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Abstract: Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the
tool of choice to probe the human brain’s white matter in vivo. However, tractography algorithms pro-
duce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tis-
sue configurations. Moreover, the relationship between the resulting streamlines and the underlying
white matter microstructure characteristics remains poorly understood. In this work, we introduce a
new approach to simultaneously reconstruct white matter fascicles and characterize the apparent dis-
tribution of axon diameters within fascicles. To achieve this, our method, AxTract, takes full advantage
of the recent development DW-MRI microstructure acquisition, modeling, and reconstruction techni-
ques. This enables AxTract to separate parallel fascicles with different microstructure characteristics,
hence reducing ambiguities in areas of complex tissue configuration. We report a decrease in the
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incidence of erroneous streamlines compared to the conventional deterministic tractography algorithms
on simulated data. We also report an average increase in streamline density over 15 known fascicles of
the 34 healthy subjects. Our results suggest that microstructure information improves tractography in
crossing areas of the white matter. Moreover, AxTract provides additional microstructure information
along the fascicle that can be studied alongside other streamline-based indices. Overall, AxTract pro-
vides the means to distinguish and follow white matter fascicles using their microstructure characteris-
tics, bringing new insights into the white matter organization. This is a step forward in microstructure
informed tractography, paving the way to a new generation of algorithms able to deal with intricate
configurations of white matter fibers and providing quantitative brain connectivity analysis. Hum Brain
Mapp 38:5485–5500, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: white matter tractography; diffusion MRI; microstructure; axon diameter index; ActiveAx;
multi-shell acquisition
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INTRODUCTION

Diffusion-weighted (DW) magnetic resonance imaging
(MRI) tractography has become the tool of choice to probe
the human brain’s white matter in vivo. Recent results
have shown that, albeit tractography can extract large
white matter fascicles from DW-MRI, there is a high inci-
dence of erroneous streamlines (false positives) resulting
from current tractography algorithms [Côt�e et al., 2013;
Jbabdi et al., 2015; Jones, 2010; Maier-Hein et al., 2017;
Thomas et al., 2014]. This is largely due to complex ambig-
uous local fiber configurations (e.g., crossing, kissing, or
fanning) [Maier-Hein et al., 2017; Savadjiev et al., 2014].
Furthermore, the relationship between the resulting
streamlines and the underlying white matter microstruc-
ture characteristics, such as axon diameter, remains poorly
understood [Jones, 2010].

Recently, microstructure imaging has become one of the
main topics in DW-MRI technology development. The lack
of specificity of diffusion tensor imaging measures such as
fractional anisotropy [Jones, 2010] combined with the sen-
sitivity of these measures to changes in several white mat-
ter pathologies [e.g., Jolles et al., 2016; Matsui et al., 2015;
Song et al., 2005] has generated the need for measures that
are in closer relationship with white matter tissue changes
[Alexander et al., 2010]. Currently, the microstructure
imaging field is parted. On one hand, there is an emer-
gence of approaches claiming that interpretability of the
DW-MRI signal will be achieved faster by analyzing the
extra-cellular space and quantifying phenomena such as
changes in axonal packing [e.g., Burcaw et al., 2015; Novi-
kov et al., 2014; Sepehrband et al., 2015]. On the other
hand, there is a growing effort to take advantage of novel
high-end MRI systems to measure the restricted intra-
cellular diffusivity and quantify microstructure [Alexander
et al., 2010; Assaf et al., 2008; Assaf and Basser, 2005; Bara-
zany et al., 2011; Daducci et al., 2015; Fick et al., 2016;
Huang et al., 2015; Kaden et al., 2015; €Ozarslan et al., 2013;
Panagiotaki et al., 2012; Raffelt et al., 2012; Reisert et al.,
2014; Scherrer et al., 2015; Zhang et al., 2011b, 2011a,

2012]. Complementary to these two trends, there is a need
to take advantage of these technologies at the tractography
algorithm level. Post-processing approaches have been
proposed to combine microstructure information and trac-
tography [Amitay et al., 2016; Barakovic et al., 2016;
Daducci et al., 2013, 2014, 2016; Pestilli et al., 2014; Sher-
bondy et al., 2010; Smith et al., 2013]. To solve complex
white matter areas (e.g., crossing, kissing, or fanning fiber
configurations), these approaches use a precomputed set of
streamlines to estimate microstructure information and to
reject (or penalized) erroneous streamlines from a full brain
tractography reconstruction. This is sensitive to the choice of
the tractography algorithm used, as these approaches can
only filter out unlikely streamlines and they require the trac-
tography algorithm to provide a dense sample of all stream-
line configurations inside complex regions.

In this work, we introduce a new algorithm, AxTract

(Axon/ActiveAx Tractography), to reconstruct white matter
fascicles while simultaneously characterizing the apparent
distribution of axon diameters within fascicles. To achieve
this, our method takes full advantage of current DW-MRI
microstructure models [e.g., Alexander et al., 2010;
Daducci et al., 2015; Huang et al., 2015; Panagiotaki et al.,
2012; Scherrer et al., 2015; Zhang et al., 2011a, 2011b]. The
distinctive aspect of our tractography algorithm from pre-
vious methods is the active use of a microstructure tissue
model to estimate and exploit microstructure information
about fascicles during the tracking process. This allows us
to reduce ambiguities in areas of complex tissue configura-
tion and separate parallel fascicles with different micro-
structure characteristics, hence improving the overall
tractography process.

MATERIALS AND METHODS

AxTract: microstructure informed tractography

The main purpose of our novel tractography algorithm,
AxTract, is to simultaneously estimate the trajectories of
the white matter fibers and their microstructure features

r Girard et al. r

r 5486 r



(e.g., diameter). The main hypothesis driving AxTract is
that the mean diameter of the axons composing a fascicle
varies slowly along its pathway [Debanne et al., 2011;
Liewald et al., 2014; Ritchie, 1982]. To formulate our algo-
rithm, we start from the classical equation driving discrete
deterministic streamline tractography [Basser et al., 2000]:

ri115ri1Ds ti; (1)

where the sequence of 3D points q5½r0; . . . ; rn� is the
streamline tracking the white matter fascicle starting at the
initial position r0 and following the direction ti, the tan-
gent vector to the fascicle at the position ri, until a stop-
ping criteria is reached (e.g., exiting the tracking mask).
The streamline q is estimated using a fixed step size Ds.
Using the diffusion tensor [Basser et al., 2000], ti is taken
to be the eigenvector corresponding to the maximal eigen-
value at the position ri. Generally, tractography algorithms
based on the diffusion tensor rely on the hypothesis that
white matter fibers are locally tangent to the direction of
maximal diffusivity. Specifically, the diffusion tensor
model cannot express complex geometries such as white
matter fascicles crossings and kissings [Behrens et al.,
2007]. Hence, several algorithms have been proposed to
extend this algorithm and be able to trace through these
geometries [e.g., Descoteaux et al., 2007, 2009; Dell’Acqua
et al., 2007; Malcolm et al., 2010; Tournier et al., 2012,
2007; Trist�an-Vega et al., 2009; Tuch, 2004]. In these
approaches, ti is one direction d from the set of local max-
ima (or peaks) of a spherical function (SF), for example,
the diffusion orientation distribution function (ODF) or the
fiber ODF, describing orientations of the tissues:

ti 2 arg max
d

SFriðdÞ; (2)

where ri is the tracking position. Deterministic tractogra-
phy algorithms rely on the same hypothesis that the peaks
are sufficient to trace fascicles and add, in one way or
another, a new hypothesis of preservation of the previous
tracking direction ti21. In most cases, if more than one
tracking direction is available, ti is chosen to minimize the
angular deviation from the previous direction ti21. The
tracking direction ti is selected from the M directions dm

corresponding to the peaks of the SF following:

ti5 arg min
dm

arccos ðti21 � dmÞ; dm 2 ½d1; . . . ; dM�;

s:t: arccos ðti21 � dmÞ < u:
(3)

Moreover, dm is constrained to form an angle smaller than
h with the previous direction ti21 to enforce smoothness in
the streamline q.

With AxTract, we aim at preserving coherence in the
direction and in the axon diameter, adding a biologically
driven hypothesis. This enables the deterministic tractogra-
phy to traverse complex structures by selecting propaga-
tion directions using additional information [Debanne

et al., 2011; Liewald et al., 2014; Ritchie, 1982]. Using
AxTract, the definition of ti in Eq. (3) becomes:

ti5 arg min
dm

jjaq2adm
jj2; dm 2 ½d1; . . . ; dM�;

s:t: arccos ðti21 � dmÞ < u;
(4)

where adm
is the estimated axon diameter index in direc-

tion dm and aq is the estimated local axon diameter index
of the streamline q (the axon diameter index a is defined
in the section below). Equation (4) allows tractography to
follow the direction with the axon diameter index the clos-
est to the one of the current streamline. Additionally, Eq.
(4) constraints the selected direction to form an angle
smaller than h with the previous direction ti21 to enforce a
low curvature in the streamline q.

Implementation details

In this work, we formulated our streamline propagation
algorithm, AxTract, to follow both smooth trajectories and
consistent axonal fascicle diameter characteristics. Several
multi-compartment white matter models have been pro-
posed to obtain microstructure characteristics from DW-
MRI [e.g., Alexander et al., 2010; Assaf et al., 2008; Assaf
and Basser, 2005; Panagiotaki et al., 2012; Scherrer et al.,
2015; Zhang et al., 2011a, 2011b]. AxTract is not dependent
on a specific white matter model, but requires a model
capable to distinguish axon diameter characteristics in
voxels with multiple fiber populations, that is, with multi-
ple peaks. In Dyrby et al. [2012], authors showed that the
ActiveAx model [Alexander et al., 2010] can reproducibly
distinguish average axon diameter characteristics using
feasible acquisition protocols. Moreover, Zhang et al.
[2011a] showed that the ActiveAx model can be extended
to multiple fiber populations per voxel, providing an esti-
mate of the axon diameter index per fiber population. In
Aur�ıa et al. [2015], authors showed that ActiveAx model
with multiple fiber populations per voxel can be efficiently
computed using the peaks of the fiber ODF as input direc-
tions for the fiber populations. They showed that the axon
diameter characteristics of each fiber population can be
efficiently recovered with up to three fiber populations per
voxel (i.e., 1, 2, or 3 fiber ODF peaks). We thus based our
local microstructure estimation problem using the ActiveAx
model [Alexander et al., 2010] generalized to multiple fiber
populations per voxel [Aur�ıa et al., 2015; Zhang et al.,
2011a] implemented in the efficient accelerated Microstruc-
ture Imaging via Convex Optimization framework (AMICO)
[Daducci et al., 2015]. Details of the axon diameter index
estimation using AMICO are presented in Appendix.

At each point along the streamline, we first interpolate
linearly the spherical harmonic coefficients of the fiber
ODF [Descoteaux et al., 2009; Tournier et al., 2007] to
extract the fiber ODF peaks at the current position. Then,
we interpolate linearly the DW-MRI signal and use
AMICO [Aur�ıa et al., 2015] to estimate the axon diameter
index adm

for each direction dm corresponding to the

r AxTract r

r 5487 r



peaks. Following Eq. (4), the streamline propagates in the
direction with the axon diameter index adm

the closest to
the current approximation of the streamline axon diameter
index aq and with a maximum deviation angle of u545

�

[Girard et al., 2014; Tournier et al., 2012]. The approxima-
tion of the streamline axon diameter index aq is constantly
updated from the median a over a fixed distance of 5 cm
of the current tracking position to account for variability
along the fascicle (e.g., fanning, kissing, branching). If the
current streamline length is less than 5 cm, all previous
tracking positions are use to estimate aq. We supposed
that the median over a short distance from the tracking
position provides information on the fascicle microstruc-
ture, while allowing for smooth changes along the fascicle.

Streamlines propagation stops when a position outside
the white matter volume is reached. To allow streamlines to
propagate through voxels with missing directions (e.g., due
to noise in the DW-MRI images) and reach the gray matter,
streamlines follow the previous tracking direction ti21

when there is no direction available (i.e., no peak in the
cone defined by the angle h) [Girard et al., 2014; Weinstein
et al., 1999]. The propagation stops after a distance of 2 mm
without available direction [Girard et al., 2014]. The initial
tracking direction t0 is randomly chosen from the directions
belonging the fiber ODF peaks at the initial position r0. A
streamline is formed from the two independent trajectories
obtained following both the initial direction and its oppo-
site. For both trajectories, aq is initiated to the axon diame-
ter index of the initial direction. The tracking step size Ds is
fixed to 0:5 mm [Girard et al., 2014; Tournier et al., 2012].

Dataset and experiments

AxTract streamlines are compared to the same determin-
istic tractography algorithm without using the axon
diameter index information, referred as conventional
deterministic tractography (CDT). The only difference
between AxTract and CDT is thus the selection of the
propagation direction at tracking positions with more than
one valid direction: CDT always selects the propagation
direction dm that minimize the curvature of the streamline
[Eq. (3)], AxTract selects the propagation direction dm with
adm

the closest to the axon diameter index aq of the
streamline [Eq. (4)].

Simulated dataset

We used Phantomas [Caruyer et al., 2014] to generate a
kissing configuration between two fascicles, from which,
fascicle directions were obtained at each voxel. For each
fascicle direction, the DW-MRI signal was independently sim-
ulated for a gamma distribution, Cðshape; scaleÞ, of parallel
cylinders diameter, with a fixed distinct mean diameter per
fascicle of a52:44 lm (Cshape55:3316; Cscale51:024231027,
Camino substrate AbR1a), and a56:88 lm (Cshape5

5:3316; Cscale52:048431027, Camino substrate AbD1a) [Alex-
ander et al., 2010; Aur�ıa et al., 2015; Assaf et al., 2008; Hall

and Alexander, 2009; Liewald et al., 2014]. The simulated
DW-MRI images were generated with the in vivo MGH-USC
Human Connectome Project (HCP) imaging protocol (552
volumes, b-values up to 10; 000 s=mm2, d512:9 ms;
D521:8 ms) [Fan et al., 2016], using the Camino [Hall and
Alexander, 2009] Monte-Carlo diffusion simulator. The simu-
lated signal was contaminated with Rician noise [Gudbjarts-
son and Patz, 1995] at signal to noise ratio (SNR) 10, 20, and
30.

Tractography was initiated both from fascicles interfaces
(100 streamlines per voxel; 18,800 streamlines overall) or
from all voxels of the white matter volume (20 streamlines
per voxel; 22,400 streamlines overall). To evaluate recon-
structed streamlines, we used the Tractometer [Côt�e et al.,
2013] connectivity analysis. We report the following Trac-
tometer metrics:

� Valid Connections (VC): streamlines connecting
expected regions of interest (ROIs) and not exiting the
expected fascicle volume [Côt�e et al., 2013],
� Invalid Connections (IC): streamlines connecting

unexpected ROIs or streamlines connecting expected
ROIs but exiting the expected fascicle volume. These
streamlines are spatially coherent, have managed to
connect ROIs, but do not agree with the ground truth
[Côt�e et al., 2013],
� No Connections (NC): streamlines not connecting two

ROIs. These streamlines either stop prematurely due
to angular constraints or exit the boundaries of the
tracking volume [Côt�e et al., 2013],

In vivo dataset

We used the MGH-USC HCP adult diffusion dataset
(34 subjects) [Fan et al., 2016; Keil et al., 2013; Setsompop
et al., 2013]. The DW-MRI acquisition scheme consists of
552 volumes with b-values up to 10; 000 s=mm2, including
40 non-diffusion (b-value 5 0) images. The DW-MRI
images were acquired at 1:5 mm isotropic voxel size
using a Spin-echo EPI sequence (TR=TE 5 8; 800=57 ms;
d512:9 ms; D521:8 ms). We used the provided pre-
processed DW-MRI images corrected for motion and
EDDY currents [Andersson et al., 2012; Fan et al., 2016;
Greve and Fischl, 2009]. Diffusion Tensor estimation and
corresponding fractional anisotropy map generation were
done using Dipy [Garyfallidis et al., 2014]. From this, a
single averaged fiber response function was estimated in
fractional anisotropy values above a threshold of 0.7,
within the white matter volume, from all subjects. The
fiber response was used as input for spherical deconvolu-
tion [Raffelt et al., 2012; Tournier et al., 2007] to compute
the fiber ODFs using DW-MRI images of a single b-value
shell of 3,000 s=mm2 (maximum spherical harmonic order
8). A T1-weighted 1 mm isotropic resolution 3D
MPRAGE (TR/TE/TI 2,530/1.15/1,100 ms) image was
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also acquired [Fan et al., 2016]. The T1-weighted image
was first registered to the DW-MRI images using ANTs
[Avants et al., 2009]. The brain parcellation was then
obtained using FreeSurfer [Salat et al., 2009] and white
matter volume was obtained using FSL/FAST [Zhang
et al., 2001]. T1-weighted images were also registered to
the ICBM 2009a Nonlinear Symmetric Atlas [Fonov et al.,

2011] for voxel-based group analysis. Five streamlines
were initiated per voxel of the white matter volume. Fas-
cicles were obtained using the TractQuerier [Wassermann
et al., 2016] (see the Supporting Information for the white
matter fascicle definitions and queries). The mean axon
diameter index a, the mean apparent fiber density (AFD,
mean fiber ODF value along streamlines segments)

Figure 1.

Simulated kissing dataset (SNR 5 20). The left fascicle and right

fascicle have a mean axon diameter of 6:88 lm and 2:44 lm,

respectively. (a) shows the ground truth directions used to gen-

erate the data with their length scaled by the axon diameter

index a, (b) the estimated fiber ODFs (fODFs), (c) the fiber

ODF peaks and (d) the fiber ODF peaks with their length scaled

by a, (e) show VC and IC for AxTract, and (f) show VC and IC

for conventional deterministic tractography (CDT). [Color figure

can be viewed at wileyonlinelibrary.com]

TABLE I. Tractometer evaluation on the simulated kissing dataset

Tractography algorithm

Initiated from the interface Initiated from the white matter

AxTract CDT AxTract CDT

SNR 10 20 30 10 20 30 10 20 30 10 20 30

VC 72.1 87.2 90.5 55.9 52.5 53.9 60.9 71.3 73.9 54.1 54.7 55.3
IC 15.3 8.5 7.9 31.9 42.6 44.2 19.6 15.4 15.2 27.4 32.3 34.2
NC 12.7 4.3 1.7 12.2 4.9 1.9 19.6 13.3 10.9 18.6 13.0 10.5

Tractography initialization was done both in fascicles interfaces (100 streamlines per voxel; 18,800 streamlines) and in the white matter
volume (20 streamlines per voxel; 22,400 streamlines).
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[Dell’Acqua et al., 2010, 2013; Raffelt et al., 2012] and the
mean fractional anisotropy are reported over all segments
of all streamlines of each fascicles of the 34 subjects. We
also report the percentage change in the number of
streamlines [Catani et al., 2007; Lebel and Beaulieu, 2009;
Thiebaut de Schotten et al., 2011; Vernooij et al., 2006]
using AxTract compared to CDT: AxTract2CDT

CDT 3100. We
used two-tailed t-tests with the Bonferroni correction
(P< 0.05) to test for an increase or a decrease in the per-
centage change in the number of streamlines using
AxTract with a null hypothesis of 0.

RESULTS

Simulated data experiment

AxTract and CDT reconstructions on the simulated kissing
dataset (SNR 5 20) is shown in Figure 1. Figure 1a–c shows
the ground truth segment-wise directions used to generate
the data, the estimated fiber ODFs and the fiber ODF peaks,
respectively. Figure 1d shows the fiber ODF peaks with
their length scaled by the axon diameter index a. Figure 1e,f
shows VC and IC for both AxTract and CDT. Table I reports
the Tractometer connectivity evaluation on the simulated

TABLE II. Axon diameter index a estimated on the simulated kissing dataset

SNR Right fascicle Left fascicle

Ground Truth 6.88 2.44
10 5.02 6 0.39 3.86 6 0.54

AxTract initiated from the interface 20 5.09 6 0.30 3.87 6 0.52
30 5.08 6 0.29 3.87 6 0.49
10 4.92 6 0.49 3.79 6 0.55

AxTract initiated from the white matter 20 5.02 6 0.39 3.80 6 0.53
30 4.99 6 0.38 3.80 6 0.52

The ground truth and the mean a estimated on both fascicles are reported in lm (6 standard deviation).

Figure 2.

Axon diameter index a obtained with AxTract along the arcuate

fasciculus (AF) and the CST. Column 1 shows a sagittal view of

the T1-weighted image with the blue squares indicating the

zooming areas for streamlines visualization. Column 2 shows fas-

cicles colored by a estimated per segment, with the histogram

in Column 3. Columns 4 and 5 show, respectively, fascicles with

streamlines colored by the whole-streamline median a and the

histogram of whole-streamline median a, for all streamlines.

[Color figure can be viewed at wileyonlinelibrary.com]
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kissing configuration (SNR 5 10, 20, 30), initiating the trac-
tography both from fascicles interfaces or from the white
matter volume. AxTract produces 87.2% of VC compared to
52.5% using CDT, with SNR 5 20 and initiating tractography
at the interface (71.3% and 54.7%, respectively, initiating
from the white matter volume). The IC decrease proportion-
ally and the NC stay similar for both AxTract and CDT.
Table II reports the mean and standard deviation of the
axon diameter index a estimated along streamlines’ seg-
ments (VC), for each fascicle. The mean axon diameter index
a is similar for both interface and white matter volume trac-
tography initializations and across SNRs. However, increas-
ing the noise in the DW-MRI images increases the standard

deviation of the estimated a for both fascicles. This per-
turbed the selection of the propagation direction by AxTract,
which decreases the percentage of VC obtained with
AxTract, from 90.5% at SNR 5 30 to 72.1% at SNR 5 10 initi-
ating from fascicles extremities, respectively from 73.9% to
60.9% initiating from the white matter volume. However,
those results are always higher for AxTract than for CDT,
which obtained 53.9% at SNR 5 30 and 55.9% at SNR 5 10
initiating from fascicles extremities, respectively 55.3% and
54.1% initiating from the white matter volume (see Table I).
The mean a of the right fascicles (the largest) is always
underestimated and the mean a of the left fascicles (the
smallest) is always overestimated.

Figure 3.

Axon diameter index a obtained with AxTract along the IFOF,

the SLF, and the UF. Column 1 shows a sagittal view of the T1-

weighted image with the blue squares indicating the zooming

areas for streamlines visualization. Column 2 shows fascicles col-

ored by a estimated per segment, with the histogram in Column

3. Columns 4 and 5 show, respectively, fascicles with streamlines

colored by the whole-streamline median a and the histogram of

whole-streamline median a, for all streamlines. [Color figure can

be viewed at wileyonlinelibrary.com]
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In vivo data experiment

Figures 2 and 3 show the axon diameter index a
obtained with AxTract along five white matter fascicles of

one subject (mgh_1001): the arcuate fasciculus (AF), the

corticospinal tract (CST), the inferior fronto-occipital fascic-

ulus (IFOF), the superior longitudinal fasciculus (SLF), and

the uncinate fasciculus (UF). In Column 3, we report the

histogram of axon diameter index a estimated at each seg-

ment of all streamlines of each fascicle (streamlines shown

in Column 2). In Column 5, we report for each fascicle, the

histogram of the whole-streamline median axon diameter

index a (one value per streamline), for all streamlines

(streamlines shown in Column 4). Differences in the esti-

mated axon diameter index a can be observed across fas-

cicles in both histograms. Figure 4 shows the same

information for the corpus callosum (CC). The CC is split

in 5 sub-fascicles using the FreeSurfer parcellation and

TractQuerier (anterior, mid-anterior, central, mid-posterior,

posterior). A decrease in the percentage of segments with

a high axon diameter index a can be observed in the pos-

terior part of the CC. Figure 5a,b shows the CC of the

same subject with AxTract streamlines colored using a esti-

mated per segment and using the whole-streamline

median a. The largest a (green) can be observed in the cen-

tral part of the CC using segment-wise estimation. How-

ever, the trend disappears using the whole-streamline

median estimation.
Figure 6a shows the average occurrence map of AxTract

selecting a different propagation direction than CDT over
the 34 subjects. AxTract changed the propagation direction
more frequently in low angle crossing areas of the white
matter. Areas with single fiber orientation or with multiple
fiber orientations but not within the maximum deviation
angle (u545

�
) from the propagating streamline, show no

changes in propagation directions. Figure 6b–d shows the
segments of streamlines of three fascicles (AF, CST, UF)
where such changes occurred for one subject (mgh_1001).

Figure 4.

Axon diameter index a obtained with AxTract along the CC sub-fascicles. Column 1 shows the

areas used to split the fascicle. Column 2 shows sub-fascicles colored by a estimated per seg-

ment, with the histogram in Column 3. Columns 4 and 5 show, respectively, fascicles with

streamlines colored by the whole-streamline median a and the histogram of whole-streamline

median a, for all streamlines. [Color figure can be viewed at wileyonlinelibrary.com]
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During the tracking process of the 34 subjects, there were
multiple propagation directions available in 2:5%60:2 of
tracking steps (6 standard deviation). AxTract changed the
propagation direction using the axon diameter index a in
19:0%60:3 of tracking steps with multiple directions
available.

Finally, Figure 7a shows the distributions of relative
changes in streamlines count (%) between AxTract and
CDT, across fascicles of the 34 healthy subjects: the AF,
the CST, the IFOF, the SLF, the UF, and the CC. We report
a significant increase in streamlines count for the CST (left:
Tð33Þ53:9; P57:5310203, right: Tð33Þ54:0; P55:4310203)
and for the CC (anterior: Tð33Þ53:4; P52:9310202, central:
Tð33Þ57:1; P56:8310206, mid-posterior: Tð33Þ55:9; P5

7:1310207, posterior: Tð33Þ53:1; P52:2310205), and a sig-
nificant decrease for the AF (left: Tð33Þ523:6; P5

2:4310202). Across all selected fascicles, AxTract shows an
average increase 6.3% in streamline count compared to
CDT. The distribution of mean a for the same fascicles is
reported in Figure 7b. The mean apparent fiber density
and the mean fractional anisotropy are shown as reference
in Figures 7c,d. Projection and association fascicles are
reported for each hemisphere. The profile of the distribu-
tion of the axon diameter index a, the apparent fiber den-
sity, and the fractional anisotropy is different and values
vary across fascicles, bringing complementary information
on those fascicles.

DISCUSSION

We introduced a novel tractography method, AxTract,
which incorporates apparent axonal microstructure

measurements to reconstruct white matter fascicles of the
brain. Despite the current discussion on the feasibility of
measuring axon diameters with DW-MRI [Alexander
et al., 2010; Novikov et al., 2014], our results show that
incorporating surrogate measures to axon diameter has a
positive effect on tractography results. Specifically, we
incorporated the axon diameter index a [Alexander et al.,
2010] obtained from DW-MRI using the efficient imple-
mentation AMICO [Aur�ıa et al., 2015]. Using this tech-
nique, our algorithm can disentangle complex architecture
based on microstructure characteristics. AxTract is able to
distinguish white matter fascicles through their micro-
structure characteristics while being able to perform full
brain tractography in reasonable time (approximately 72 h
for AxTract compared to 6 h for the CDT implementation,
for 600,000 streamlines). Our results on simulated data
show that AxTract is a promising approach to reduce the
incidence of IC produced by current tractography algo-
rithms. Our results on in vivo data show that the axon
diameter index a changed the direction of the tracking
resulting in an overall increase of the number of stream-
lines in the identified fascicles. In the absence of ground
truth in vivo connectivity data, it is a challenge to show
the increase of VC and decrease of IC but, we show evi-
dence that AxTract is a novel method taking a step in the
right direction.

Reducing ambiguities in complex white matter

architecture

AxTract distinguishes fascicles in complex architectures
when these have different axon diameter. Specifically, in

Figure 5.

Axon diameter index a obtained with AxTract of the CC. (a,b) Streamlines colored using a esti-

mated per segment and the whole-streamline median a, respectively. The top row show stream-

lines in lateral and inferior views and the bottom row show a sagittal cut of the streamlines going

through the midsagittal slice of the CC. [Color figure can be viewed at wileyonlinelibrary.com]
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the crossing area on Figure 1, AxTract privileges following
the direction which minimizes the deviation from axon
diameter index a of the fascicle being reconstructed while
the usual tractography approach is to minimize the angu-
lar deviation. In doing so, AxTract is able to better resolve
the kissing configuration and decreases the percentage of
IC. Always following the direction with the lowest local
angular deviation, as with CDT, leads to errors in the kiss-
ing configuration reconstruction. This is quantitatively
reported by the Tractometer [Côt�e et al., 2013] metrics in
Table I. AxTract always increases the VC and decreases the
IC compared to CDT. The VC also increase with an
increase in SNR for AxTract. The increase in VC is also
higher for AxTract initiating the tractography from fascicle
extremities, that is, the white matter/gray matter interface.
This is because the tracking starts in regions where a is
specific of the fascicle, that is, ad estimated in the initial
direction tend toward the ground truth a of the fascicle.
This is not the case when the tracking starts in the central
part of the dataset, where only one peak is obtained from
the fiber ODF. Hence, AMICO estimates the axon diameter

index in this single direction, despite the ground truth
having two directions, see Figure 1a,c. As the two ground
truth directions are almost aligned, the axon diameter
index tends toward the average a of both simulated fas-
cicles. This makes AxTract unable to distinguish which
direction to follow in subsequent tractography steps with
multiple fiber ODF peaks. Nonetheless, AxTract performs
similarly to the CDT when initiated in regions where fas-
cicles population cannot be distinguished. It is worth men-
tioning that two streamlines being reconstructed with
AxTract, reaching the very same position and with the
same previous tracking direction would not necessarily
result in the same trajectory. Contrary to CDT, AxTract
uses the information from many previous tracking steps
(up to 5 cm with aq) to select the propagation direction.

The estimated axon diameter index a along streamlines
is different in the two fascicles, but similar across SNR
and tractography initialization techniques (see Table II).
However, a is always underestimated for the fascicle
with the highest cylinder diameter, and overestimated for
the fascicle with the lowest cylinder diameter. Although

Figure 6.

Occurrence mapping of AxTract selecting a different propagation

direction than conventional deterministic tractography (CDT).

(a) Average occurrence map of AxTract selecting a different

propagation direction than CDT over the 34 subjects. Individual

subject occurrence maps were co-registered on the ICBM 152

average brain map, prior to the averaging. AxTract changed the

propagation direction using the axon diameter index a in 19:0%

60:3 of tracking steps with multiple directions available. (b,c,d)

Occurrences of AxTract selecting a different propagating direc-

tion than CDT on three fascicles of one subject (yellow seg-

ments). The white ellipses highlight crossing areas where the use

of the axon diameter index a modified the tractography. [Color

figure can be viewed at wileyonlinelibrary.com]
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the cylinder diameter estimated at each segment is not
the same as the ground truth, the estimation is consistent
across segment and streamlines of the same fascicle. This
can be observed in Figure 1d where the fiber ODF peaks
have a consistent a estimation with AMICO [Aur�ıa et al.,
2015], both in single and multiple fibers populations.
Table II shows that at high SNR, the standard deviation
of the estimation of the axon diameter index a decreases.
This decrease in the variability of the estimated a
increases the overall quality of the tractography recon-
struction, as shown by the Tractometer in Table I. This
stresses the importance of having high SNR data for

microstructure estimation and consequently, microstruc-
ture informed tractography. Nevertheless, AxTract always
increases VC and decreases IC compared to CDT, even at
SNR 5 10.

Characterizing axon diameter index in vivo

AxTract enables the characterization of the axon diame-

ter index a along white matter fascicles in vivo. The esti-

mation of a with AMICO [Aur�ıa et al., 2015] along the

tracking process with AxTract seems to be spatially

Figure 7.

Fascicle property distributions of 34 healthy subjects. (a) Per-

centage change in the number of streamlines between AxTract

and conventional deterministic tractography (AxTract2CDT
CDT

3100).

Fascicle with significant increase or decrease in streamline count

are marked with an asterisk (�). (b) The mean axon diameter

index a, (c) the mean apparent fiber density, and (d) the mean

fractional anisotropy, along streamline fascicles of 34 healthy sub-

jects, obtained with AxTract. Results are shown for six fascicles:

the arcuate fasciculus (AF), the CST, the IFOF, the SLF, the UF,

and the CC. The CC is split in five sub-fascicles using the Free-

Surfer parcellation (anterior, mid-anterior, central, mid-posterior,

posterior) and TractQuerier. Projection and association fascicles

are reported for each hemisphere. The black line indicates the

median, the square indicates the mean, the box extends from

the first and third quartile and the whiskers are at the 5th and

95th percentile of the distribution.
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coherent, as shown in Figures 2, 3, and 4, both on local

estimation and on the median along streamlines. The value

observed in the CC, see Figure 5a, follows the low-high-

low trend observed in histology [Aboitiz et al., 1992], with

lower values in the splenium and genu, and higher value

in the body of the CC. However, as shown in Figures 5,
this is visible only in the midsagittal slice of the CC. Alex-
ander et al. [2010] suggested the trend observed in the
midsagittal slice could be related to more complex axon
geometry within those voxels, such as bending and fan-
ning, not well supported by the ActiveAx model, and bias-
ing the fitting. The ActiveAx model was later extended by
Zhang et al. [2011b] to account for orientation dispersion
using a Watson distribution. Their method better explains
the data for the considered voxels, providing equally or
more consistent agreement between the microstructure
estimated and the observations from histology [Zhang
et al., 2011b]. Nonetheless, similar estimates of the axon
diameter index a were obtained for the midsagittal slice of
the CC with the proposed model of the axonal dispersion.
Recently, Ronen et al. [2013] reported axonal angular dis-
persion in the body of the CC that could bias the estima-
tion of the axon diameter index a. This bias could also be
a partial explanation for the discrepancy between the rela-
tive differences in the average a of different fascicles,
shown in Figure 7b, and the histological measures done by
Liewald et al. [2014]. This could also be due to the limita-
tion of histology which only allows for measuring axon
diameters on a single slice [Liewald et al., 2014] while
AxTract enables the overall quantification on the whole
fascicle. Further investigation is needed to better under-
stand why microstructure trends on whole fascicles differ
from trends on a single slice, as well as the relationship
between the axon diameter index a and axon physiology
[Aboitiz et al., 1992; Alexander et al., 2010; Daducci et al.,
2015; Debanne et al., 2011; Dyrby et al., 2012; Liewald
et al., 2014; Ye et al., 2016; Zhang et al., 2011b]. Remark-
ably, AxTract, despite these limitations, is able to show
consistent differences between fascicles in the mean axon
diameter index a segment-wise across subjects (see Fig.
7b). Fascicles mean axon diameter index can also be com-
puted a posteriori from the axon diameter index in the
segment-wise orientation of streamlines obtained from
CDT. Additionally, fascicles mean axon diameter index
can be obtained from streamline post-processing methods
such as MicroTrack [Sherbondy et al., 2010] or COMMIT
[Barakovic et al., 2016; Daducci et al., 2014]. These meth-
ods associate a white matter model to each streamline and
optimize the model parameters of all streamlines simulta-
neously to best fit the DW-MRI signal. They rely on the
same hypothesis that microstructure features are consistent
along the white matter fibers. In both cases, this provide
an additional fascicle index that could be studied along-
side other indices such as the apparent fiber density and
the fractional anisotropy, to improve our understanding of
brain connectivity and pathology.

Toward reducing IC in vivo

The axon diameter index a changed the tracking direc-
tion mostly in voxels located in low angle crossing areas
of the white matter, as shown on Figure 6. On average,
these changes in direction happened in 19.0% of tracking
steps with multiple directions available, which account for
2.5% of all tracking steps. This suggests that the direction
picked by the CDT is usually the direction that shows the
less variation in a. Nonetheless, a single change in the
propagation direction can affect the reconstruction of the
whole fascicle. This is shown in Figure 7a, where AxTract
increases the streamline count by an average of 6.3%
across the selected fascicles for 34 subjects. This increase is
obtained by solely changing the selection of the propaga-
tion direction with AxTract, keeping the same other trac-
tography parameters. This increase in streamline count for
a fascicle can be explained by three factors: (1) a decrease
in erroneous streamlines not reaching the gray matter, (2)
a decrease in erroneous streamlines connecting invalid
gray matter regions, or (3) streamlines connecting alterna-
tive valid gray matter regions from initial positions. Both
factors (1) and (2) will improve the streamline reconstruc-
tion by overall increasing the VC. However, the observed
increase of VC could be due to a decrease in VCs from
other existing fascicles of the brain (factor 3). We observed
such a decrease in the streamline count for the AF, see Fig-
ure 7a. Seeds forming AF connections with CDT might
have formed other VC with AxTract (e.g., fascicles kissing
or crossing with the AF such as the SLF). This reduction
in the streamline count might also be attributed to more
seeds forming IC or erroneous streamlines due to errors in
the axon diameter index estimation, making AxTract fol-
low incorrect directions. Further investigation is needed to
better understand the changes in the streamlines distribu-
tion in vivo. Nevertheless, this suggests that AxTract has a
consistent effect on some of the reported fascicles across
subjects. More realistic phantoms, such the one proposed
for the ISMRM 2015 Tractography challenge (http://trac-
tometer.org/ismrm_2015_challenge) [Maier-Hein et al.,
2017] should also provide more insights in the potential of
AxTract.

It is worth mentioning that we observed fascicles in
some subjects with lower streamline coverage than we
expected for both AxTract and the CDT (e.g., the mid-
posterior part of the CC and the right IFOF of subject
mgh_1001). In most cases, there were streamlines covering
the expected fascicles area. However, these streamlines did
not fully agree the strict fascicles definition used to auto-
matically obtained streamlines with TractQuerier (e.g.,
incomplete streamlines stopping in the white matter).

Limitations and future work

In the current implementation, the propagation direction
is selected only by minimizing the change in the axon
diameter index, given the directions within the maximum
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deviation angle h. It is not clear which angle h provides
the optimal reconstruction throughout fascicles of the
brain. It would be interesting to relax the angular criterion,
especially with AxTract where two criteria (difference in
axon diameter index and angular difference) are used in
the selection of the propagation direction. In future work,
AxTract could be extended to select the propagation direc-
tion using a distance function combining both criteria (e.g.,
allowing high angular difference when the distance in
axon diameter index is low).

AxTract approximates the axon diameter index of the
fascicle being reconstructed using the median segment-
wise a over a fixed distance of 5 cm. This parameter is of
high importance as it affects the propagation direction
selected by AxTract. If the distance parameter is too little,
fascicles overlapping with the one being reconstructed will
bias its axon diameter index estimation. This will cause
the tractography to potentially follow erroneous propaga-
tion directions. Alternatively, if the distance parameter is
too big, biological changes in the fascicle axon diameter
distribution cannot be taking into account (e.g., branching
or fanning). Again, this could lead to the tractography fol-
lowing erroneous directions. More research is needed to
best select and adapt this parameter for the fascicle being
reconstructed.

Finally, AxTract will directly benefit from improvements in
local axon diameter acquisition, modeling, and reconstruc-
tion techniques. In future work, it will be of interest to
extend the current tracking algorithm to follow not only the
median a of the fascicle, but to follow the a distribution of a
fascicle [Assaf et al., 2008]. In particular, fascicles have a dis-
tribution of axon diameter that can partially overlaps, crosses
and branches with other fascicles. Following the direction
with the lowest change in a can results in an under-
representation (or absence) of the smaller branching parts of
the reconstructed fascicles. AxTract follows the directions
having the most coherence in a, and as such, aims at recon-
structing the main structure of the fascicles. Further improve-
ments in the axon diameter distribution mapping could
allow tractography to disentangle fascicles axon diameter
distribution overlapping in a parallel direction and helps
identify smaller branching structures. In addition, the estima-
tion of a could be extended to more directions than the fiber
ODF peaks. This requires new developments in axon diame-
ter mapping methods, but would allow the use of a in prob-
abilistic tractography algorithms [e.g., Behrens et al., 2007;
Jeurissen et al., 2011] or global tractography frameworks
[e.g., Fillard et al., 2009; Jbabdi et al., 2007; Kreher et al.,
2008; Reisert et al., 2014, 2011].

CONCLUSION

To conclude, we presented AxTract, a novel algorithm to
address the crossing/kissing problem of fascicles passing
through areas of complex white matter configurations.
AxTract uses axon diameter information to reduce ambigu-
ities in the selection of the propagation direction, thus

potentially reducing IC and increasing VC produced by
tractography algorithms. This was shown on simulations
and on a group of 34 healthy subjects. AxTract is a frame-
work and the first step toward advanced techniques able
to incorporate tractography and microstructure imaging
together. As microstructure modeling and reconstruction
improve in the future, so will AxTract. This will enable the
study of microstructure characteristics of white matter fas-
cicles and go toward quantitative connectivity mapping.
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APPENDIX: AXON DIAMETER INDEX
ESTIMATION

The framework AMICO [Aur�ıa et al., 2015; Daducci et al.,
2015] provides the means to efficiently estimates microstruc-
ture information using a linear formulation. AMICO
expresses the multi-compartment mapping problem as

S

S0
5Ux1g;

where S 2 RN is the vector of diffusion weighted signal
measurements, S0 the signal without diffusion weighting,
x 2 RK the coefficients of the dictionary U 2 RN3K and g
2 RN the acquisition noise [Daducci et al., 2015]. The
dictionary U is built from different matrices:

U5½Uisoj Uintra
1 j Uextra

1 j . . . j Uintra
M j Uextra

M �;

where Uiso 2 RN3Kiso are isotropic response functions
accounting for free and isotropically restricted water [Pana-

giotaki et al., 2012] with diffusivity ranging from 331023 to

131023 mm2=s, and Uintra
i 2 RN3Kintra the intra-axonal and

Uextra
i 2 RN3Kextra extra-axonal compartments to account for

the DW-MRI signal attenuation along the M fiber directions
dm. The intra-axonal compartments Uintra

i models the DW-
MRI signal decay of water molecules restricted within paral-
lel cylinders [Alexander et al., 2010; Daducci et al., 2015;
Dyrby et al., 2012; Panagiotaki et al., 2012] of diameter rang-
ing from 2 to 10 lm. The intra-axonal diffusivity was fixed

to 1:731023 mm2=s [Dyrby et al., 2012; Panagiotaki et al.,
2012]. The parallel diffusivity of the extra-axonal compart-

ments Uextra
i was also fixed to 1:731023 mm2=s, and distinct

perpendicular diffusivity ranging from 0:0631023 to 0:423

1023 mm2=s [Daducci et al., 2013; Panagiotaki et al., 2012].
The model assumes no exchange between compartments.

Given the DW-MRI signal and a set of fiber directions,
AMICO solves
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1

2
jjxjj22; s:t: k > 0

where jj � jj22 is the ‘2 norm and the parameter k controls
the trade-off between the data and the regularization
terms. Doing so, it enables the estimation of the mean
diameter of cylinders along each fiber direction

adm
5

P
j 2Rjx

intra
ijP

j xintra
ij

;

where xintra
ij

is the volume fraction of the compartment

Uintra
ij

corresponding to cylinder of radius Rj (lm) in the

direction dm. AMICO uses up to three fiber directions in
the estimation [Aur�ıa et al., 2015]. We refer to adm

as the
axon diameter index [Alexander et al., 2010; Aur�ıa et al.,
2015; Dyrby et al., 2012].
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