landmarks. Shimming was

performed with FAST(EST)MAP (Gruetter and Tkác 2000), and
1H NMR spectra were acquired from a volume of interest (VOI) of

18 lL placed in the left hippocampus. SPECIAL with echo time of

2.8 ms and repetition time of 4 s (Mlynárik et al. 2006) was used for
localization.

Spectral analysis was carried out using LCModel (Provencher,

1993) including a macromolecule spectrum in the database, as in

previous studies (Mlynárik et al. 2006). The unsuppressed water

signal measured from the same volume of interest was used as an

internal reference for the quantification of the following 20

metabolites that constitute the neurochemical profile in the present

study: glucose, ascorbate, phosphorylehtanolamine, creatine, phos-

phocreatine, myo-inositol, taurine, N-acetylaspartate, aspartate,

glutamate (Glu), glutamine, GABA, alanine, lactate, b-hydroxybu-
tyrate, glycerophosphorylcholine phosphorylcholine, GSH, N-acet-
ylaspartylglutamate, scyllo-inositol. The Cramér-Rao lower bound

provided by LCModel was used as a measure of the reliability of the

apparent metabolite concentration quantification (Cavassila et al.
2001). Metabolite concentrations with Cramér-Rao lower bound

higher than 25% were not included in the analysis. Spectral quality

was evaluated by analyzing the metabolite line with and signal to

noise ratio that were provided by LCModel.

Determination of glucose transport kinetics
The predominant transporter proteins (GLUT) involved in cerebral

glucose utilization are GLUT1 and GLUT3, being GLUT1 present

in all brain cells including the endothelial cells of the capillaries

(with very low neuronal expression in vivo), and GLUT3 almost

restricted to neurons (reviewed in Simpson et al. 2007). Thus,

GLUT1 is mainly responsible for the facilitative transport of glucose

across the BBB. The model of glucose transport across the BBB was

simplified to consider a three compartment system, as described in

Gruetter et al. (1998): the BBB, which was considered to behave as

a single transport step, separates the blood circulation compartment

from the brain aqueous phase that is virtually separated from the

metabolic pool where glucose is consumed. The transport across the

BBB was described using Michaelis-Menten kinetics with unidi-

rectional fluxes and symmetric kinetic constants for influx and

efflux, and non-specific permeability of the BBB to glucose was

excluded. Cerebral glucose consumption rate was assumed to be

invariable over the range of glucose concentrations studied in all

groups. Under the steady-state condition, the model of glucose

transport is represented by the following mathematical equation:

dGhipp

dt
¼ Tinflux � Tefflux � CMRglc ¼ 0 ð1Þ

In this equation, Ghipp is the glucose concentration in the

hippocampus (in lmol/g), T is the rate of glucose influx or efflux

across the BBB (in lmol/g/min), and CMRglc is the cerebral

metabolic rate for glucose consumption (in lmol/g/min).

Two types of enzymatic mechanism were considered for glucose

transporters. First, the standard Michaelis)Menten model with the

following expression relating hippocampal glucose to plasma

glucose (see Gruetter et al. 1998):

Ghipp ¼ VdKt

Tmax

CMRglc
� 1

� �
Gplasma � Kt

Tmax

CMRglc
þ 1

� �
Kt þ Gplasma

ð2Þ

Gplasma is the plasma glucose concentration, Tmax denotes the

apparent maximal transport rate across the BBB (lmol/g/min), Kt

denotes the apparent Michaelis-Menten constant (mM), Vd is the

volume of the physical distribution space of glucose in the brain

(0.77 mL/g).

Second, as at hyperglycemia the brain glucose approaches or

even exceeds the Kt obtained with the standard Michaelis-Menten

model (including observations in the present study), we used

reversible Michaelis-Menten kinetics of glucose transport. Using

this reversible model at steady state, the following equation

expresses hippocampal glucose concentrations as function of plasma

glucose and suggests a linear relation between the two variables as

previously described (Gruetter et al. 1998):

Ghipp ¼ Vd

Tmax

CMRglc
� 1

� �
Gplasma � Kt

Tmax

CMRglc
þ 1

ð3Þ

For the estimation of the kinetic parameters of glucose transport at

the BBB, glucose concentration in the hippocampus was calculated

subtracting the contribution of plasma glucose in a blood volume of

3.4 mL for 100 g of cerebral tissue (Shockley and LaManna, 1988)

from the total glucose signal in the 1H NMR spectra.

Hippocampal membrane preparations
After the NMR experiment, both hippocampi were readily dissected

and stored at )80�C until membrane preparation for western

blot analysis. Membranes from the whole hippocampus or from

Table 1 Physiologic parameters were maintained constant at the

different ranges of plasma glucose concentration during the NMR

experiment

Body

temperature (�C) Arterial pH

PaCO2

(mm Hg)

Control 37.5 ± 0.1 7.35 ± 0.01 42.0 ± 1.3

Caffeine 37.5 ± 0.1 7.35 ± 0.02 44.1 ± 3.6

STZ 37.4 ± 0.1 7.37 ± 0.02 41.5 ± 2.4

STZ + Caff 37.5 ± 0.1 7.39 ± 0.01 40.9 ± 0.9

Data are mean ± SEM of the following number of animals in each

experimental group: control (n = 8), caffeine)treated (n = 6),

STZ)treated (n = 6) and STZ and caffeine)treated (n = 6) rats.
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Percoll-purified hippocampal synaptosomes were prepared as

previously detailed (Duarte et al. 2006). Briefly, the two hippocampi

from one rat were homogenized at 4�C in sucrose-HEPES buffer

(composition 0.32 M sucrose, 1 mM EDTA, 10 mM HEPES, 1 mg/

mL bovine serum albumin, pH 7.4). The resulting homogenate was

centrifuged at 3000 g for 10 min at 4�C, the supernatant collected

and centrifuged at 14 000 g for 12 min at 4�C. The pellet was re-

suspended in 1 mL of a 45% (v/v) Percoll solution made up in

Krebs-HEPES solution (composition in mM: 140 NaCl, 5 KCl, 10

HEPES, 1 EDTA, 5 glucose, pH 7.4). After centrifugation at

21 000 g for 2 min at 4�C, the top layer (nerve terminal fraction)

was removed, washed and re-suspended in Krebs-HEPES solution.

For total membrane preparation, a portion of the supernatant of the

first centrifugation was taken, re-suspended in a solution of 50 mM

Tris and 10 mM MgCl2 (pH 7.4), centrifuged at 28 000 g for

20 min at 4�C, and the resulting pellet re-suspended in a Krebs-

HEPES solution. An aliquot of each membrane preparation was

saved for protein quantification using the bicinchoninic acid method

(kit from Pierce Biotechnology, Rockford, IL, USA).

Western blot analysis
Western blot analysis was performed as previously described

(Duarte et al. 2006). Briefly, each sample was diluted with five

volumes of sodium dodecyl sulfate–polyacrylamide gel electropho-

resis buffer containing 30% (v/v) glycerol, 0.6 M dithiothreitol,

10% (w/v) sodium dodecyl sulphate and 375 mM Tris-HCl pH 6.8,

and boiled at 95�C for 5 min. These diluted samples (25 lg of

protein amount) were separated by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (7.5% separation gel topped

with a 4% concentrating gel) under reducing conditions, together

with pre-stained molecular weight markers (Biorad Laboratories,

Amadora, Portugal), and then electro-transferred to polyvinylidene

difluoride membranes (0.45 lm, from Amersham Biosciences,

Buckinghamshire, UK). After blocking for 1 h at 21–25�C with

5% milk in Tris-buffered saline (Tris 20 mM, NaCl 140 mM, pH

7.6), containing 0.1% Tween 20 (TBS-T), the membranes were

incubated overnight at 4�C with the primary antibodies against

synaptophysin (dilution 1 : 10 000; from Sigma, Sintra, Portugal),

synaptosome-associated protein of 25 kDa (SNAP25; dilution

1 : 10 000; from Sigma), syntaxin (dilution 1 : 10 000; from

Sigma), post-synaptic density protein of 95 kDa (PSD95, dilution

1 : 20 000; from Chemicon, Temecula, CA, USA), microtubule-

associated protein type 2 (MAP2; dilution 1 : 1000; from Santa

Cruz Biotechnology, Frilabo, Portugal) or glial fibrillary acidic

protein (GFAP; dilution 1 : 5000; from Sigma). After three 15 min

washing periods with TBS-T containing 0.5% milk, the membranes

were incubated with the alkaline phosphatase-conjugated anti-rabbit

IgG or anti-mouse IgG secondary antibodies (dilution 1 : 10 000;

from Amersham) in TBS-T containing 1% milk during 90 min

at 21–25�C. After three 20-min washes in TBS-T with 0.5% milk,

the membranes were incubated with enhanced chemi-fluorescent

substrate (Amersham) and then analyzed with a VersaDoc 3000

system (Biorad).

The membranes were then re-probed and tested for a-tubulin or

b-actin immunoreactivity to confirm that similar amounts of protein

were applied to the gels. Briefly, the membranes were incubated at

21–25�C for 30 min with 40% (v/v) methanol and 1 h with 0.1 M

glycine buffer pH 2.3, and then blocked as previously described

before incubation with an anti-a-tubulin (dilution 1 : 10 000) or

anti-b-actin (dilution 1 : 5000) antibodies (both from Sigma) for 2 h

at 21–25�C. The membranes were then washed, incubated with an

anti-mouse IgG alkaline phosphatase-conjugated secondary anti-

body and analyzed as described above.

Quantification of serum insulin and caffeine
Insulin concentration was quantified by enzyme immunoassay using

the Mercodia Ultrasensitive Mouse Insulin ELISA kit (Mercodia,

Uppsala, Sweden), and the colorimetric endpoint measured in a

SpectraMax Plus384 spectrometer (Molecular Devices, Union City,

CA, USA).

For caffeine measurement, each serum sample was added to an

equal volume of methanol-acetone (4 : 1), mixed for 15 min,

centrifuged at 3000 g for 15 min, and the supernatant saved for

caffeine quantification. Samples (20 lL) were separated at 21–25�C
using a reverse-phase column [LiChroCART 125 · 4 mm LiChro-

spher 100 RP-18 (5 lm) cartridge fitted into a ManuCART holder

(Merck, Darmstadt, Germany)], using a Gilson system equipped

with a UV detector set at 274 nm. The maximum peak in the

absorption spectra of caffeine was confirmed in a 100 lM caffeine

solution prepared in water-methanol (10 : 1), using a SpectraMax

Plus384 spectrometer. The eluent was 40% (v/v) methanol at pH 6.0

with a flow rate of 0.8 mL/min. The identification of the caffeine

peak was performed by comparison of relative retention time with

standard samples prepared in water-methanol-acetone (5 : 4 : 1) and

its quantification achieved by calculating the peak areas then

converted to concentration values by calibration with known

standards ranging from 1 to 100 lM.

Statistics
Results are generally presented as mean ± SEM values of n
experiments. Kinetic parameters of glucose transport Kt and Tmax/

CMRglc were varied to achieve the best fit to the data, constraining

Kt to take a positive value. Significant group differences were

considered at p < 0.05 in the statistical test. Student’s t-test was used
to compare the metabolic profile of controls and STZ-treated rats.

ANOVA followed by the Bonferroni’s post-test was used for

comparison of multiple experimental groups.

Results

During the period when the rats had free to access caffeine,
both before and after STZ-treatment, body weight and
glycaemia were monitored. As shown in Fig. 1(a) and (b),
after STZ injection, there was a reduction of weight gain and
a significant sustained increase in pre-prandial glycaemia of
the diabetic rats when compared to controls, whether the
animals consumed caffeine or not. Caffeine consumption was
not significantly different in control and STZ)treated rats
(p > 0.05, Fig. 1c), leading to similar serum caffeine
concentrations (p > 0.05, Fig. 1d). Serum insulin concentra-
tion was reduced in STZ)treated rats when compared to
controls (p < 0.05). Caffeine consumption did not affect
significantly circulating insulin levels (Fig. 1e), suggesting
that caffeine treatment did not interfere with STZ action.
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Metabolite concentrations in the hippocampus
A detailed investigation of diabetes-induced alterations in the
hippocampal metabolite concentrations under hyper- and
normo-glycaemia was then carried out. Figure 2 shows
typical 1H NMR spectra from the hippocampus obtained in
the present study which illustrate the spectral quality
achieved at high magnetic field, i.e. high spectral resolution
with metabolite line width of 7 ± 1 Hz and excellent signal
to noise ratio of 28 ± 3 in volumes as small as 18 lL
localized in the hippocampus.

When compared to controls at euglycaemia (plasma
glucose of 5.6 ± 0.5 mM, n = 8), STZ)induced diabetic
rats under hyperglycemia (plasma glucose of 33.3 ± 3.4 mM,
n = 6) displayed significant alterations in the neurochemical
profile (Fig. 3). Namely, there was an increase in the
concentration of b-hydroxybutyrate, glycerophosphorylcho-
line, myo-inositol, N-acetylaspartate, taurine and total crea-
tine, as well as a reduction of the concentration of GSH and
N-acetylaspartylglutamate.

When glycaemia of STZ)treated rats was acutely
normalized by insulin infusion, the majority of the
metabolic alterations in the hippocampus returned to
control levels (Fig. 3). In STZ)treated rats subjected to
acute normalization of glycaemia (plasma glucose of 7.9 ±
1.7 mM, n = 6), the only significant change that remained
was increased myo-inositol concentration (+36 ± 5%,
n = 6, p < 0.01 compared to controls). Interestingly, con-
trol rats under acute hyperglycemia did not exhibit
significant alterations of the neurochemical profile,
when compared to euglycaemia (data not shown),
except for the expected increase in hippocampal glucose
concentration.

Chronic caffeine consumption affected the neurochemical
profile of STZ-induced diabetic rats (Fig. 4) in a particular
way: the diabetes-induced increase of myo-inositol concen-
tration was of lower amplitude, i.e. a 15 ± 5% increase
compared to controls (n = 6, p < 0.05); however, while the
high taurine content in the hippocampus of STZ-treated rats
was normalized at euglycaemia, it remained significantly
increased in STZ-treated rats that consumed caffeine
(+23 ± 4%, n = 6, p < 0.01, compared to controls). Impor-
tantly, the diabetes-induced combined increase of the
concentration of taurine plus myo-inositol was not altered
by caffeine consumption (Fig. 4). Finally, the other quanti-
fied metabolites that comprise the neurochemical profile were
not significantly altered in the hippocampus of diabetic rats
that consumed caffeine when compared to controls (data not
shown).

In summary, the neurochemical profile in the hippocampus
shows consistent modifications in myo-inositol and taurine
concentrations caused by STZ-induced diabetes. Compared
to control rats, diabetic rats under hyperglycemia displayed
increased myo-inositol and taurine concentrations, and tau-
rine levels were restored at euglycaemia. However, diabetic
rats that consumed caffeine, showed smaller increase of myo-
inositol content, and did not normalize diabetes-induced
increment of taurine levels at euglycaemia.

Hippocampal glucose transport
The hippocampal glucose concentration was significantly
increased in the hippocampus of the diabetic rats, as visible
in the glucose signal at 5.23 ppm in 1H NMR spectra, yet it
approaches that of controls upon normalization of glycaemia
(Fig. 2). As shown in Fig. 5, the dependence of hippocampal

Fig. 1 Characteristics of the animals used

in the study, namely body weight (panel a),

pre-prandial glycaemia (panel b), caffeine

intake (panel c) measured across the

housing period, and caffeine (panel d) and

insulin (panel e) concentrations in the ser-

um determined at the end of treatment.

Caffeine (1 g/L) was provided in the drink-

ing water from 6 weeks old onwards and

STZ was administered at 8 weeks of age

(a); these rats were maintained under

hyperglycemia (b) and hypo-insulinemia (e)

for 4 weeks. Data are mean ± SEM of

n = 6–8 animals per experimental group.

Significant differences of glycaemia (b) and

serum insulin (e) were estimated with the

ANOVA and are noted as follows: *p < 0.05,

**p < 0.01, ***p < 0.001, relative to control.
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glucose on plasma glucose was not significantly different
between controls and STZ-induced diabetic rats, suggesting
that the rate of glucose transport across the BBB was not
altered in the hippocampus in chronic hyperglycemia. This
was further supported by similar kinetic parameters for
glucose transport estimated with either the standard or
reversible Michaelis-Menten models (Table 2). Likewise,
caffeine consumption did not significantly affect glucose
transport in the hippocampus of either control or STZ-treated
rats (Fig. 5, Table 2).

Synaptic alterations and astrogliosis in the hippocampus
Previous studies suggested the occurrence of synaptic
degeneration upon a diabetic condition (Duarte et al. 2006;
Grillo et al. 2005; Malone et al. 2006). In the present study,

STZ-induced diabetic rats displayed reduced immunoreac-
tivity for SNAP25 ()19.4 ± 2.7%, p < 0.05, n = 7), synapt-
ophysin ()17.4 ± 2.2%, p < 0.05, n = 5) and syntaxin
()18.3 ± 2.8%, p < 0.05, n = 7) in nerve terminal-enriched
membranes of the hippocampus, when compared to controls
(Fig. 6a–c). Furthermore, immunoreactivity of PSD95 was
determined to evaluate the post-synaptic zone and was not
significantly altered in nerve terminal membranes of STZ-
treated rats when compared to controls (p > 0.05, n = 5,
Fig. 6d). Caffeine consumption prevented diabetes-induced
reduction of synaptophysin and syntaxin, but failed to
prevent the decrease of SNAP25 immunoreactivity. Caffeine
intake did not affect significantly the immunoreactivity for
any of these synaptic markers in nerve terminal membranes
from the hippocampus of control rats. When compared to
controls, STZ-induced diabetic rats failed to display altered
MAP2 immunoreactivity (p > 0.05, n = 5) in total mem-
branes from the hippocampus (Fig. 6e), suggesting preser-

Fig. 3 Effect of diabetes on the neurochemical profile of the hippo-

campus. The bar graphs show the concentrations of metabolites in the

hippocampus of either STZ-treated rats at hyperglycemia (grey bars,

n = 6) and at euglycaemia (black bars, n = 6), and age matched

control rats (white bars, n = 8), determined by 1H NMR spectroscopy.

Data are mean ± SEM and significance evaluated with the Student’s t-

test are noted as *p < 0.05, **p < 0.01 and ***p < 0.001, compared to

control. Ala, alanine; Asc, ascorbate; Asp, aspartate; bHB, b-hydrox-

ibutyrate; Cr, creatine; Glc, glucose; Gln, glutamine; Glu, glutamate;

GPC, glycerophosphorylcholine; Ins, myo-inositol; Lac, lactate; NAA,

N-acetylaspartate; NAAG, N-acetylaspartatylglytamate; PCho, phos-

phorylcholine; PCr, phosphocreatine; PE, phosphorylehtanolamine;

scyllo, scyllo-inositol; Tau, taurine.

Fig. 2 Representative in vivo 1H NMR spectra expanded from 0.5 to

5.5 ppm obtained in the hippocampus of 12 weeks old rats, either

control (top spectrum) or STZ-induced diabetic at hyper- or euglyca-

emia (mid and bottom spectra, respectively). The bold arrows in the

spectra from the hippocampus of STZ-induced diabetic rat empha-

sizes the increase in glucose and myo-inositol signals. The spectra

were measured by the SPECIAL sequence with echo time of 2.8 ms,

repetition time of 4 s, 640 scans and VOI of 18 lL located in the

hippocampus. For resolution enhancement, a shifted Gaussian func-

tion (gf = 0.12 and gsf = 0.05) was applied before Fourrier transfor-

mation. Zero-phase but not baseline was corrected.
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vation of the integrity of the neuronal structure beside the
nerve terminal.

Several neurodegenerative disorders including diabetes
induce astrogliosis (Baydas et al. 2003; Saravia et al. 2002).
As shown in Fig. 6(f), hippocampal membranes from STZ-
treated rats displayed increased immunoreactivity of GFAP
relative to control rats (+19.6 ± 4.7%, p < 0.05, n = 8).
Caffeine consumption was devoid of effect on GFAP
immunoreactivity in the hippocampus of control rats and
prevented diabetes-induced increase in GFAP immunoreac-
tivity (p > 0.05, n = 8), suggesting prevention of astrogliosis
in the hippocampus.

Discussion

In the present study, we found that chronic hyperglycemia,
induced by STZ administration, caused a plethora of
metabolic alterations in the hippocampus, most of which
were normalized upon restoration of euglycaemia. Some of
the metabolites more affected by hyperglycemia were myo-
inositol, taurine and creatine, which are considered major

organic osmolytes regulating brain osmotic adaptation (Lien
et al. 1990, 1991), suggesting that such alterations of the
neurochemical profile may be related to regulation of
osmolarity. Although osmolarity regulation primarily relies
on electrolytic balance, it is followed by a delayed response
of organic osmolytes (Lien et al. 1991). Therefore, under
chronic hyperglycemia the accumulation of organic osmo-
lytes in the hippocampus is suitable to avoid ion-induced
perturbation of protein function (Burg and Ferraris, 2008).
Consistent with this, high concentration of myo-inositol has
been reported in the hippocampus of Zucker diabetic fatty
rats compared to controls (van der Graaf et al. 2004) and in
the brain of diabetic patients relatively to healthy subjects
(Geissler et al. 2003; Kreis and Ross, 1992). Also
increased taurine transport (Trachtman et al. 1992) and
concentration (Rose et al. 2000) had previously been
reported in the brain of STZ-induced diabetic rats.
Thus, the present results support the hypothesis that

Fig. 4 Caffeine consumption affected the relative concentrations of

taurine and myo-inositol in the hippocampus of STZ-induced diabetic

rats. Glucose, myo-inositol (Ins) and taurine (Tau) concentrations

were determined by 1H NMR spectroscopy in the hippocampus of

control and STZ-induced diabetic rats drinking water (panel a) or al-

lowed to consume caffeine (1 g/L) through the drinking water for

6 weeks (panel b). Data are mean ± SEM of 6–8 rats per experimental

group and ANOVA (comparing the complete neurochemical profile) was

used to gauge significance compared to the control group: *p < 0.05,

**p < 0.01.

Fig. 5 Caffeine consumption failed to affect glucose transport into the

hippocampus. The graphs display the relationship between hippo-

campal and plasma glucose concentrations in control and STZ-treated

rats drinking water (panel a) or allowed to consume caffeine (1 g/L)

through the drinking water for 6 weeks (panel b). Data represent

hippocampal glucose determined from 1H NMR spectra measured

(during 40 min) after plasma glucose was stable for at least 15 min.

Each experimental group consisted of 6–8 rats. The kinetic parame-

ters of glucose transport were estimated from these data with either

the reversible or the standard Michaelis-Menten model and are pre-

sented in Table 2.
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hyperglycemia-induced hippocampal dysfunction mainly
involves deregulation of osmotic balance rather than
modification of primary metabolism.

Disruption of the BBB because of hyper-osmolarity has
been proposed to occur in diabetic conditions, and particu-
larly in STZ-induced diabetes (Huber et al. 2006). Such a
disruption of the BBB is expected to increase BBB
permeability and substantially increase brain glucose content,
approaching plasmatic glucose content. This was not
observed in the present study (see Fig. 5). In fact, there
was a sustained glucose concentration gradient into the
hippocampus, which indicates that increased leakage of
glucose through a disrupted BBB did not occur in STZ-
diabetic rats. Furthermore, it was observed that the rate of
glucose transport across the BBB was not altered in the
hippocampus of rats submitted to one month of chronic
hyperglycemia. Likewise, previous studies in humans
reported that poorly controlled diabetes did not affect brain
glucose concentration (Seaquist et al. 2005) or glucose
transport and metabolism (Fanelli et al. 1998). This reflects a
preservation of the capacity of the BBB to transport glucose
relative to the glucose metabolic rate (Tmax/CMRglc) and
could thus be affected by alterations in glucose metabolic
rate. Together with the observation that [14C]glucose uptake
and brain GLUT1 density were not altered in the hippocam-
pus of STZ-treated rats (Simpson et al. 1999), our results
support that glucose transport across the BBB is not affected
by experimental diabetes. However, other studies reported
that diabetes increased 2-[14C]deoxyglucose uptake in the
dentate gyrus of the hippocampus without modification of
GLUT1 or GLUT3 density (Duelli et al. 2000) or that brain
glucose metabolism is reduced by chronic hyperglycemia
(Garcı́a-Espinosa et al. 2003). To what extent glucose
metabolic rates are specifically altered at high plasma
glucose concentrations or in chronic hyperglycemia (Pellig-
rino et al. 1992) remains to be determined. Interestingly, the
present contention that chronic hyperglycemia does not affect
glucose transport and content is the opposite of what was
reported in chronic hypoglycemia (Lei and Gruetter, 2006),
which suggests a differential regulation of GLUT1 gene

expression at the BBB in response to long-term alterations in
glycaemia.

We found that chronic caffeine intake caused a very
striking and particular effect on the neurochemical profile in
the hippocampus, selectively affecting the level of osmo-
lytes. In fact, caffeine consumption attenuated diabetes-
induced increase of myo-inositol concentration, and in-
creased the hippocampal levels of taurine, a cerebral
osmolyte whose intracellular content changes in parallel
with plasma osmolarity (Trachtman et al. 1992; Rose et al.
2000). These observations prompt the hypothesis that
caffeine neuroprotection may also be related to this ability
of caffeine to impact on osmotic adaptation of brain tissue.
This effect of caffeine on taurine homeostasis in the
hippocampus of diabetic rats may be related to the ability of
adenosine receptors (the only known molecular targets of
caffeine) to control osmotic swelling (Wurm et al. 2008)
and taurine release from both neurons and glia (Hada et al.
1998). Thus, these effects of caffeine on diabetes-induced
neurochemical profile are likely to be central effects,
although caffeine consumption has been reported to have
peripheral effects that may aid in the control of glucose
homeostasis (van Dam and Hu 2005); however we
observed that long-term caffeine intake failed to prevent
hypoinsulinemia and hyperglycemia in STZ-treated rats,
suggesting that these effects of caffeine on hippocampal
metabolism are related to blockade of central adenosine
receptors rather than peripheral actions of caffeine. How-
ever, it remains to be experimentally tested if this control of
the levels of osmolytes is a direct effect on hippocampal
tissue or if it results from indirect effect operated at the
level of the hypothalamus, which is known to coordinate
osmolar control of the body. It is tempting to speculate that
this ability of caffeine to control the levels of osmolytes,
namely of taurine may have a neuroprotective role in the
hippocampus as taurine can also influence neurotransmis-
sion, interacting with inhibitory GABAA, GABAB or
glycine receptors (reviewed in Albrecht and Schousboe,
2005), and modulating synaptic plasticity (del Olmo et al.
2000). In addition, taurine has antioxidant properties that

Table 2 Apparent Michaelis-Menten con-

stant Kt and ratio of maximal transport rate

(Tmax) to cerebral metabolic rate (CMRgluc)

of glucose transport in the hippocampus,

estimated with the reversible and standard

Michaelis-Menten models

Reversible model Standard model

Kt (mM) Tmax/CMRgluc Kt (mM) Tmax/CMRgluc

Control 1.23 (0.00–3.79) 1.77 (1.48–2.07) 7.77 (5.68–9.86) 3.11 (2.91–3.31)

STZ-treated 2.44 (0.00–5.41) 2.15 (1.82–2.51) 6.53 (4.91–8.26) 3.57 (3.27–3.86)

STZ and

Caffeine-treated

0.49 (0.00–4.39) 1.98 (1.53–2.45) 6.41 (4.25–8.61) 3.64 (3.25–4.01)

Caffeine-treated 0.34 (0.00–1.58) 2.06 (1.77–2.34) 5.83 (4.41–7.25) 3.98 (3.64–4.31)

Kinetic parameters of glucose transport across the BBB were determined from the relationship

between hippocampal and plasma glucose concentrations in each group of rats (data in Fig. 5).

While the standard model was fitted to the whole range of plasma glucose concentrations, the

reversible model was applied up to 20 mM. Data are mean (95% confidence interval).
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may contribute to reduce oxidative stress (Di Leo et al.
2004) caused by glucose neurotoxicity that occurs in
diabetes (Tomlinson and Gardiner, 2008). In experimental
models of diabetes, taurine was implicated in possible
prevention of defects in nerve blood flow, motor nerve

conduction velocity, and nerve sensory thresholds (Li et al.
2006; Pop-Busui et al. 2001). However, it still remains to
experimentally tested if the caffeine-induced modification of
the taurine levels actually contribute for caffeine-induced
neuroprotection in the diabetic hippocampus.

Fig. 6 Caffeine consumption attenuates diabetes-induced synaptic

degeneration and astrogliosis. Western blot analysis revealed that

nerve terminal-enriched membranes from the hippocampus of STZ-

induced diabetic rats displayed reduced immunoreactivity of SNAP25

(a), synaptophysin (b) and syntaxin (c) but not PSD95 (d), when

compared to controls. Caffeine consumption prevented diabetes-in-

duced reduction of synaptophysin and syntaxin but not SNAP25.

Chronic hyperglycemia or caffeine consumption failed to affect MAP2

immunoreactivity in total membranes of the rat hippocampus (e).

GFAP immunoreactivity was increased in total hippocampal mem-

branes from STZ-induced diabetic rats (f), relative to control rats,

which was prevented by caffeine consumption. Preparations from the

hippocampus of each animal (nerve terminal-enriched membranes for

analysis of synaptic proteins or total membranes for MAP2 and GFAP)

were applied in the SDS–PAGE gel (25 lg of protein). Immunoreac-

tivities of synaptic proteins and MAP2 were normalized to a-tubulin

and GFAP immunoreactivity was normalized to b-actin, being pre-

sented as percentage of control (open bars) in the same western blot

experiment. In the graphs, black, gray and striped bars represent STZ-

treated, STZ plus caffeine-treated and caffeine-treated control rats,

respectively. Data are mean ± SEM of 5–8 experiments from different

animals. *p < 0.05 compared to control using ANOVA followed by

Bonferroni’s post-test.
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The present results show that STZ-treated rats display a
pattern of neurodegeneration that does not affect the entire
neuron, as suggested by unaltered immunoreactivity of the
axonal marker MAP2, but is instead restricted to nerve
terminals. This is in agreement with previous results showing
that STZ-induced diabetes does not cause neuronal dead
(Bree et al. 2009; Grillo et al. 2005). Supporting this
selective synaptic degeneration, it was observed that exper-
imental diabetes caused a reduction of the density of synaptic
proteins in the hippocampus, namely syntaxin, SNAP25 and
synaptophysin. The density of the post-synaptic protein
PSD95 was not significantly altered in the hippocampus of
STZ-treated rats, when compared to the control rats,
suggesting that diabetes mainly affects the pre-synaptic
component of the synapse. Eventually, these modifications in
nerve terminals may be responsible for the altered synaptic
plasticity in the hippocampus and thus memory impairment
observed in STZ-induced diabetic rats (Biessels et al. 1996).
Remarkably, long-term caffeine consumption was able to
prevent most synaptic alterations, except the reduction of
SNAP25 density, in agreement with the proposed ability of
caffeine to selectively prevent neuronal damage initiated by
destruction of nerve terminals (Cunha et al. 2006; Silva et al.
2007). Furthermore, chronic hyperglycemia triggered astro-
cytosis in the hippocampus, as suggested by increased GFAP
immunoreactivity in hippocampal membranes of STZ-
induced diabetic rats, when compared to controls. This
astrocytic proliferation might result from neuronal damage,
as observed in other situations of neurodegeneration such as
amyotrophic lateral sclerosis (Barbeito et al. 2004), Alzhei-
mer’s disease (Lauderback et al. 2001) and Lewy-body
dementia (Honig et al. 2000). This astrogliosis may contrib-
ute for diabetes-induced hippocampal deterioration as reac-
tive astrocytes are known to produce free radicals (Chao
et al. 1996) and apoptotic factors (Crutcher et al. 1993; Ferrer
et al. 2000, 2001). Caffeine intake prevented hyperglycemia-
induced astrogliosis that was typified by increased GFAP
immunoreactivity. These observations further strength the
neuroprotective properties of chronic caffeine consumption
against diabetic-induced neuropathy in the hippocampus.

In conclusion, it was found that glucose transport and
content in the hippocampus were unaltered by chronic
hyperglycemia. Thus, metabolic alterations in the hippocam-
pus caused by STZ-induced diabetes are not related to
changes in glucose transport through the BBB or alteration of
the energy status. Otherwise, chronic hyperglycemia induced
a number of changes in the neurochemical profile, possibly
linked to osmolarity regulation that is essential for the
maintenance of cellular homeostasis. Habitual caffeine
consumption was able to prevent metabolic alterations in
the diabetic hippocampus under chronic hyperglycemia, and
it has a potential effect on the mechanisms of osmolarity
regulation, modulating relative concentrations of myo-inosi-
tol and taurine metabolism, maintaining the total osmolyte

levels constant. This neuroprotective effect of caffeine was
evident by its ability to prevent synaptic degeneration and
astrogliosis caused by chronic hyperglycemia in STZ-
induced diabetic rats. However, it remains to be addressed
if this neuroprotection afforded by chronic caffeine con-
sumption is accompanied by an amelioration of diabetes-
induced hippocampal dysfunction.

Acknowledgements

This work was supported by Fundação para a Ciência e a

Tecnologia (Grant POCTI/SAU-NEU/56098/2004), Fundação

Oriente and by Centre d’Imagerie BioMédicale (CIBM) of the

UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and

Jeantet Foundations. João M. N. Duarte acknowledges a fellowship

from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/

BD/17795/2004).

Disclosure/conflict of interest

The authors declare there is no conflict of interest.

References

Albrecht J. and Schousboe A. (2005) Taurine interaction with neuro-
transmitter receptors in the CNS: an update. Neurochem. Res. 30,
1615–1621.

Alvarez E. O., Beauquis J., Revsin Y., Banzan A. M., Roig P., De Nicola
A. F. and Saravia F. (2009) Cognitive dysfunction and hippo-
campal changes in experimental type 1 diabetes. Behav. Brain Res.
198, 224–230.

Barbeito L. H., Pehar M., Cassina P., Vargas M. R., Peluffo H., Viera L.,
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