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ABSTRACT

Distinct texture classes are often sharing several visual concepts. Texture instances from different classes are
sharing regions in the feature hyperspace, which results in ill–defined classification configurations. In this work,
we detect rotation–covariant visual concepts using steerable Riesz wavelets and bags of visual words. In a first
step, K–means clustering is used to detect visual concepts in the hyperspace of the energies of steerable Riesz
wavelets. The coordinates of the clusters are used to construct templates from linear combinations of the Riesz
components that are corresponding to visual concepts. The visualization of these templates allows verifying the
relevance of the concepts modeled. Then, the local orientations of each template are optimized to maximize
their response, which is carried out analytically and can still be expressed as a linear combination of the initial
steerable Riesz templates. The texture classes are learned in the feature space composed of the concatenation of
the maximum responses of each visual concept using support vector machines. An experimental evaluation using
the Outex TC 00010 test suite allowed a classification accuracy of 97.5%, which demonstrates the feasibility of
the proposed approach. An optimal number K = 20 of clusters is required to model the visual concepts, which
was found to be fewer than the number of classes. This shows that higher–level classes are sharing low–level visual
concepts. The importance of rotation–covariant visual concept modeling is highlighted by allowing an absolute
gain of more than 30% in accuracy. The visual concepts are modeling the local organization of directions at
various scales, which is in accordance with the bottom–up visual information processing sequence of the primal
sketch in Marr’s theory on vision.

Keywords: Bags of visual words, texture classification, Riesz transform, steerability, rotation–covariance,
wavelet analysis, visual concept detection.

1. INTRODUCTION

Low–level visual concept modeling is key to image understanding and categorization.1,2 A large group of theories
in visual processing support that the understanding of complex scenes is typically carried in a bottom–up process,
in which information is processed sequentially with increasing complexities.3 In1 visual concepts are called geons
and are simple forms including rectangles, circles, bricks and wedges. It is assumed that higher–level objects are
constituted of geons and their relations, where the total number of geons does not exceed 40 elements. Textons4

or texture primitives5 are the counterpart of geons for texture understanding, and constitute elementary building
blocks of higher–level texture classes. A more general definition of visual concepts is proposed by the primal
sketch theory of Marr et al.2 and the sketchability property introduced by Guo et al.,6 where visual concepts
are characterized by local organizations of directions at a fixed scale.

Distinct visual classes are often sharing several low–level visual concepts. This is illustrated in Fig. 1a, where
the characters R, 3 and b are all sharing geometrical shapes. This is also the case for textured images as it
can be observed in Fig. 1b, where both textures are containing patterns composed of tiny checkerboards of
white dots. Biomedical textures resulting from the alteration of normal tissue are also by definition sharing
visual primitives. This is illustrated in Fig. 1c, where micronodular patterns in computed tomography (CT) of
the lungs are characterized be the superposition of micronodules and healthy tissue. When using computerized
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(a) Characters R, 3 and
b are all sharing geomet-
rical shapes (source7).

(b) Both textures are contain-
ing patterns composed of tiny
checkerboards of white dots.

(c) Micronodular patterns (i.e., right
image) in CT are characterized be
the superposition of micronodules
and healthy tissue (i.e., right image).

Figure 1: Higher–level classes are often sharing several low–level visual concepts.

approaches for the automatic categorization of image classes, classes that are sharing concepts are also sharing
regions in the feature hyperspace, which results in ill–defined classification configurations.7

When shared visual concepts are known, specific detectors can be designed and used to decompose higher–level
visual classes into simpler primitives, as suggested by vision scientists in the late 1970’s.3 Low–level visual concept
detection has been a very active research field of the computer vision community during the past 30 years.2,6

Basic visual concept detectors were initially proposed to model isotropic blobs, edges, ridges and corners.2,6, 8–11

Efforts for defining the hierarchical semantic vocabularies and the dependencies between visual concepts was
proposed by the ImageNet initiative∗.12 This motivated several researchers to learn the low–level visual concepts
of ImageNet using various approaches.13,14 Automated visual concept annotation in large photo collections has
been the center of interest of the ImageCLEF community†.15 However, in all aforementioned approaches, the
modeled visual concepts are not directly corresponding to the actual primitives in real datasets, which does not
ensure to fully leverage the wealth of visual information present and results in limited categorization performance.

1.1. The bags of visual words approach

The aforementioned limitation motivated researchers to develop approaches that can learn the visual concepts
shared by higher–level classes. The ensemble of visual concepts is often called the visual vocabulary. A notable
example is the bags of visual words (BOVW) approach.16 The central idea of BOVW comes from the text
processing community, where a textual document is described as the histogram of occurrences of words present
in the collection of documents. BOVW counts the occurrences of visual words (VW) appearing in different
subregions (e.g., square blocks or patches) of an image. VWs are typically defined as cluster centers in a given
feature space populated by image patches. The BOVW approach was used in a wide range of applications
including video indexing,16 medical image retrieval17–20 and general image annotation.21 Several attempts were
made for visualizing the VWs, aiming at interpreting the visual semantics modeled. In17,20 color image overlays
are used to mark the local presence of VWs in image examples. in18,19,21 prototype image blocks that are the
closest to the respective VWs are displayed to visualize the information modeled. Unfortunately, VWs are often
very difficult to interpret, especially when texture information is considered.

1.2. Rotation–covariant texture concepts

Although humans are able to distinguish texture concepts with high precision, the semantic vocabulary for
texture description is scarce. The primal sketch theory highlights the importance of the local organization
of directions at a fixed scale in human visual interpretation. Leveraging this property calls for the design
of multi–directional and multi–scale operators. The multiresolution theory of the wavelet transform provides
an elegant solution to the locality problem for scale characterization.22 Steerable filterbanks allow continuous
characterizations of the directions from linear combinations of the basis filters, where the linear weights can
be determined analytically.23,24 Steerable wavelets (e.g., the steerable pyramid25,26) are combining the two
frameworks, enabling multi–scale and multi–directional analysis.

∗http://www.image-net.org/, as of 30 July 2013.
†http://imageclef.org/2013/photo/, as of 30 July 2013.



In some cases, it can be desirable to detect visual concepts independently from their orientation. Whereas
isotropic operators (e.g., Laplacian of Gaussian) are providing identical output for rotated versions of visual con-
cepts,20 they do not allow for characterizing local directions. These operators are providing rotation–invariant
analysis. Rotation–covariant operators allow keeping local directional information while normalizing the opera-
tors’ outputs over the instances. A simple approach for obtaining rotation–covariant operators is to compute the
response of directional operators at equally sampled directions, and concatenate the response to create multi–
directional feature vectors. Unfortunately, the latter requires to optimize the trade–off between angular precision
and dimensionality of the feature space by choosing the number of directions. A more elegant approach to obtain
rotation–covariance with infinitesimal angular precision is to use steerability to locally align the operators.27

Several researchers proposed to learn filters from data using linear combinations of multi–scale and/or steer-
able filterbanks, aiming at modeling local organizations of scales and directions.28–34 Most approaches28,29,31,32

use singular value decomposition (SVD) and principal component analysis (PCA) to estimate the importance of
every basis template (i.e., the linear weights). In previous work,33,34 we used support vector machines (SVM)
to learn class–wise optimally discriminant combinations of steerable Riesz wavelets. We observed that when the
classes are sharing several low–level concepts, the direct discrimination between the classes leads to ill–defined
classification boundaries, because they are sharing regions in the feature space. This observation motivated the
use of the BOVW approach to decompose higher–level texture classes into subsets of low–level visual concepts.
The steerability property of the Riesz wavelets is leveraged to maximize the local responses of the learned visual
concepts analytically. This allows for rotation–covariant visual concept detection.

2. MATERIAL AND METHODS

This section describe our approach for rotation–covariant visual concept detection using BOVW and steerable
Riesz wavelets. The definition of Nth–order Riesz filterbanks and their properties are detailed in Section 2.1.
The approach for modeling rotation–covariant visual concepts is described in Sections 2.2 and 2.3. The dataset
and experimental setup used to evaluate the proposed approach are explained in Section 2.4.

2.1. Steerable Riesz filterbanks

Multi–scale and multi–directional image representations are obtained using steerable Riesz filterbanks.35 The
Nth–order Riesz RN transform of a 2–D signal f(x) yields N + 1 components as:

RN {f} (x) =



R(0,N) {f} (x)
...

R(n,N−n) {f} (x)
...

R(N,0) {f} (x)

 , (1)

with n = 0, 1, . . . , N . A singular component R(n,N−n) {f} (x) is defined in the Fourier domain as:

R(n,N−n) {f} (x)
F←→ ̂R(n,N−n) {f}(ω),

where

̂R(n,N−n) {f}(ω) =

√
N

n!(N − n)!

(−jω1)n(−jω2)N−n

||ω||N
f̂(ω), (2)

with ω1,2 corresponding to the frequencies along the vertical and horizontal directions x1,2. The multiplication
with jω1,2 in the numerator corresponds to partial derivatives of f and the division by the norm of ω in the

denominator makes that only phase information is retained. Therefore, RN yields allpass‡ filterbanks with
directional (singular) components R(n,N−n).35 The angular coverage of the Riesz components is determined by
the partial derivatives in Eq. (2). Therefore, the angular selectivity of the components is controlled by the order

‡Except for the DC component.



N = 1

G ∗ R(0,1) G ∗ R(1,0)

N = 2

G ∗ R(0,2) G ∗ R(1,1) G ∗ R(2,0)

N = 3

G ∗ R(0,3) G ∗ R(1,2) G ∗ R(2,1) G ∗ R(3,0)

Figure 2: Templates corresponding to the Riesz kernels convolved with a Gaussian smoother for N=1,2,3.

N of the transform. The higher–order versions as specified in (2) are obtained by regrouping the 2N Riesz filters
into N + 1 components by commutativity of convolution (e.g., ∂2/∂x∂y is equivalent to ∂2/∂y∂x). The Riesz
kernels R(n,N−n) convolved with Gaussian kernels for N=1,2,3 are depicted in Fig. 2. The Riesz components
are forming steerable filterbanks, which means that the local response of each component R(n,N−n) of an image
f(x) rotated by an arbitrary angle θ can be derived analytically from a linear combination of the responses of
all components of the filterbank using a steering matrix Aθ as follows:34

RN
{
fθ
}

(0) = AθRN {f} (0). (3)

We obtain multi–scale versions of these filterbanks by coupling the Riesz transform with Simoncelli’s multi–
resolution framework based on isotropic band–limited wavelets.35

2.2. Visual concept modeling

The multi–scale and multi–directional properties of the Riesz filterbanks are leveraged to build visual concepts
in the sense of Marr’s primal sketch, where the local organization of directions is characterized for various scales.
We define K visual concepts ΓNk as linear combinations of multi–scale Riesz components as:33,34

ΓNk = w1

(
R(0,N)

)
s1

+ w2

(
R(1,N−1)

)
s1

+ · · ·+ wJ(N+1)

(
R(N,0)

)
sJ
, (4)

where wk contains the weights of the respective Riesz components and sj , j = 1, . . . , J is the scale index. Scale–
wise visual concepts ΓNk,j can be obtained when using only weights and corresponding Riesz templates at the

scale j. An example of the construction of Γ8
k for a texture containing the visual concept k is illustrated in

Figure 3. The sets of weights wk are obtained as the coordinates of K clusters in the hyperspace of the energies
E
(
R(n,N−n) {f} (x)

)
of multi–scale N–th order Riesz wavelets. This is similar to the definition of visual words

in the BOVW approach. K–means clustering with a l2–norm Euclidean distance is used in the feature space
spanned by the normalized energies E of J(N + 1) Riesz components to determine the cluster coordinates.

2.3. Rotation–covariant visual concepts: steering ΓN
k

By combining Eqs. (3) and (4), the response of ΓNk rotated by an arbitrary angle θ can be derived analytically
as:34

ΓN,θk = wT
kA

θRN . (5)

It can be observed that the expression of ΓN,θk can still be expressed as a linear combination of the initial Riesz

templates RN .

To obtain rotation–covariant representations of the visual concepts, ΓNk are locally steered to maximize their
response over θ. The dominant orientation θdom of ΓNk,j at the position xp is

θdom(xp) = arg max
θ∈[0,π]

(
wT
k,jA

θRN {f}

)
(xp). (6)



Figure 3: Example of the construction of a visual concept Γ8
k using a linear combination of the Riesz templates

R(n,N−n) with N = 8 and J = 1.

Eq. (6) can be efficiently solved by finding the roots of the derivative of Eq. (5) with respect to θ. A matrix Θ(x)
of all angles is obtained for all positions xp. Riesz templates from all scales are steered together using one unique
multi–scale angle matrix Θj(x), which contains local angle values from scale j having a maximum magnitude of
ΓNk,j .

2.4. Outex TC 00010 test suite and experimental setup

The proposed framework is evaluated using the Outex database§.36 This is a publicly available set of real textures
photographed with controlled illumination conditions for the experimental evaluation of texture classification
algorithms. The Outex TC 00010 test suite has recently been used by several studies on texture recognition
to focus on the rotation–invariant properties of the approaches.37–52 It consists of the 24 texture classes with
pronounced directional structures. For each class, the underlying texture patterns are roughly uniform over the
whole initial images of size 538×746, although gray–scale variations caused by color variations of the photograph
exist. Each texture sample is captured using nine rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦).
The full images are divided into 128× 128 non–overlapping blocks, leading to 20 texture instances per class. A
total of 4320 (24× 20× 9) image instances are used to evaluate the proposed approach. The training set consists
of the 480 (24 × 20) non–rotated images and the remaining 3840 (24 × 20 × 8) images from 8 orientations are
constituting the test set. Texture instances for each class are depicted in Figure 4.

Every image is expressed in the feature space spanned by the concatenation of the energies of the K visual
concepts. The dimensionality of the feature space is K · J · (N + 1). It is important to note that although ΓNk,j
satisfies the wavelet admissibility condition (i.e., zero mean), the feature space obtained is not equivalent to the
convolution of the ΓNk,j with the signal, because every image instance is still expressed in terms of the normalized

energies E of each locally steered individual Riesz component R(n,N−n). The visual concepts from all scales are
steered together using the angle matrix Θ1(x) from the finest scale j = 1. Within this feature space, SVMs
with a Gaussian kernel are trained using the 480 non–rotated images and tested on the remaining 3840 rotated
images. The cost C of the SVMs and the width σ of the Gaussian kernel are optimized as C = 100, . . . , 108 and
σ = 10−5, . . . , 105.

§http://www.outex.oulu.fi/, as of 30 July 2013.



1) canvas001 2) canvas002 3) canvas003 4) canvas005 5) canvas006 6) canvas009

7) canvas011 8) canvas021 9) canvas022 10) canvas023 11) canvas025 12) canvas026

13) canvas031 14) canvas032 15) canvas033 16) canvas035 17) canvas038 18) canvas039

19) tile005 20) tile006 21) carpet002 22) carpet004 23) carpet005 24) carpet009

Figure 4: 128× 128 blocks from the 24 texture classes of the Outex TC 00010 test suite.

3. RESULTS

A qualitative interpretation of the information modeled by the visual concepts ΓNk is proposed in Fig. 5 using
a synthetic image composed of three well–defined visual concepts along with uniformly distributed noise (see
Fig. 5a). The classification performance obtained with the Outex TC 00010 test suite is shown in Fig. 6 for
N = 1, . . . , 8 and K = 5, . . . , 30. The best accuracy of 0.975 is obtained with N = 4 and K = 20. The
corresponding distribution of image instances and visual concepts is depicted in Fig. 7. The performance gain
allowed by the local steering of the templates ΓNk when compared to using SVM classification from the energies
of the initial Riesz components is illustrated in Fig. 8 for K = 20 and N = 1, . . . , 8.

4. DISCUSSIONS AND CONCLUSIONS

We developed an approach for the detection of rotation–covariant visual concepts by combining the BOVW
framework with steerable Riesz wavelets. The visual concepts are modeling the local organization of directions
at various scales, which is in accordance with the bottom–up visual information processing sequence of the
primal sketch in Marr’s theory on vision.2,3 The relevance of the modeled visual concepts can be verified
by visualizing the shapes of templates built from linear combinations of steerable Riesz components. The
templates Γ10

k displayed in Fig. 5 are corresponding to the actual visual concepts contained in the synthetic
image (see Fig. 5a) for the scale j = 3. Qualitatively, Γ10

1 corresponds to a line detector, whereas Γ10
2 and Γ10

3

are implementing straight and wiggled checkerboard detectors, respectively. This experiment demonstrates the
ability of the framework to extract distinct visual concepts in an unsupervised manner, similarly to the BOVW



(a) Synthetic image containing 3 visual concepts:
1) vertical lines (quadrants I and III),
2) checkerboard (quadrant II),
3) wiggled checkerboard (quadrant IV).
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(b) PCA visualization of 32×32 overlapping blocks and clus-
ters from the left image (N = 10, J = 4, K = 3). The tem-
plates Γ10

k corresponding to the respective visual concepts are
dislayed for scale j = 3.

Figure 5: Qualitative evaluation of the visual concepts Γ10
k found using K–means in the feature space spanned

by the energies of the multi–scale Riesz components.
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Figure 6: Classification accuracy with the Outex TC 00010 test suite. An optimal number of visual concepts
K = 20 and order N = 4 allowed an accuracy of 97.5%.
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Figure 7: Distribution of the 24 classes of the Outex TC 00010 test suite and associated visual concepts for the
best configuration (N = 4, K = 20, classification accuracy=0.975).
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Figure 8: Influence of the local steering of ΓNk (K = 20) on the classification accuracy when compared to using
the energies of the initial Riesz components for the classification.



approach. The best classification accuracy of 97.5% obtained with the Outex TC 00010 test suite is among the
best performing approaches based on filters and wavelets in the literature.37–44 The optimal number of visual
concepts K is 20 and is inferior to the number of classes (i.e., 24), which shows that several low–level concepts are
shared among the higher–level classes (see Fig. 6). The distribution of the visual concepts and classes is shown
in Fig. 7. It can be observed that classes 1) canvas001 and 22) carpet004 are not sharing much visual content
with others whereas classes 5) canvas006 and 6) canvas009 are both containing vertical lines of small dots. The
optimal order of the Riesz transform N = 4 constitutes an excellent trade–off between the dimensionality of the
feature space and the wealth of the filterbank. The importance of rotation–covariance of the visual concepts is
demonstrated in Fig. 8 where the classification performance based on the initial Riesz components is very low.

The results obtained are encouraging and call for future work to further push the classification accuracy.
Our previous work using SVMs to learn class–wise templates ΓNc,j allowed a classification accuracy of 98.4%

for N = 8,34 which indicates that further optimization of the current approach is required. Other clustering
algorithms will be investigated. The images from the Outex dataset will be divided into smaller blocks (e.g.,
32× 32) to avoid measuring the energies of the coefficients over the whole image, which mixes the responses of
distinct visual concepts. Further modeling of the contextual relationships between visual concepts will also be
investigated (e.g., co–occurrences of visual concepts53).
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