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Abstract: Resting-state functional connectivity (FC) is highly variable across the duration of a scan.
Groups of coevolving connections, or reproducible patterns of dynamic FC (dFC), have been revealed in
fluctuating FC by applying unsupervised learning techniques. Based on results from k-means clustering
and sliding-window correlations, it has recently been hypothesized that dFC may cycle through several
discrete FC states. Alternatively, it has been proposed to represent dFC as a linear combination of multi-
ple FC patterns using principal component analysis. As it is unclear whether sparse or nonsparse combi-
nations of FC patterns are most appropriate, and as this affects their interpretation and use as markers of
cognitive processing, the goal of our study was to evaluate the impact of sparsity by performing an
empirical evaluation of simulated, task-based, and resting-state dFC. To this aim, we applied matrix fac-
torizations subject to variable constraints in the temporal domain and studied both the reproducibility of
ensuing representations of dFC and the expression of FC patterns over time. During subject-driven tasks,
dFC was well described by alternating FC states in accordance with the nature of the data. The estimated
FC patterns showed a rich structure with combinations of known functional networks enabling accurate
identification of three different tasks. During rest, dFC was better described by multiple FC patterns
that overlap. The executive control networks, which are critical for working memory, appeared
grouped alternately with externally or internally oriented networks. These results suggest that combinations
of FC patterns can provide a meaningful way to disentangle resting-state dFC. Hum Brain Mapp 35:5984–
5995, 2014. VC 2014 TheAuthors. Human Brain Mapping published by Wiley Periodicals, Inc.
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INTRODUCTION

Brain networks reconfigure over years [Dosenbach et al.,
2010], days [Bassett et al., 2011], and seconds [Chang and
Glover, 2010; Cribben et al., 2012; Ekman et al., 2012; Eryil-
maz et al., 2011]. Fast, dynamic reconfigurations may
occur in response to a changing external environment or
spontaneously while a subject is at rest. In particular,
spontaneous fluctuations in the temporal correlation of the
BOLD activity of distinct brain regions have first been
highlighted in the default mode network [DMN; Chang
and Glover, 2010] and since been shown to occur in many
other large-scale networks [Allen et al., 2014; Hutchison
et al., 2013a; Liu and Duyn, 2013; Smith et al., 2012]. Using
unsupervised learning techniques, recent work has identi-
fied reproducible groups of functional connections that
evolve in a similar manner, which we here call “functional
connectivity (FC) patterns” [Allen et al., 2014; Eavani
et al., 2013; Leonardi et al., 2013; Li et al., 2014]. The occur-
rence of various FC patterns across time challenges the
assumption of unique and stable correlations during rest
[Allen et al., 2014; Chang and Glover, 2010], and links
between FC variability and neural activity have been
reported [Allen et al., 2013; Chang et al., 2013]. Early work
also suggests that these patterns are altered in several neu-
ropsychological diseases [Jones et al., 2012; Leonardi et al.,
2013; Li et al., 2014], highlighting the potential importance
of dFC to provide insights that are complementary to tra-
ditional, static FC [see, e.g., Hutchison et al., 2013a, for a
review].

Sliding-window correlation analysis has been the most
commonly used approach to study dynamic FC (dFC)
across time and Allen et al. [2014] combined it with
k-means clustering to separate dFC into several so-called
“FC states”. In related work, Li et al. [2014] also used k-
means clustering as a first step to identify FC patterns.
Preliminary results indicate that four different tasks can be
successfully distinguished in individual subjects by apply-
ing k-means clustering to sliding-window correlations
[Gonzalez-Castillo, 2013]. Thus, dFC is sensitive to changes
in cognitive states and provides enough information to
reveal them. Based on these results it has been suggested
that dFC may cycle through multiple discrete states during
rest [Hutchison et al., 2013a]. We posit that clustering
inevitably models dFC as a succession of states because its
aim is to find a simple representation by approximating
each windowed FC estimate by a single FC pattern. The
simplicity of clustering makes it an attractive, yet also
restrictive approach, and to our knowledge there is no
study evaluating the importance of the implicit sparsity
assumption.

Alternatively, it has been proposed to represent dFC as
a linear combination of multiple FC patterns by applying
principal component analysis [PCA; Leonardi et al., 2013]
and a tensorial extension for task data enabled accurate
classification of two cognitive states [Leonardi and Van De
Ville, 2013]. PCA is a more flexible approach, but it can be

prone to overfitting. Again, we posit that PCA inevitably
models dFC as the combination of all (orthogonal)
patterns.

Here, we explore whether dFC is better described by a
succession of separated FC states or by the joint expression
of multiple FC patterns. We want to understand whether
sparsity is relevant from a conceptual point of view and
how the FC patterns should be interpreted.

We evaluate the impact of sparsity by casting both
k-means clustering and truncated SVD/PCA1 as matrix fac-
torizations, which decompose dFC into components and
associated time-dependent weights. In clustering, each dFC
estimate is approximated by a single component with a
weight of one, while in PCA each estimate is approximated
by a linear combination of all orthogonal components (Fig. 1).
Thus, clustering assumes a maximally sparse model, while
PCA assumes no sparsity (but orthogonality). Sparse matrix
factorizations can be seen as generalizations of both k-means
clustering and truncated SVD, and have previously been
shown to well describe BOLD activity and static FC [Eavani
et al., 2012; Lee et al., 2011, 2013].

To explore the importance of temporal sparsity, we per-
formed an empirical study. First, to test the feasibility of
the proposed approach, we generated simulated data. Sec-
ond, we decomposed dFC during three subject-driven cog-
nitive states, which provide a more naturalistic view of
continuous, cognitive processing than traditional task data.
Importantly, as we know the cognitive state a subject is in,
we can compare the estimated FC patterns and associated
weights with the known experimental paradigm. Third,
we decomposed dFC during resting state.

METHODS

Participants and Data Acquisition

Twenty-four healthy, right-handed subjects (age range
18–30 years, 15 females) participated in this study. The data
have previously been used to decode subject-driven cogni-
tive states [Shirer et al., 2012]. The study was approved by
the institutional review board of Stanford University and
informed consent was obtained from each subject.

Functional images were acquired on a 3.0T GE scanner
(repetition time (TR) 5 2 s, echo time (TE) 5 30 ms, fiip
angle 5 80�, 1 interleave, matrix size 64 3 64, field-of-view
(FOV) 5 22 cm). A high-resolution structural scan was
acquired using an axial 3D fast spoiled gradient recalled
echo sequence (162 slices, 0.86-mm2 in-plane and 1-mm
through-plane resolution, TR 5 5.9 ms, TE 5 2 ms, fiip
angle 5 15�, FOV 5 22 cm).

1Technically, PCA decomposes a matrix only into (principal) com-
ponents and it is the singular value decomposition (SVD) that
decomposes it into components and weights. For centered data, the
principal components of PCA are, however, equal to the left singular
vectors of SVD. The weights can then be obtained by a projection of
the data onto the components.
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Participants were scanned for 10 min each while resting
and completing three subject-driven tasks: counting back-
wards from 5000 in steps of three (subtraction task), recall-
ing the events of their day (episodic memory task), and
silently singing a song (music task). No stimulus was pre-
sented and the investigator only marked the start and end
of each 10-min scan. Subjects were instructed to keep their
eyes closed. A debriefing confirmed that all subjects stayed
awake and were able to perform the tasks throughout the
scan.

Preprocessing

Data were preprocessed and analyzed using FMRIBs Soft-
ware Library (FSL version 4.1). The first six volumes were
discarded to allow the MR signal to equilibrate. Data were
corrected for motion, normalized to the MNI template, and
smoothed with a 6-mm Gaussian kernel. Subject’s heart rate
and respiration rate were monitored during the scan and
regressed out from the fMRI data, together with the six
motion parameters and their derivatives, cerebrospinal fiuid

and white matter signals, and a brain-averaged signal.
Finally, data were high-pass filtered (>0.01 Hz). The used
set of motion regressors has previously shown good per-
formance in connectivity studies of low-motion subjects [Sat-
terthwaite et al., 2012], and the healthy undergraduates
included in this study moved little [0.017 6 0.008 mm mean
framewise displacement, vs. 0.029 6 0.004 mm for the low-
motion group in Satterthwaite et al.)

BOLD activity was averaged within 78 functional ROIs,
which were previously defined from thresholded independ-
ent components estimated from 14 of the 24 subjects and one
other subject [http://findlab.stanford.edu/functional_ROIs.
html, cerebellar ROIs were excluded; Shirer et al., 2012].

Dynamic Functional Connectivity Analysis

DFC estimation

We estimated dFC between all N 5 78 ROIs using
sliding-window Pearson correlations [Chang and Glover,
2010]. The 78 3 78 correlation matrices were estimated

Figure 1.

(a) dFC is temporally concatenated across multiple subjects to form

matrix C. (b) k-Means clustering separates the data into K clusters,

thereby approximating C by a succession of the cluster centroids, for

example, the first dFC estimate is approximated by centroid 1, the

second and third by centroid 2,. . .. This can be seen as decomposing

the dFC matrix C into K FC patterns (D) and associated sparse

weights (A), where only one FC pattern may have a nonzero weight

at each instance in time (k a:k051). (c) PCA or SVD decomposes

the dFC matrix into K FC patterns and associated nonsparse, orthog-

onal weights (k a:k05K). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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using a window size of 30 TRs (60 s) and the window
shifted by 5 TRs (10 s) for subsequent estimations, result-
ing in 53 windows for each subject and state. These
choices are similar to values reported in the literature
[Allen et al., 2014; Handwerker et al., 2012; Hutchison
et al., 2013b; Leonardi et al., 2013] and Shirer et al. [2012]
reported that different cognitive states were well distin-
guished with 60 s of data.

Each correlation matrix was Fisher Z-transformed. We
will refer to the vectorized, upper triangular part of each
correlation matrix as “windowed FC.” Next, we tempo-
rally concatenated the windowed FC of each subject s to
construct one resting-state and one task-based connections
3 windows matrix Cs 2 RE 3 W , where E5

N N21ð Þ
2 53003

and W 5 53 and 3 3 53 5 159 for resting-state and task,
respectively. For both the resting-state and task-based
matrices Cs, we subtracted the mean from each row (con-
nection) before concatenating the centered Cs across sub-
jects to form a connections 3 (windows 3 subjects)
matrix C 2 RE 3 T (Fig. 1a). The row-wise centering of
Cs removed differences in average dFC (a measure of
“static” FC) between subjects, evidenced by the fact that
FC patterns estimated from phase-randomized dFC lose
all structure only after the centering step [Leonardi et al.,
2013]. This step also improved the correct identification
of the three subject-driven tasks with k-means clustering.
The adjusted rand index (ARI), which measures the simi-
larity between two data labelings and is adjusted for
chance levels [Hubert and Arabie, 1985; Rand, 1971], was
0.74 with centering and 0.27 without, where a value of 0
indicates a random labeling and a value of 1, a perfect
labeling.

DFC matrix factorization

We start from a generic formulation of matrix
factorizations: C � DA. That is, the dFC matrix C is repre-
sented as the multiplication of K FC patterns, stored as the
columns of the matrix D5 d:1;d:2; . . . d:K½ � 2 RE 3 K,
and their associated time-dependent weights (i.e., their
importance in representing dFC at each window) in
A5 a:1; a:2; . . . a:T½ � 2 RK 3 T , where d:1 indexes the first
column of matrix D. The problem of jointly learning D and
A can be formulated as

arg min
D;A
k C2DA k2

F (1)

where arg min indicates that D and A are chosen such as to

minimize the approximation error k C2DA k2
F, and k X k2

F 5
P

ij x2
ij is the Frobenius norm, which is defined as the sum of

all entries squared (matrix ‘2-norm). k-Means clustering and
truncated SVD represent two special cases of the more gen-
eral Eq. (1).

In k-means clustering, each windowed FC is approxi-
mated by one pattern, which corresponds to a strict spar-
sity constraint on the time-dependent weights A (Fig. 1b):

arg min
D;A
k C2DA k2

F; s:t: ka:tk051; akt5ð0; 1Þ (2)

The constraint ka:tk051 implies that each windowed FC
is approximated by a single FC pattern d:k (as the ‘0-norm
counts the number of nonzero entries), and akt5ð0; 1Þ that
the associated weights are binary. Equation (2) describes
k-means clustering with a squared Euclidean distance:

arg minM;M
PK

k51

P
ct2Mk

k ct2mkk2, where M indicates

exclusive and exhaustive cluster membership, ct 2 Mk

are all windowed FCs assigned to cluster k, and mk is the
associated cluster center that equals the average of all
windowed FCs assigned to that cluster. In other words,
k-means clustering finds the cluster assignments M that
minimize the within-cluster distance dðct;mkÞ5
k ct2mkk2, where dðct;mkÞ measures the distance between
the two vectors. The distance in k-means clustering is not
limited to the Euclidean distance, however, and we here
use one minus the correlation, which allows the weights
akt to vary positively and compensate for differences in
scaling.

Truncated SVD corresponds to different constraints
(Fig. 1c):

arg min
D;A
k C2DA k2

F; s:t: ka:tk05K; DTD5I (3)

where I is the identity matrix, that is, D is orthogonal, and
D contains the first few eigenvectors of the connectionwise
covariance matrix CCT, and A5DTC. ka:tk05K indicates
that each dFC network is approximated as a combination
of all FC patterns. This constraint does not need to be
imposed, but we include it for the sake of comparison
between approaches.

k-Means clustering and truncated SVD can be general-
ized by k-SVD [Aharon et al., 2006]:

arg min
D;A
k C2DA k2

F; s:t: ka:tk0 � S (4)

where the case S51 generalizes k-means clustering (i.e.,
without constraining the values to be binary or positive)
and the case S5K generalizes PCA (i.e., without enforcing
orthogonality, which, however, still leads to a solution that
spans the same subspace as one can be represented as a
linear combination of the other). Using this generalization
only the sparsity of the weights separates the two
approaches. For solving Eq. (4), we used a fast implemen-
tation in the optimization toolbox SPArse Modeling Soft-
ware (SPAMS, http://spams-devel.gforge.inria.fr/; Mairal
et al., 2010). The optimization problem is not jointly con-
vex in D and A, but can be solved by alternately updating
either matrix while the other one is held fixed. At each
iteration, SPAMS sequentially updates the weights A using
orthogonal matching pursuit and, given the novel weights,
the FC patterns D using a block-coordinate descent
approach.
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Simulated and null data

We generated data under a spatiotemporal separability
assumption by multiplying K 5 3 FC patterns with random
time courses that corresponded either to the case of sepa-
rated or joint expression. The three subject-specific FC pat-
terns Ds were estimated from average dFC during each of
the three subject-driven, cognitive states subtraction, mem-
ory, and music (Supporting Information Fig. 1a). This
incorporated a fair amount of intersubject variability as
can be expected in real fMRI data. To generate subject-
specific connection-by-window simulated data, we multi-
plied Ds with randomly generated time courses
As:Cs5DsAs, where s51; 2; . . . ; 24 and akt � jN 0; 1ð Þj
(Supporting Information Fig. 1b). The subtraction FC pat-
tern negatively correlated with the other two FC patterns
(Pearson r<20.6), and so to avoid ambiguity in expres-
sion of the FC patterns, we used positive weights. The
subject-specific FC patterns Ds were estimated from aver-
age FC during each of the three subject-driven cognitive
states subtraction, memory, and music (Supporting Infor-
mation Fig. 1a). This incorporated a large amount of inter-
subject variability as can be expected in real fMRI data. To
simulate the separated expression of FC patterns, we ran-
domly set three entries of As per column to zero, that
is,k a:tk051 (Supporting Information Fig. 1b), to simulate
the joint expression of FC patterns, we left As as is.
Finally, we added zero-mean Gaussian noise with r 5 0.2
to each subject’s data matrix Cs.

To model the case of static FC across time, we generated
Cs by multiplying K 5 1 subject-specific FC pattern with a
random time course and by adding noise. This null data
preserves the overall correlation structure and fluctuations
in FC purely reflect varying strength of the same underly-
ing network topology.

Evaluation of matrix factorizations

Recovery of FC patterns. We compared the performance
of k-means clustering, truncated SVD and k-SVD (with
S 5 1 and S 5 K) by assessing how well they recovered the
true, underlying FC patterns used in the simulations. Here
we set K to the true number of 3, and we study how to
estimate K below. Because Ds differed slightly between
subjects, we used Ds averaged across all subjects as the
“true” FC patterns, we would like to recover. We quanti-
fied recovery for each algorithm by matching the true and
the estimated FC patterns. We first calculated the Pearson
correlations between the true and estimated FC patterns,
and then matched the true and estimated FC patterns
using the Hungarian algorithm [Kuhn, 1955; Munkres,
1957]. The Hungarian algorithm finds the matching that
maximizes the sum of similarity measures (here correla-
tion coefficients) between all corresponding pairs. For
PCA, we estimated only K2152 FC patterns because the
components represent axes in a lower-dimensional space
and the rank of Ds was two. The recovery of the third FC

pattern was assessed from the negative correlations (i.e.,
one estimated FC pattern recovered two true FC patterns,
one of which with a flipped sign). k-SVD drops the ortho-
gonality constraint and its weights vary both positively
and negatively. Therefore, we assessed its performance for
both K 5 3 and K 5 2, for the former and latter reason cited
before, respectively. For K 5 3, we used the absolute values
of the correlation coefficients because the sign of the FC
patterns is arbitrary.

We report the smallest correlation coefficient between all
corresponding pairs (worst recovery) across 100 simula-
tions. Because k-means clustering performed best overall
in recovering the true FC patterns, we retained only
k-means clustering for the following steps (see later).

Number of FC patterns. We chose the number of FC pat-
terns K by evaluating the reproducibility of the FC patterns
in split-half resamplings. The matrices Cs were randomly
assigned to one of two (independent) data sets of 12 sub-
jects each. k-Means clustering was applied separately to
each data set, the cross-correlation between the estimated
FC patterns estimated, and the best matching estimated
using the Hungarian algorithm. We define the reproducibil-
ity as the smallest correlation coefficient between all corre-
sponding pairs (least reproducible FC pattern), and
repeated all steps for 24 random splits. The split-half repro-
ducibility worked well to estimate K in our case, but other
measures of intersubject reproducibility have also been pro-
posed in the literature [e.g., Mehrkanoon et al., 2014].

Once K was determined, we applied k-means clustering
one final time to the entire data set. We visualize the K FC
patterns after reshaping and symmetrizing them into 78 3

78 matrices.

Separated versus joint expression of FC patterns. k-
Means clustering assigns each windowed FC to a single FC
pattern by picking the one it is most similar to. That is, k-
means clustering explores how well each windowed FC is
approximated by each FC pattern individually, but then
binarizes this information by assigning it to the one with
maximal similarity. We calculated the correlation of each
windowed FC with all K FC patterns to generate a non-
sparse weight matrix A*, and assessed the asymmetry of the
histogram of all correlation coefficients by calculating its
skewness (Fig. 2). The skewness of symmetrically distributed
data is zero, and nonzero skewness indicates asymmetry.

RESULTS

Simulated dFC

First, we compared how well k-means clustering, trun-
cated SVD/PCA and k-SVD (S51; and S5K) recovered the
true, underlying FC patterns in simulations. For the simu-
lation of separated expression of FC patterns, k-means
clustering clearly outperformed all other algorithms, which
is in line with the sparsity constraint of k-means clustering
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(correlation coefficient of worst recovered FC pattern for
k-means clustering 0.94 vs. <0.7 for all other algorithms,
Bonferroni corrected P values <10210; Fig. 3a). For the sim-
ulation of joint expression, the different algorithms per-
formed comparably (correlation coefficients of worst
recovered FC pattern 0.58–0.7; truncated SVD significantly
better than k-SVD with K 5 2, S 5 1 or K 5 2, S 5 2, Bonfer-
roni corrected P values 0.004 and 0.04, respectively; Fig.
3a). Because (i) k-means clustering performed best for the
separated expression and comparably for the joint expres-
sion, (ii) it avoids the ambiguity of the sign of the FC pat-
terns (in k-SVD and truncated SVD the sign of the FC
patterns is arbitrary), and (iii) it avoids the choice of the
parameter S necessary for k-SVD, we estimated all further
FC patterns with k-means clustering.

The split-half reproducibility for different numbers K of
FC patterns showed a clear drop once K exceeded the
number of underlying FC patterns for both the separated
and joint expression of FC patterns (i.e., K > 3; Fig. 3b). In
the null data, only K 5 2 FC patterns were reproducible,
corresponding to the trivial cases of above and below
average FC (shown in Supporting Information Fig. 2).

The histogram of the weights A* was highly asymmetric
for the case of separated expression (large, positive skew-
ness; Figs. 2c and 3c). That is, each windowed FC
resembled only one FC pattern strongly at each time point
and thus many correlations were close to zero. The histo-
gram of the weights A* was only weakly asymmetric for

the simulations of joint expression (small, positive skew-
ness; Figs. 2d and 3c). Because each windowed FC
resembled all FC patterns to some extent, correlations
were more evenly distributed. The histogram of the
weights A* was symmetric for the null data, as each win-
dowed FC correlated equally strongly with both esti-
mated FC patterns (one positive, one negative correlation
coefficient). Supporting Information Fig. 3 shows that
these observations also hold when (i) simulating joint
expression of 2 (instead of 3) FC patterns a time, and (ii)
when using K 5 4 FC patterns for either type of simula-
tion (where the fourth FC pattern was estimated from
average dFC during the resting-state scan).

The split-half reproducibility of the FC patterns and the
shape of the histogram of the time-dependent correlations
with the FC patterns A* could thus provide information
on the underlying type of data generation.

Subject-Driven Task-Based dFC

Figure 4a shows windowed FC averaged across win-
dows and subjects for each subject-driven task (after fold-
ing and symmetrizing): the subtraction task was
characterized by strong FC in the visuospatial (VS) net-
work, the episodic memory task by strong FC in the
vDMN (retrosplenial cortex/medial temporal lobe net-
work), and the music task by strong FC in the language
network and the dDMN. These results are in line with
those of Shirer et al. [2012].

Figure 3b shows the split-half reproducibility for task-
based dFC, which starts to drop at K 5 3, and is small after
K 5 4. This suggests 3 or 4 FC patterns best describe the
data. For K 5 3, the asymmetry of the histogram of the
weights A* was close to that for the simulated separated
expression (Fig. 3c), correctly suggesting that a separated
expression of the FC patterns well describes the data. For
K 5 4, the asymmetry of the histogram of the weights A*
lied in between the cases for separated and joint expres-
sion (Supporting Information Fig. 3e).

In Figure 4b, we illustrate the FC patterns estimated for
K 5 3 and their associated time-dependent weights A*.
Each one of the three FC patterns strongly resembled one
of the three average networks shown in Figure 4a (Pearson
correlation between two vectors, r 5 0.99, 0.98, and 0.97, all
P values <10210) and the weights separated the three cog-
nitive states well (ARI of k-means labeling 0.74).

The fourth FC pattern showed two large groups of
coevolving connections: one centered on externally ori-
ented networks (salience, VS, and primary sensory net-
works) and one centered on internally oriented networks
(DMN; Fig. 4c). The fourth FC pattern was specific to the
music condition: it correlated with average FC during the
music task and its weights indicated that it was predomi-
nantly—and consistently across subjects—expressed dur-
ing this task (see also Supporting Information Fig. 4).

In Supporting Information Figure 5, we compare the FC
patterns estimated using k-means clustering, k-SVD, and

Figure 2.

(a) k-Means clustering assigns each dFC network to one of three

clusters. (b) This assignment is guided by the similarity of each dFC

network to all three FC patterns. We interpret the similarity of

each dFC network to all FC patterns as a nonsparse weight matrix

A*. (c) The histogram of A* distinguishes separated (left) and joint

(right) expression of FC patterns. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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truncated SVD. For both k-SVD and truncated SVD, we
obtained better results for K 5 2 FC patterns, where one
FC pattern was similar and dissimilar to the subtraction
and memory or music average dFC, respectively. k-SVD
estimated FC patterns similar to average dFC (|r|> 0.75).
Because of the orthogonality constraint, PCA showed
smaller correlation values (r< 0.7 for the recovery of aver-
age memory and music dFC).

Resting-State dFC

For resting-state dFC, split-half reproducibility dropped
after K 5 3 and the asymmetry of the histogram of the
weights A* overlapped with the simulated joint expression
(Fig. 5). This suggests that three FC patterns that are jointly
expressed best describe resting-state dFC (Fig. 3b, c).

The estimated FC patterns showed distinct, large-scale
network topologies. FC pattern 1 revealed two groups of
coevolving connections: a first group composed of the pri-
mary sensory (auditory, motor, and visual), salience and
VS (or dorsal attention network) networks, and a second
group of bilateral executive control networks (ECN) and
the DMN. FC pattern 2 showed interactions in the oppo-
site direction to that of FC pattern 1. We note again that
each dFC time series was centered, which means that
these FC patterns reflect excursions around average FC.
Thus, FC pattern 2 does not indicate positive correlation

between externally and internally oriented networks,
rather it indicates their reduced separation once average
FC is added again (and combined with the other FC pat-
terns). FC pattern 3 highlighted a salience–VS–RECN
group. A second group of connections in FC pattern 3
showed visual and language ROIs connected to the DMN.

In Supporting Information Figure 6, we compare the FC
patterns estimated using k-means clustering, k-SVD and
truncated SVD. For both k-SVD and truncated SVD, we
again obtained better results for K 5 2 FC patterns, because
the first two FC patterns estimated using k-means cluster-
ing were anticorrelated (r 5 20.62). Overall, all algorithms
resulted in similar FC patterns (|r|> 0.75 with the FC pat-
terns obtained with k-means clustering).

DISCUSSION

We revisited k-means clustering and PCA, two recently
proposed approaches to identify reproducible network
configurations from windowed FC, to study the impor-
tance of temporal sparsity for the representation of dFC.
To compare k-means clustering to truncated SVD/PCA,
we generalized them as a sparse matrix factorization. For
data simulated according to both separated and joint
expression of FC patterns, k-means clustering showed the
best recovery of the underlying FC patterns overall. We
then evaluated split-half reproducibility to identify the

Figure 3.

(a) Average correlation coefficient of true FC patterns with those

estimated using k-means clustering (K 5 3), sparse matrix factori-

zations (k-SVD with K 5 3, S 5 1; K 5 3, S 5 3; K 5 2, S 5 1, and

K 5 2, S 5 2), and PCA (K 5 2) for both simulated separated and

joint expression of FC patterns. Error bars represent standard

deviation across simulations. (b) Split-half reproducibility for

K 5 1, 2,. . ., 8 for simulations (separated, joint, and null), subject-

driven task-based and resting-state dFC. Error bars represent

standard deviation across splits. (c) Skewness of time-dependent

weights A* for simulations and experimental subject-driven task-

based and resting-state dFC. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.

(See legend on the following page.)
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number of FC patterns from the data, and the asymmetry
of the histogram of the time-dependent weights to assess
whether the FC patterns occurred exclusively or jointly
over time. Our results indicate that separated FC patterns
are a good representation of subject-driven task-based
dFC, while a joint expression of FC patterns is better
suited for resting-state dFC.

Subject-Driven Task-Based FC Patterns

We first analyzed dFC during three free-streaming, sub-
ject-driven cognitive states. Shirer et al. [2012] previously
showed that these states could be distinguished with high
accuracy using supervised learning (i.e., training a classi-
fier on data with known cognitive states) and Gonzalez-
Castillo et al. [2013] recently reported that four different
tasks could be identified from dFC alone by clustering
windowed FC estimates of individual subjects. We extend
these findings by showing that subject-driven cognitive
states can be successfully identified from dFC of multiple
subjects using unsupervised learning. The fact that FC
fluctuations can be related to changes in subject-driven

cognitive states is highly encouraging. Further, the correct
identification of states from multi-subject dFC was
improved by first centering each subject’s dFC time series
so that fluctuations reflected deviations from average FC.

We identified the model parameters, such as the number
of FC patterns and their temporal expression, in a data-
driven way. This indicated that task-based dFC was well
modeled using three separated FC patterns. However, a
fourth FC pattern was also reproducible across independ-
ent split-half datasets and this FC pattern occurred prefer-
entially during the music state. Interestingly, the music
state was the most difficult state to classify in the original
study by Shirer et al. [2012] (60% vs. >80% accuracy for
the other states). The occurrence of this FC pattern with
varying strengths over time (Supporting Information Fig.
4) might suggest that subjects did not continuously per-
form the assigned task. The FC pattern resembled the first
resting-state FC pattern (r 5 0.64), with, however, stronger
contributions of the DMN and salience networks. As this
FC topology resembles the FC pattern that splits the
resting-state networks into two major groups, it could be
reminiscent of more intrinsic, resting-state like,

Figure 4.

(a) Average dFC of the three subject-driven tasks: subtraction,

memory and music. (b) Estimated FC patterns (K 5 3), correla-

tion between average dFC of each task and the estimated FC

patterns, and correlation coefficients of windowed FC with all 3

FC patterns across windows and subjects. The x-axis is arranged

by task, rather than by subject. (c) Same as b for K 5 4 (only

the two music-related FC patterns are shown as the others do

not change). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 5.

FC patterns estimated during resting-state (1–3) and dFC averaged across all windows and subjects.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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fluctuations of dFC that are intermixed with the task-
based FC patterns, and thus explain why the asymmetry
of the weights is less close to the separated case than for
K 5 3 FC patterns.

Resting-State FC Patterns

We next analyzed dFC during unconstrained resting
state and based on our findings, we suggest that a joint
expression of multiple FC patterns is a better adapted and
more flexible view of dFC than a succession of k-means
centroids. Even though we identified the FC patterns using
k-means clustering, there was strong evidence that they
are in fact jointly expressed. Reassuringly, k-SVD and trun-
cated SVD resulted in similar FC patterns.

Based on split-half reproducibility, we estimated three FC
patterns that had a rich structure and showed distinct net-
work configurations. For example, a fragmentation between
salience and VS connections, on one hand, and default
mode (DM) connections, on the other hand (FC pattern 1).
FC pattern 2, which encoded the opposite direction of inter-
actions, indicated that the separation between these two
groups of networks is less pronounced at other instances in
time (average FC was removed before clustering the data so
positive correlation in these FC patterns is not the same as
in a standard correlation matrix). In FC pattern 3, the DMN
was connected to the visual and language networks, but not
the RECN, which was here connected to the salience and VS
networks, suggesting different modes of internetwork inter-
action. Both Allen et al. [2014] and Liu and Duyn [2013] also
observed correlations and coactivations, respectively, of
DMN and visual regions. The ECN is critical for working
memory and was grouped alternately with networks that
scan the environment (salience and VS in pattern 3) and
with networks that ruminate over recent events or episodic
memories (DMN in pattern 1). This suggests that flexible
interactions between the ECNs and externally and internally
oriented networks are critical for monitoring, maintaining,
and manipulating recent information. The switching in con-
nectivity was specific to the right ECN, which has previ-
ously been linked to visual and spatial working memory
[Cabeza and Nyberg, 1997, 2000]. Previous work has also
suggested interactions between the ECN and VS [e.g., LaBar
et al., 1999] and between the ECN and DMN [e.g., Spreng
et al., 2010].

Here we observed only three FC patterns that were
reproducible across independent data sets. Different, but
generally larger, values have been reported in the litera-
ture for related studies. Several factors—apart from the
decomposition approach—are likely to play a role: first,
the way K is chosen. We used a strict measure of repro-
ducibility, while the choice of K was guided by accuracy
(or approximation error) instead in Leonardi et al. [2013]
and Allen et al. [2014]. Second, the number of included
subjects. For example, Allen et al. [2014] clustered dFC of
over 400 subjects into seven states in initial work, and

into five states in a follow-up study with 23 subjects
[Allen et al., 2013]. Third, the parameters of the acquisi-
tion (such as the TR and scan duration), the choice of
ROIs, and the window length, might all play roles. All
studies mentioned above used (different) ROIs to reduce
the spatial dimensionality of the data. As is the case for
studies of static FC, different atlases hamper an easy
comparison of results across studies. We hope that future
work will help to clarify some of these issues. Lastly,
because the correlation structure is averaged across the
full window duration, changes in network topology that
occur on faster time scales are unlikely to be picked up.
In exploratory analyses, we shortened the window length
to 44 s, but did not observe a larger number of reproduci-
ble FC patterns in resting-state dFC. We did not decrease
the window length further as the identification of the
cognitive states for the subject-driven task data deterio-
rated for 30 s windows (ARI 0.33 for 30 s, 0.63 for
44 s, and 0.74 for 60 s). Alternative techniques that cir-
cumvent sliding-window estimates might be better able
to reveal faster network reorganizations [Eavani et al.,
2013; Liu and Duyn, 2013; Smith et al., 2012].

CONCLUSION

DFC is a promising new measure of brain activity that
can be extracted from fMRI data and has the potential to
provide new insights into brain function. In this work, we
investigated whether dynamic functional network configu-
rations were better described as a succession of separated
FC states or rather as a combination of multiple FC pat-
terns. We presented a systematic and data-driven analysis
in terms of split-half reproducibility and distribution of
time-dependent weights for simulated and experimental
fMRI data from subject-driven cognitive states and resting-
state. These results suggested that a superposition FC pat-
terns provided the best decomposition of resting-state dFC
and highlighted the role of ECN in driving fluctuations of
dFC.

The meaning of decomposing resting-state dFC remains
to be further validated and is an exploratory technique, as
also pointed out by Hutchison et al. [2013a, b]. The fact
that different cognitive states can be identified from dFC
alone is encouraging, but generative and computational
models are needed to understand how dFC emerges and
is best analyzed. One promising avenue to improve the
interpretation of dFC is to combine approaches as the ones
presented here with concurrent EEG or other physiologi-
cal, behavioral, or clinical measures [Allen et al., 2013;
Chang et al., 2013; Preti et al., 2014].
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