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We describe an approach for exploring microscopic properties of granular media that couples x-ray micro-
tomography and distinct-element-method �DEM� simulations through image analysis. We illustrate it via the
study of the intriguing phenomenon of instant arching in an hourglass �in our case a cylinder filled with a
polydisperse mixture of glass beads that has a small circular shutter in the bottom�. X-ray tomography provides
three-dimensional snapshots of the microscopic conditions of the system both prior to opening the shutter, and
thereafter, once jamming is completed. The process time in between is bridged using DEM simulation, which
settles to positions in remarkably good agreement with the x-ray images. Specifically designed image analysis
procedures accurately extract the geometrical information, i.e., the positions and sizes of the beads, from the
raw x-ray tomographs, and compress the data representation from initially 5 gigabytes to a few tens of
kilobytes per tomograph. The scope of the approach is explored through a sensitivity analysis to input data
perturbations in both bead sizes and positions. We establish that accuracy of size—much more than position—
estimates is critical, thus explaining the difficulty in considering a mixture of beads of different sizes. We
further point to limits in the replication ability of granular flows away from equilibrium; i.e., the difficulty of
numerically reproducing chaotic motion.

DOI: 10.1103/PhysRevE.77.061306 PACS number�s�: 45.70.Cc, 42.30.Wb

I. INTRODUCTION

Due to their pervasiveness in nature, technology, and ev-
eryday life, granular media have been the object of extensive
research using both experiments and numerical models. Sev-
eral studies compare the adequacy of these two approaches
for characterizing bulk or macroscopic properties of granular
media. This paper presents an approach to studying micro-
scopic properties of granular media that consists in coupling
x-ray tomography and distinct-element-method �DEM� simu-
lations �tomo-DEM� through image analysis.

We introduce the procedure, technical details, and limita-
tions of this coupled tomo-DEM technique through an appli-
cation to the study of the intriguing phenomenon of arching
that instantly jams the flow of—in our case polydisperse—
grains in a cylinder upon the opening of a small bottom
circular shutter. This phenomenon is a benchmark for the
study of near-equilibrium granular dynamics, and has a
broad impact on a variety of practical issues such as silo
blocking �1�. In the present study, x-ray tomography pro-
vided three-dimensional �3D� snapshots of the initial micro-
scopic conditions of the system both prior to opening the
shutter, and upon reaching the end of the jamming process
once the shutter was opened. The process time in between
was bridged using DEM simulation, which settled to posi-
tions in remarkably good agreement with the x-ray images.
An overview of the methodology is given in Fig. 1.

The results also underscore the power of synchrotron
x-ray tomography in analyzing granular systems on a micro-
scopic scale. This is a significant step forward: three-
dimensional nonintrusive viewing of the inside of porous or

granular media is indeed very valuable. Recent progress was
made possible by magnetic resonance imaging and x-ray
computed tomography and microtomography, whereas re-
searchers were previously forced to mechanically disas-
semble the media �2–5�. In recent years, 3D imaging was
used to investigate the geometrical properties of void space
for a better insight into flow properties �6–10�, granular me-
dia packing �11–15�, or foam structure �16�. Seidler et al.
�11� identified the central positions and local connectivity of
2000 monodisperse glass spheres from x-ray microtomogra-
phy data using edge location and the Hough transform. Ri-
chard et al. �12� found the size and location of 15 000 glass
beads by x-ray microtomography while analyzing granular
systems undergoing compaction. Aste et al. �13� analyzed
two 150 000-bead samples and four 35 000-bead samples by
x-ray computed tomography and a convolution method. Fu et
al. �15� investigated 2000 particles using x-ray microtomog-
raphy and a watershed-based segmentation algorithm and
showed that packing systems generated by the DEM are con-
sistent with the structural measurements made by x-ray mi-
crotomography. Despite these significant advances, efficient
extraction from tomographic images of the microscopic geo-
metric information such as the sizes of voids or the grain
radii and positions still constitutes a challenge. Our study
proposes an effective computerized strategy.

Various types of distinct-element granular media simula-
tion models have been proposed in the literature, like, for
example, molecular dynamics models �17,18�, contact dy-
namics models �19�, event-driven models �20,21�, or Monte
Carlo simulations �22�. Pournin et al. �23� and Ramaioli et
al. �24� demonstrate the use of the DEM for reproducing
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granular phenomena such as crystallization and segregation.
In �1�, Pournin et al. also study jamming in an hourglass both
experimentally and using DEM simulations. They show that
for given system parameters �container geometry and bead
granulometry� DEM enables an accurate estimate of the jam-
ming probability.

Here we go a large step further: not only do we predict
jamming for particular real initial configurations, but we also
accurately reproduce the actual jammed configurations. Our
technique thus couples soft-sphere DEM simulation with
x-ray tomography to gain better insight into the microstruc-
ture of granular media and near-equilibrium granular dynam-
ics.

The remainder of this paper is organized as follows: First
we introduce the x-ray synchrotron hourglass imaging ex-
periment. Next we describe and discuss the ensuing elaborate
image analysis procedures implemented to extract accurate
positions and sizes of the beads from the raw images, suit-
able to be used in numerical simulations, thereby compress-
ing the data representation from initially some 5 gigabytes to
just a few tens of kilobytes per tomograph. Then we present
numerical hourglass experiments using DEM simulation �in
two phases, the first needed to stabilize the numerical beads’
initial positions with the shutter closed, the second to repli-
cate the flow in the hourglass upon opening the shutter� and
discuss the results. Finally, in a sensitivity analysis to data
perturbations of size and position of the numerical beads, we
show that accurate bead size estimates are crucial for suc-

cess. Interestingly, position perturbation energy is equilib-
rium restoring while size perturbation energy irreversibly de-
stroys the equilibrium, even when average bead volume is
kept constant. The analysis also points to the limits of the
tomo-DEM approach concerning the replication of granular
flows far from equilibrium, thus exhibiting the difficulty of
numerically reproducing chaotic motion.

II. THE EXPERIMENT

Edge-enhanced x-ray microtomography using broadband
synchrotron radiation is a powerful nondestructive tool for
research on packing and jamming in granular systems. Stan-
dard absorption tomography is based on the 3D determina-
tion of the linear attenuation coefficient and is related only to
the imaginary part of the complex refraction index. Thanks
to the high spatial coherence of the synchrotron x rays we
can use effects based on the real part of refraction index to
enhance the edge visibility �25�. In an x-ray beam glass
beads act as weak divergent lenses and phase effects are
visible on the glass/air interface of each sphere as concentric
white bands �Fig. 2�. Even with polychromatic x-ray radia-
tion, this effect contributes remarkably to absorption contrast
and could be optimized by simply changing in the propaga-
tion �sample to detector� distance. In contrast, the air defects
inside the glass are enhanced by focusing—acting as weak
convergent lenses.

All tomography experiments were performed on the
white-light imaging beamline BLO1A at the National Syn-
chrotron Research Center, Hsinchu, Taiwan as described in
�26�. Bending-magnet synchrotron radiation with a continu-
ous spectrum �photon energy 5–20 keV� was used in a lens-
less configuration �Fig. 3�.

After passing through the sample, the x rays were con-
verted to visible light by a CdWO4 crystal scintillator. The
image was then magnified with an optical microscope and
captured by a charge-coupled device camera. This approach
gets the advantage of the entire beam size and makes pos-
sible imaging millimeter-size specimens with micrometer lat-
eral resolution. By adjusting the sample-detector distance for
a limited edge-enhancement 3D volume, tomographic recon-
struction based on a sequence of projection images taken at
different angles is feasible without introducing serious arti-
facts �27�. A common filtered back projection implemented

FIG. 1. �Color online� Combining Synchrotron x-ray tomogra-
phy and DEM: an overview.

FIG. 2. Tuning the sample-detector distance for optimal contrast
enhancement in 2D projection: the line intensity profile �white
mark� through the glass-air interface shows a peak of higher inten-
sity corresponding to the refraction-based effects.
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in interactive data language was used for this reconstruction.
Nine different experiments �Table I� were conducted on two
sets of spherical glass beads �Assistent-Precision, Germany�.
Set 1 contained mixed-size individually selected beads
avoiding aspherical shapes and other fabrication artifacts. Set
2 underwent the same procedure and was sieved, keeping
only particles with radii within the range 0.2–0.25 mm.

A boron nitride cylindrical container was selected because
of its resistance to radiation damage �Fig. 4�. The container
had two interchangeable circular openings with diameters
B=1.5 and 2.0 mm. The bottom of the opening was equipped
with a paper sheet shutter which was positioned under an
interchangeable bottom piece at offset C=1.0 mm to the re-
ceptacle bottom.

Projection images were first taken with the bottom aper-
ture closed to obtain the initial conditions for DEM simula-
tions. Then the shutter was opened, letting the beads flow. A
second projection image set was acquired after the bead flow
jammed and an arch was formed. All tomography sets were
obtained for three adjacent vertical positions and merged to
cover a volume that contained around 1000 particles for set 1
and 2000 particles for set 2.

III. IMAGE ANALYSIS

A. The processing procedure

We now describe our procedure to obtain the positions
and radii of the various observed particles from the raw to-
mography images. The raw tomograph �Fig. 5�a�� had 1599
pixels in the x and y horizontal directions and approximately
1985 pixels in the z direction, occupying nearly 5 gigabytes
of computer memory. Each pixel corresponds to a cube size
of 4�4�4 �m3. Hence, the field of view is of size 6.396
�6.396�7.94 mm3. The large amount of data is one of the
complicating factors of the image analysis along with other
problems such as �1� low contrast: the void �air� and the
glass beads have similar x-ray absorption factors �on a scale
of 256 gray tones, the average void gray is 145 while that of
the beads is 160�; �2� noise: the contrast-to-noise ratio �CNR�
is typically 0.56 dB, and thus very poor; �3� Newton rings
�Fig. 5�b��; �4� splashes �Fig. 5�c��; �5� air bubbles in the
beads �Fig. 5�e��; �6� nonuniformity of the intensity along the
z axis.

Furthermore, in spite of our efforts to select spherical
beads, some nonspherical particles were still present �Fig.
5�d��. Our objective here was to obtain accurate estimates of
the positions and radii of all observed beads. Since standard
image-analysis software cannot treat beads in the above
problematic conditions, we had to develop our own proce-
dure with algorithms and the corresponding software, as de-
scribed below.

The main processing steps are preprocessing of the raw
images, preliminary detection of spheres that fit the beads

TABLE I. Description of the experimental setup. Expt.: Experi-
ment label �first number indicates if hole radius is �three or four
times the average bead radius, letter b indicates sieved bead experi-
ments, second number indicates experiment number�; BS: bead
sizes �1 mixed; 2 sieved�; �r�: average radius; SD: standard devia-
tion; HR: hole radius.

Expt. BS �r� ��m� SD ��m� HR �mm�

3_1 1 275 27 0.75

3_2 1 275 27 0.75

3_3 1 275 27 0.75

4_5 1 275 27 1.0

3b_1 2 230 16 0.75

3b_3 2 230 16 0.75

4b_1 2 230 16 1.0

4b_2 2 230 16 1.0

4b_3 2 230 16 1.0

FIG. 3. �Color online� Scheme of the synchrotron microtomog-
raphy imaging setup.

FIG. 4. The container �diameter A=6.0 mm� was drilled from
one block of boron nitride and has interchangeable openings �IO�
�diameter B=1.5 mm and 2.0 mm�. A paper shutter was positioned
under the container at offset C=1.0 mm from its bottom. The con-
tainer was mounted on the top of a metal sample holder CS.
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�sphere fittings� using a 3D watershed, and, third, optimiza-
tion of the preliminary sphere fittings. A multiresolution ap-
proach was chosen, i.e., the size of the images was varied so
that the computer could handle the memory requirements of
the different processes.

The preprocessing consisted in smoothing the images to
reduce the noise and in applying an adaptative thresholding
procedure along the z layers. The threshold value was inde-
pendently computed for every layer to compensate the non-
uniformities along the z axis. However, this treatment was
not sufficient to free the images of the traces of Newton rings
and air bubbles, and manual corrections as well as image-
processing morphological operations �dilation, erosion� were
applied to further clean the images of artifacts �Fig. 6�a��.
This preprocessing was applied to the original images re-
duced by 50% in x, y, and z directions.

The detection step consisted in segmenting the binary vol-
ume data set into regions and then fitting spheres to the
found regions. Watershed by immersion �28� was used for
this segmentation. This algorithm introduced for 2D images
by Vincent and Soille �29� has been employed in various
domains including powder and granular matter �15,30�.
Here, we have developed and implemented its extension to
the 3D case. Specifically, we first created a distance map
transform of the binary volume by applying successive ero-
sions. The result of the distance map transform is an image
where the gray level is the distance from the closest bound-
ary pixel. We then applied the immersion algorithm to obtain
regions as shown in Fig. 6�b�.

The result of the watershed segmentation was good for a
large portion of the spheres. However, segmentation by the
watershed algorithm is affected by errors of three types: �1�
two or more regions can be found for only one bead �over-
segmentation�; �2� one region can be found for two or more
beads �undersegmentation�; �3� the boundary between two
beads can be badly estimated �bad cut�. The first error can be
corrected algorithmically since the regions of an overseg-
mentation interpenetrate each other so that the corresponding
sphere fittings have large overlaps. It is thus possible to
merge the sphere fittings so that the final sphere is a correct
estimation of the bead.

Correcting for undersegmentation and bad-cut errors is
much trickier and we therefore resorted to manually editing
these. For the computer processing of the other beads, the
sphere fitting radius was defined as the radius of a sphere
with the same volume as the watershed region of the bead.
The sphere fitting position was defined as the average loca-
tion of pixels in that region.

The watershed algorithm being demanding as far as com-
puter memory is concerned, the detection stage was applied
to images reduced in size by 75% with respect to the original
images in the x, y, and z directions. This causes a certain loss
of information: it was indeed necessary to return to 50%
reduced images for more precise sphere fitting. To achieve
this, starting from the sphere fitting found in the detection
stage and the 50% reduced binary images obtained after pre-
processing, an optimization program was implemented. We
looked for the largest sphere contained in the bead. Since the
beads are not far from being spherical this is reasonable. The
optimum sphere was found by an ad hoc gradient method.
Figure 7 shows a comparison of sphere fittings before and
after the optimization.

B. Results and validation of the image-processing procedure

We implemented the whole process as a plugin series for
IMAGEJ �31�, a general purpose image-processing software
�public domain license� and ran the software on a Mac com-
puter. 3D tomographic images corresponding to initial and
final configurations were processed for seven of the nine ex-
periments detailed in Table I. For experiments 4b_1 and
4b_2, for which instant jamming did not take place, only the
initial configurations were processed entirely.

Estimates for the number of beads detected by the water-
shed algorithm, the number of beads detected by merging

FIG. 5. Raw tomograph �and artifacts� used as input for image
analysis: �a� Half of a horizontal cut �z layer�; �b� Newton ring; �c�
splashes; �d� asphericity; �e� air bubbles.

FIG. 6. Half of �a� a preprocessed z layer and �b� a watershed z
layer.
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sphere fittings corresponding to oversegmentations, as well
as the number of beads detected by the user were calculated
�Fig. 8�. 98.5% of the beads were detected by our procedure
and the remaining 1.5% were estimated only by manual de-
tection. After user correction 100% of the beads in the field
of view were detected for all 3D images treated.

The total time needed to treat one 3D tomography image
was approximately 20 h, of which 25% corresponds to user
work and the other 75% to computer calculations.

To estimate how precise the final sphere fittings �after
optimization� are, a 3D binary rendition of the sphere fittings
was created. This image was subtracted from the binary im-
age obtained after preprocessing. The symmetric difference
�Fig. 9� between these two images is an approximate mea-
sure of the total volume discrepancy between the beads and
their sphere fittings.

Dividing this measure of discrepancy by the number of
beads gives an approximate average for the volume error
��V� affecting a bead sphere fitting. The corresponding re-

sults for different tomographs are reported in Fig. 10. The
average bead volume is around 0.07 mm3; thus the volume
error affecting a bead is found to be between 15% and 20%
of the average bead volume.

It is interesting, assuming that the real beads are spherical,
to evaluate the error made while estimating their radii and
positions. For an approximate assessment, we can assume
that the real beads are spherical and that, as a starting point,
there is no error for the positions. Then the volume discrep-
ancy is

�V = �4

3
�rSF

3 −
4

3
�rB

3� �1�

where rSF and rB are, respectively, the radii of the sphere
fitting and the real bead.

When rSF and rB are close, the right-hand side of �1� is
close to 4�	rSF−rB	rSFrB so that

	rSF − rB	 

1

4�rSFrB
�V . �2�

Taking rSF and rB equal to the average bead radius
ra �
250 �m�, on the right-hand side of �2�, the average
error made on the bead radii can be estimated as ���
= 1

4�ra
2 �V. We found that the error on the distance between

the centers of real beads and their sphere fittings can also be
roughly estimated as ���= 1

4�ra
2 �V. Values for this approxi-

mate average error measure are shown in Fig. 11. It shows

FIG. 7. Sphere fittings �white circles� superimposed on the
original tomographs after �a� detection and �b� optimization.

FIG. 8. Results of the detection: n, number of beads; tomo-
graphs are named after the corresponding simulation, the absence of
the letter o indicates images taken before hole opening, a letter o
indicates images taken after hole opening; white, correct detection;
gray, automatically corrected for oversegmentation; black, corrected
manually for undersegmentation and bad cuts.

FIG. 9. Error estimation: symmetric difference of fitted spheres
and preprocessed image �white shapes, particles in the preprocessed
image absent in the sphere fittings; black shapes, opposite case�.

10
-2
m
m
3

(
)

FIG. 10. �Color online� Average volume symmetric difference
between a real bead and its sphere fitting.
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that the average error on the positions and the radii is found
to be between 5% and 10% of the average radius.

C. Reconstructing the exact shape and position of the container

Due to manipulations between experiments the cylinder
position varied. As a consequence, to simulate as realistically
as possible the experiments, the radius of the cylinder and
the position of the receptacle bottom had to be estimated. For
this, the cylinder and its position were set to be the solution
to an optimization problem.

To limit the calculations, we found the beads that were
most probably touching the cylinder in the real experiments.
This was done by starting with a rough estimation of cylin-
der radius and position and detecting spheres �S1 , . . . ,Sn� in
the sphere fitting close to this cylinder. For each sphere Si,
we call its center ci and its radius ri. Let the radius of the
cylinder be R�0 and its axis a line a; we solved the follow-
ing optimization problem:

minimize 
 �i
2

under constraints �i
2 = �d�ci,a� + ri − R�2,

R � R+
� ,

a line in R3. �3�

In other words, we found the cylinder for which a measure of
the distance between a sphere fitting and the cylinder �given
by �i

2� is essentially small for all sphere fittings �
�i
2 is

small�.
A similar procedure was applied to estimate the receptacle

bottom. MATHEMATICA optimization functions were used for
these steps. The values found for the angles between the
cylinder axis and the vertical direction of the tomographic
images as well as the angles between the cylinder axis and
the receptacle bottom normal varied between 0.1° and 1.4°.

This is consistent with the fact that in the real experiment the
cylinder and the receptacle bottom are separate pieces.

IV. NUMERICAL HOURGLASS EXPERIMENT
SIMULATIONS WITH THE DEM

As mentioned above, our strategy here is to use the initial
data �fitted spheres along with the estimated cylindrical re-
ceptacle� corresponding to the observed physical hourglass
experiments as the starting point of DEM simulations during
which the bottom hole is opened as in the real experiment.
This initial geometrical information does not fully character-
ize the medium, because it does not contain the information
on the equilibrium forces. Therefore a preliminary DEM run
starting from this situation is carried out, to allow the system
to settle before opening the shutter. Appropriate DEM model
parameters are found by trial and error, as will be explained.
Once equilibrium is reached, a second DEM simulation with
the opened shutter is run and the final situation is compared
to the corresponding fitted final images from the physical
experiment. How realistic is this coupled tomo-DEM tech-
nique? Can it reproduce the jamming and how closely can it
predict the measured final configurations of the experiments?
The objective of this study was to address these important
questions. Rather than presenting the DEM approach in de-
tail, we refer the reader to �17� and �18,32�.

A. Procedure

In the first place, the DEM parameters had to be set to suit
the needs of our simulation. The main parameters are the
normal and tangential restitution coefficients, normal and
tangential contact times, Coulomb friction coefficient, and
simulation time step. The present study was performed with
glass beads for which the Coulomb friction coefficient is
about 0.95.

Furthermore, a realistic value for the restitution coeffi-
cient is approximately 0.96 and for the contact time a realis-
tic value would be about 1 �s. However, for simulation co-
herence, the simulation time step must be smaller than the
contact time. Since small time steps like 1 �s lead to
lengthy calculation times, the used contact time could not be
selected to be realistic.

Another difficulty was the limited precision in bead radii
and position estimates. Overlaps between beads or between
beads and the receptacle caused by this lack of precision
could possibly lead to unrealistic ejection at contact points.
As a first step, we decided to pass over realism in the choice
of individual DEM parameters in favor of a more realistic
general behavior of the medium.

We used a dichotomic method in one experiment to find
the restitution coefficient and contact time for which the
movement of the beads in their initial rearrangement was
realistically small. This procedure led to a restitution coeffi-
cient of 0.0011 and a contact time of 0.7 ms. As pointed out
above, these values do not correspond to realistic modeling
of glass beads, and would better fit beads of a much softer
material.

The experiment setup was not entirely within the field of
view; beads below the level of the receptacle bottom and at

FIG. 11. �Color online� Average fitting error on positions and
radii.
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the top of the setup were not estimated. As discussed in Sec.
II, the hole opening in the real experiments was located not
at the receptacle bottom level, but at the bottom of the
smaller cylinder linked to the receptacle hole. In the simula-
tions beads below the receptacle bottom level were immobi-
lized during the first phase of the procedure �closed shutter�
to model the setup as realistically as possible. Opening the
hole was then simulated by freeing these beads.

B. Results and discussion of the experiment simulations
with the DEM

Table II shows the parameters for ten of the performed
simulations. Films of the simulations as well as of DEM-
experiment comparisons may be accessed at �33�. In all of
them, the time step was 10 �s. The hole was opened at 0.07
s of simulation time.

Figure 12 shows snapshots of simulation S4_5. Immobi-
lized beads are shown in red. In the first 15 ms, a rearrange-
ment of the beads takes place. This is the initial stabilization.

Opening the shutter leads to a small flow of beads. How-
ever, the flow stops and at 0.3 s the medium is at rest. Most
beads move only slightly from their initial positions as
shown in Fig. 13.

Results of this kind were obtained for simulations S3_1,
S3_2, S3_3, S4_5, S3b_1, S3b_3, and S4b_3_b. In those
cases the DEM approach yields images close to the real ex-
periments; see Figs. 14 and 15. However, this works only if
jamming occurs upon slight motions of the beads.

For experiment 4b_3, only the simulation S4b_3_b that
uses a higher friction coefficient reproduces jamming and not
the standard simulation S4b_3_a. This indicates that the
accuracy of the simulation procedure can change from case
to case. Additional evidence for this point is provided by
simulation S3b_3, where the simulated final configuration
differs from the measured final configuration more than in
the other six near-equilibrium simulations. See also Sec. V.

As to cases not near equilibrium, simulations S4b_1 and
S4b_2 yield results quite different from those above. The
tomographs show that jamming did not occur with only
small movement of the beads but with a substantial flow. In

these two cases, we did not manage to reconcile the final
simulated configurations with the experimental findings.
More details on this problem will given in the following
section.

V. SENSITIVITY ANALYSIS

To get a better idea about the scope of the presented ap-
proach an analysis of sensitivity to random data perturba-
tions was carried out for all DEM simulations reported in
Table II.

The initial estimated bead data of the various hourglass
experiments as provided by tomography and image analysis,
were successively subjected to three types—I, II, and III—of
random perturbations of varying intensities, the first two con-
centrating on bead sizes and the third on their positions. As a
measure of the perturbation intensity we used the square root
� of the mean square deviation of the radius or of the center
position of the beads, whichever applied. In type I and II
perturbations, we add independent and identically distributed
�i.i.d.� Gaussian random values �i�N�� ,	2� to the radii of
the fitted beads �mean � and variance 	2�. The mean square
error of the perturbation becomes

�2 = E��i� = 	2 + �2. �4�

According to the parameter values chosen, such a perturba-
tion may change the average sphere volumes. For a typical
sphere of radius ri this change computes as follows:

��Vi� =
4

3
��E�ri + �i�3 − ri

3�

=
4

3
��3ri

2E��i� + 3riE��i
2� + E��i

3��

=
4

3
��3ri

2� + 3ri��2 + 	2� + �3 + 3�	2� . �5�

For a given set of beads with radii ri , . . . ,rn, the average
change of volume is

TABLE II. Simulation characteristics: Name �S followed by the name of the corresponding experiment,
followed by letter when necessary�; number n of beads; hole radius 
 �=B /2�; normal restitution coefficient
en; normal contact time tn; Coulomb friction coefficient �.

Name n 
 �mm� en tn �s� �

S3_1 1041 0.75 0.0011 0.0007 0.95

S3_2 1045 0.75 0.0011 0.0007 0.95

S3_3 1030 0.75 0.0011 0.0007 0.95

S4_5 1105 1.0 0.001 0.0004 0.95

S3b_1 1950 0.75 0.0011 0.0007 0.95

S3b_3 1889 0.75 0.0011 0.0007 0.95

S4b_1 1911 1.0 0.0011 0.0007 0.95

S4b_2 1950 1.0 0.0011 0.0007 0.95

S4b_3_a 1899 1.0 0.0011 0.0007 0.95

S4b_3_b 1899 1.0 0.0011 0.0007 1.35
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��V� =
4

3
��3�r2�� + 3�r���2 + 	2� + �3 + 3�	2� , �6�

where �r� and �r2� are the mean and the mean squared radius
of the original bead set.

In type I perturbations, we set �=0; thus there is no bias
in the radius perturbations, which results in a mean volume
increase ��V�=4��r�	2. In type II perturbations we intro-
duce a bias ��0 in order to correct for this volume increase.
Thus, for a given intensity �2=E��i

2� we choose � and 	2

solving

��V� = − 2�3 + 3��r2� + �2�� + 3�r��2 = 0,

�2 = �2 + 	2.

Finally, type III �pure position� perturbations consist in add-
ing i.i.d Gaussian random vectors �i�N�0,	2I� �with uncor-
related coordinates of means 0 and variances 	2� to the fitted
spheres’ center coordinate vectors ci. Here we use �
=�E����2�=�3	 as a measure for the center perturbation in-
tensity.

A. Perturbation experiments

For each simulation from Table II except simulations
S4b_1 and S4b_3_a, perturbations of types I, II, and III
were run in succession, in each case varying the intensity �
between 10 and 100 �m, in steps of 5 �m. Two replications
of each perturbation were run.

(a)

(b)

(c)

FIG. 12. �Color� Three snapshots of simulation S4_5 at times
�a� 0.0 s �shutter closed�; �b� 0.08 s �intermediate stage�; �c� 0.3 s
�arched configuration�.

FIG. 13. �Color online� Histogram of bead displacements be-
tween 0.05 and 0.4 s for simulation S4_5 �outliers not shown�.

FIG. 14. Vertical cut highlighting the deviation between physi-
cal experiment 4_5 and simulation S4_5: white shapes, bead traces
in the simulation not coinciding with their physical experiment
counterparts; black shapes, opposite case.
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In each case the simulations proceeded exactly as in the
unperturbed case; see Sec. IV. That is, each set of perturbed
data was stabilized by first running the DEM simulation for
0.07 s with the hole closed. The DEM simulation was then
continued for 0.23 more seconds with the hole opened. The
final configuration, after a total 0.3 s simulation time, was
recorded. For each experiment, the parameters for the simu-
lation model were the same as in Table II. The difference in
behavior between perturbed and nonperturbed simulations at
time t is measured using 
t given by the following norm:


t =�

i=1

n

�xt,i
P − xt,i

R �2, �7�

where �xt,i
P �i=1

n are the center positions of the beads in the
perturbed simulation at time t and �xt,i

R �i=1
n are the center po-

sitions of the reference nonperturbed simulation at time t.
Measurements of 
t have been obtained after the initial set-
tling �t=0.07 s� and for the final situation �t=0.3 s�.

B. Discussion of the sensitivity analysis

Figure 16 represents results for some of the perturbation
simulations carried out. We omit depicting the corresponding
graphs for the remaining simulations since they are very
similar to Fig. 16�a�.

Sensitivity to size perturbations is very pronounced in-
deed. One can see that already with an intensity �=10 �m,
which is just slightly above the resolution of the image
analysis �cf. Sec. III B�, the perturbed settled system differs
markedly from the unperturbed system. For size perturbation
intensities ��30, the deviation 
0.3 s between perturbed and
unperturbed settled systems grows by several orders of mag-
nitude. On the other hand, the sensitivity to position pertur-
bations is much smaller. Here data perturbations of intensity

up to �=100 �m lead to essentially the same stabilized im-
ages as unperturbed data.

How can this very different response to size and location
perturbations be explained? Perturbing data can be thought
of as performing a certain amount of work, that is storing
perturbation energy in the system. In the DEM, changing
positions or sizes amounts to changing the spring forces act-
ing between the spheres and between these and the recep-
tacle walls. Figure 17 shows the amount of energy furnished
by data perturbations of the three types to the system.

Observe that the energy from size perturbations is large
for type I, where there is a mean volume increase. As ex-
pected, perturbations of the same intensity increasing the av-
erage volume require much more work than size perturba-
tions keeping the volume constant. The latter turn out to
require much the same work as position perturbations of an

FIG. 15. �Color online� 3D rendered volume of the deviation
between physical experiment 4_5 and simulation S4_5: bead traces
in the physical experiment not coinciding with their simulation
counterparts
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FIG. 16. Sensitivity analysis results showing the dominating ef-
fect of size vs position perturbations; 
0.3 s��� is given for experi-
ments �a� 3_1, �b� 4b_2, and �c� 4b_3. Type II perturbations were
carried out only for experiment 3_1. Lines represent the average
value of the corresponding replications. Note that plots of types I
and II coincide and dominate the plot of type III.
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equivalent amount, which is what a simple geometric reason-
ing would lead one to surmise.

But this means that the large difference between the re-
sponse to size perturbations and that to position perturbations
cannot be explained by a difference in the amount of in-
vested perturbation energy. Now observe that, when perturb-
ing data, the new system will develop forces driving it in a
direction opposite to the perturbations. In the case of position
perturbations the system will develop restitutive forces driv-
ing it back to the unperturbed situation, provided the pertur-
bation is not too large. On the other hand, whenever sizes are
perturbed, there is normally no equilibrium configuration for
the new spheres in the vicinity of their old positions. Hence
the stored deformation energy cannot drive the system back
to the old set of positions, but will drive the system to a new
equilibrium.

Figure 16�b� shows the sensitivity to perturbations for ex-
periment 4b_2 for which jamming took place after a sub-
stantial flow. Such a flow occurred also for the corresponding
nonperturbed and perturbed simulations and sensitivity to
perturbations is approximately ten times higher than for
instant-jamming experiments even for small perturbations

��10 �m�. This shows that correctly simulating the experi-
ment, with its substantial flow, is not possible with the means
at hand. In this case, simulations show a chaotic behavior,
i.e., a high sensitivity to small data perturbations.

A large flow of beads also occurred for perturbed simula-
tions of experiment 4b_3 �Fig. 16�c��. These two cases
showed a very high sensitivity, not only to size but also to
location perturbations. This fact indicates that the associated
initial configurations are unstable. For such cases, where the
motion quickly becomes chaotic, tomo-DEM presently at-
tains its limit.

VI. CONCLUSION

We have established the viability of tomo-DEM, an ap-
proach to exploring the microstructure of a polydisperse
granular medium coupling x-ray tomography and DEM
simulations through image analysis, pointing to both its po-
tential and its limitations. When applied to jamming in an
hourglass, the technique gives accurate predictions of real
experiments in most cases of instant jamming, while—at
least in its present form—it tends to attain its limits when the
systems are unstable. Very careful image analysis producing
accurate geometry information turned out to be crucial. A
sensitivity analysis to random data perturbations further
brought to light an interesting phenomenon. The position
perturbation energy fed into the system tends to drive it back
to the unperturbed equilibrium while the size perturbation
energy drives it away from it.

The fact that the first instants of the granular behavior can
be faithfully reproduced by the tomo-DEM technique dem-
onstrates the short-range predictive power of the approach
when applied near equilibrium. This leads to a broad range
of applications of the tomo-DEM approach in the study of
granular media, using the DEM as an interpolating device
between successive x-ray snapshots.
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