
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7013674

Lung Disease and Brain Development

Article  in  Biology of the Neonate · February 2006

DOI: 10.1159/000092865 · Source: PubMed

CITATIONS

9
READS

244

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Hygiene and topics in neonatology View project

Petra Susan Huppi

University of Geneva

304 PUBLICATIONS   12,191 CITATIONS   

SEE PROFILE

Stéphane V Sizonenko

Hôpitaux Universitaires de Genève

104 PUBLICATIONS   2,687 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Stéphane V Sizonenko on 19 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/7013674_Lung_Disease_and_Brain_Development?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/7013674_Lung_Disease_and_Brain_Development?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Hygiene-and-topics-in-neonatology?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petra_Huppi?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petra_Huppi?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Geneva?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petra_Huppi?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Sizonenko2?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Sizonenko2?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hopitaux_Universitaires_de_Geneve?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Sizonenko2?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Sizonenko2?enrichId=rgreq-060df843d4d1b9f3710e8416302e075d-XXX&enrichSource=Y292ZXJQYWdlOzcwMTM2NzQ7QVM6OTg2NTE5OTMwMTgzNzVAMTQwMDUzMTg3NjQ4Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 9th Nils W. Svenningsen Memorial Lecture 

 Biol Neonate 2006;89:284–297 
 DOI: 10.1159/000092865 

 Lung Disease and Brain Development 

 Petra Hüppi   

 a, c     Stephane Sizonenko   

 a     Maurizio Amato   

 b  

  a 
   Child Development Unit, Department of Pediatrics, University of Geneva,  Geneva , and  b 

   University of Berne, 
 Berne , Switzerland;  c 

   Department of Neurology, Harvard Medical School, Children’s Hospital, 
 Boston, Mass. , USA 

ism and the circumstances in which it fi nds itself. The 
environmental event during a sensitive period in devel-
opment, induces injury and/or biological adaptations 
that lead to altered differentiation of tissues. The organ-
ism can express specifi c adaptive responses to its envi-
ronment which include short-term changes in physiol-
ogy as well as long-term adjustments. This review 
addresses these short-term as well as longer-term chang-
es occurring in lung and brain tissue and illustrates how 
these changes can be studied using advanced imaging 
techniques such as magnetic resonance imaging (MRI). 

 Copyright © 2006 S. Karger AG, Basel 
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  Abstract 
 With the technical progress made in fetal and neonatal 
intensive care, perinatal mortality has decreased by 25% 
over the last decade and has expanded the surviving 
premature population. Prematurity drastically changes 
the environment of the developing organism. Striking 
evidence from a number of disciplines has focused at-
tention on the interplay between the developing organ-
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ADC apparent diffusion coeffi cient IFN-� interferon
AP-1 activating protein 1 IGF-1 insulin-like growth factor
Bax pro-apoptotic protein IL-6, 9, 1� interleukins
Bcl-2 anti-apoptotic protein MR mineralocorticoid receptor
BDNF brain-derived neurotrophic factor MRI magnetic resonance imaging
bFGF fi broblast growth factor MMP metalloproteinases
BPD bronchopulmonary dysplasia NF-kappa B nuclear factor kappa B
c-fos activated transcription factor NMDA N-methyl-D-aspartate receptor
CSF cerebrospinal fl uid NO nitrogen oxide
3D-MRI three-dimensional quantitative magnetic resonance 

imaging
NT-3
PAF

neurotrophin
platelet activating factor

DEX dexamethasone PDGF platelet-derived growth factor
DTI diffusion-tensor imaging TGF-� transepidermal growth factor
DWI diffusion-weighted imaging TIMP tissue inhibitors of metalloproteinase
GC glucocorticoid TNF tumor necrosis factor
GR glucocorticoid receptor VEGF vascular endothelial growth factor
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     Long-term survival for premature infants ( ! 32 weeks) 
has become an almost expected outcome over the past 
two decades. Progressive improvements in neonatal care 
have expanded the premature population so that it now 
comprises approximately 2.5% of total annual births. 
With this improvement in survival rate, the focus has 
shifted to the immediate and later consequences of pre-
maturity. Adverse outcome is linked to factors related to 
antenatal insults such as maternal-fetal infection, perina-
tal illness such as lung disease or focal brain lesions and 
general factors such a sex, ethnic group and social class 
 [1–3] . 

 Striking evidence from a number of disciplines has 
focused attention on the interplay between the develop-
ing organism and the circumstances in which it fi nds itself 
 [4] . The organism can express specifi c adaptive responses 
to its environment which include short term changes in 
physiology as well as long-term adjustments. The concept 
of ‘developmental plasticity or disruption of the develop-
mental program’ summarizes the events of such adjust-
ment. The environmental event during a sensitive period 
in development, induces injury and/or biological adapta-
tions that lead to altered differentiation of tissues and 
organs, with consequent function that may diverge from 
normal  [5–7] . Prematurity, could be one of these condi-
tions where disruption of the developmental program or 
developmental plasticity in lung and brain will have a 
major effect on long-term outcome  [7]  ( fi g. 1 ). 

 Developmental Plasticity in the Brain 

 The developing brain is one of the organs particularly 
prone to be affected by endogenous and exogenous events 
through the fetal and early postnatal life  [8] . Mechanisms 
known to provide plasticity include deletion of neurons 
through apoptosis, proliferation and pruning of synapses, 
activity-dependent modeling of synaptic connections and 
for certain areas persistence of neuronogenesis. During 
normal development between 15 and 50%, according to 
brain areas, of the initially formed neurons will be elimi-
nated by a physiological process called programmed cell 
death or apoptosis. About 70% of these neurons that are 
destined to disappear seem to die between 28 and 41 ges-
tational weeks  [9] . 

 This programmed cell death is a complex mechanism 
which involves a balance between death and trophic sig-
nals, death and survival genetic programs, and effectors 
and inhibitors of cell death modifi ed by environmental 
cues  [10] . In this process, activation of the cascade of cas-

pases (proteolytic enzymes) is a key step leading to DNA 
fragmentation and neuronal cell death. Caspase pathway 
can be activated by a mitochondrial-dependent pathway 
controlled by members of the Bcl-2 family or by activa-
tion of death receptors, a subgroup of the TNF receptor 
superfamily  [11] . Exposure to challenging experiences 
may further alter developing glial cells. The glial progen-
itors originate from the proliferative subventricular zone. 
They are produced during the last months of gestation 
and in the early postnatal period. During migration with-
in the white matter, differentiation occurs, e.g., into the 
preoligodendrocytes. Growth factors, hormones and cy-
tokines (bFGF, NT-3, PDGF, IGF-1, IL-6, thyroid hor-
mone) are implicated in oligodendrocyte maturation but 
up to 50% of oligodendrocytes undergo programmed cell 
death (apoptosis) during development with similar inter-
actions with environmental cues  [12] . Such glial plastic-
ity may parallel neuronal remodeling  [13] . During brain 
development, there are successive waves of overproduc-
tion of labile synapses, inducing redundant connections. 
This step is under tight genetic control. Each wave of 
overproduction is followed by a period of stabilization of 
synapses. This period of stabilization and elimination is 
highly infl uenced by environmental stimuli and experi-
ence  [14] . Neuronal activity-mediated glutamate release 
will induce at the level of NMDA receptors a post-synap-
tic calcium infl ux. Calcium changes will lead to produc-
tion of trophic factors such as brain-derived neurotroph-
ic factor (BDNF), which will stabilize labile synapses, 
protecting them against elimination. NO which is rap-
idly produced after glutamate binding to its NMDA re-
ceptor is another key player in synaptic stabilization and 
plasticity. Successive waves of synaptogenesis have been 

     
   Environment

Lung
Development Injury

Brain
Development

Disruption of Development
Developmental Plasticity

  Fig. 1.  General concept of modulation of organ development by 
environmental cues involving disruption of developmental pro-
gram and developmental plasticity. 
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described with a most productive phase between midges-
tation and around 8 months postterm  [15] . 

 Altering gene expression is another way of tissue pro-
gramming. Signaling pathways modulating NF-kappa B 
activity  [16, 17]  include those engaged by neurotrophic 
factors, neurotransmitters, electrical activity, cytokines, 
and oxidative stress. NF-kappa B activation can prevent 
the death of neurons by inducing the production of anti-
apoptotic proteins such as Bcl-2. Inhibition of NF-kappa 
B results in reduced size and complexity of neurite and 
dendritic arbors of somatosensory neurons  [18] . These 
fi ndings support a pivotal role for NF-kappa B as a me-
diator of transcription-dependent enduring changes in 
the structure and function of neuronal circuits  [19, 20] . 
Increase in white matter connectivity and volume, grow-
ing complexity of neuronal networks suggested by gray 
matter changes, and environmentally sensitive plasticity 
are all essential aspects in a child’s ability to mentalize 
and maintain the adaptive fl exibility necessary for healthy 
transition into adulthood  [21] . In a time where method-
ological advancement in neuroimaging has opened up 
new ways for examining the developing human brain in 
vivo, the study of structural developmental plasticity has 
become possible. Neuroimaging is providing new insights 
into the dynamics of neural circuits involved in cognitive 
and behavioral development and molecular genetic re-
search is producing and abundance of new target mole-
cules for the identifi cation of developmental disorders as 
well as potential neuroprotective agents  [22, 23] . 

 Understanding the effects of antenatal, perinatal and 
neonatal events on later structural and functional brain 
development – aberrant or regenerative – will be essential 
for the development of treatments in obstetrics and neo-
natology to prevent developmental disabilities having 
their origin in early life. 

 Developmental Plasticity in the Lung 

 Neonatal lung disease occurs during ongoing lung de-
velopment. A complex set of morphoregulatory mole-
cules that fall into three classes: transcription factors [e.g. 
Nkx2.1, GATA, hepatocyte nuclear factor (HNF)-3]; sig-
naling molecules [FGF, bone morphogenetic protein 
(BMP)-4, platelet-derived growth factor (PDGF),  Sonic 
hedgehog  ( Shh ), TGF- � ]; and extracellular matrix pro-
teins and their receptors (collagen, laminin, integrins, 
cadherins) control lung development. Proximal lung mor-
phogenesis is independent of Nkx2.1 and  Shh , whereas 
distal lung morphogenesis is strictly dependent on Nkx2.1. 

Nkx2.1 in the neonatal lung controls development by reg-
ulating morphoregulatory target genes, the latter interac-
tions may inevitably inhibit lung development, cellular 
differentiation, and production of pulmonary surfactant. 
Disruption of key factors such as Nkx2.1 potentially de-
rails both ongoing morphogenesis and repair from the 
early stages of branching morphogenesis through alveo-
larization. 

 Fetal and neonatal lung development by these mecha-
nisms can be infl uenced by endogenous and exogenous 
conditions such as infl ammation and hormones such as 
corticosteroids  [24] . 

 Infl ammation and Oxidative Stress as a 
Developmental Modulator in the Lung 

 The etiology of bronchopulmonary dysplasia (BPD), 
the most common chronic lung disease in the premature 
infant, may therefore be related to interactions between 
untimely or spatially inappropriate signaling that arises 
from injury [e.g. infl ammatory mediators] with altera-
tions in morphogenetic signaling and transcriptional 
pathways that control normal development and repair. It 
has been proposed that the main pathway through which 
the effects of various insults, such as antenatal infection, 
surfactant insuffi ciency (volutrauma), or oxygen toxicity 
are translated into lung injury, is ‘infl ammation’. If in-
fl ammation is present in BPD what are the potential link-
ages connecting infl ammation and morphogenesis? De-
creased expression of Nkx2.1 has been documented in the 
lungs of neonates who died with BPD  [25] . TNF- � , which 
is abundantly expressed in the lungs of preterm neonates 
at risk for BPD, negatively regulates Nkx2.1 gene expres-
sion  [26] . The most direct evidence for a functional link-
age between infl ammatory mediators and developmental 
pathways comes from transgenic mouse studies. Alveolar 
hypoplasia can be experimentally induced in transgenic 
mice with lung-specifi c ectopic and/or overexpression of 
TNF- �  and IL-6  [27] . Taken together these observations 
suggest that prolonged exposure to a pro-infl ammatory 
environment during early development has a direct effect 
on the development of the distal airways in preterm in-
fants of low gestational age and may induce alveolar hy-
poplasia. This fi nding provides a potential mechanistic 
explanation for phenotypic differences between ‘new’ vs. 
‘old’ BPD or BPD in extremely-low-birth-weight vs. that 
in low-birth-weight infants. 

 Infl ammation and the presence of activated phago-
cytes release a large amount of oxygen radicals and pro-
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teases. Over the last decade, accumulating data have in-
dicated that oxidative stress is involved in the develop-
ment of BPD  [28] . Exposure of newborn rats to 
hyperoxia impairs alveolarization and vessel growth, 
causing abnormal lung structure that persists during in-
fancy. Lipid and protein peroxidation products have been 
found increased in preterm infants developing BPD. New 
data have also shown that free radicals are second mes-
sengers and signal transducers in biologic processes  [29] . 
One example is the action of nitric oxide (NO), which is 
a free radical and may react with the superoxide radical 
to form toxic peroxynitrite (ONOO–) but NO is also a 
messenger molecule with unique signaling properties 
 [29] . NO can restore distal lung growth in infant rats after 
neonatal hyperoxia  [30] . 

 Infl ammation and the presence of neutrophils lead to 
the release of enzymes such as elastase and matrix metal-
loproteinases that disrupt the lung extracellular matrix. 
The extracellular matrix is essential for the normal align-
ment and differentiation of pneumocytes and pulmonary 
capillaries. The increased ratio of MMP over tissue in-
hibitor of metalloproteinase (TIMP) in preterm infants 
bronchoalveolar lavage can indicate alteration of lung de-
velopment by extracellular matrix disruption  [24] . 

 Infl ammation further activates the ubiquitous tran-
scription factor NF-kappa B, which mediates many of its 
biological effects. Muraoka et al.  [31]  observed that ex-
perimentally induced perturbations in NF-kappa B gene 
expression disrupted epithelial-mesenchymal interac-
tions, and resulted in abnormal lung morphogenesis with 
reduced growth and branching. Thus NF-kappa B can 
modulate both infl ammatory and morphoregulatory 
genes, thereby establishing a tight operational and func-
tional linkage between infl ammation and development. 
These data provide examples of potential interactions be-
tween mediators of injury and those of normal morpho-
genetic pathways in the development of the lung ( fi g. 2 ). 

 Infl ammation and Oxidative Stress as a 
Developmental Modulator in the Brain 

 The infl ammatory response is a common pathway of 
generating injury to the white matter between hypoxic-
ischemic and infectious insults  [32] . The human fetus is 
able to generate infl ammatory responses by 16–22 weeks 
of gestation. The infl ammatory signals are propagated 
across the intact or ruptured blood-brain barrier to the 
brain by pro-infl ammatory cytokines, prostaglandins and 
lipopolysaccharides. Subsequently, microglia are stimu-

lated to release cytokines, oxygen free radicals and tro-
phic factors which will infl uence the brain in various ways 
 [33] . In particular, infl ammatory events occurring prena-
tally are strongly correlated with white matter injury and 
the association of premature rupture of the membranes 
and perinatal infection yields a very high risk for white 
matter injury  [34] . The systemic infl ammatory response 
is indicated by a markedly elevated level of infl amma-
tory cytokine, IL-6 in fetal plasma  [35] . Infants with white 
matter injury were found to have increased IL-6 and 
TNF- �  cord blood  [36]  and CSF levels  [37] . Importantly, 
the IL-6 family of cytokines interfere with normal devel-
opment by inducing differentiation of the developing bi-
potential oligodendrocyte precursor cells into astrocytes 
and away from the differentiation into a mature oligoden-
drocyte  [38] . This may in part explain the marked astro-
cytosis and delay in myelination seen in diffuse white 
matter damage of the very preterm infant  [39]  (see be-
low). 

 Kadhim et al.  [40]  illustrated that an infl ammatory 
reaction, characterized by macrophage infi ltration and 
high levels of IL-1 �  and TNF- �  was present in immuno-
staining of preterm brain tissue with white matter injury. 
While cortical and other neuronal structures in brains 
with white matter damage did not display noticeable 
pathological anomalies, strong cytokine immunoreactiv-
ity was detected in many neurons in the neocortex, hip-
pocampus, basal ganglia and thalamus, which indicates 
potential alteration of cortical development associated 
with the infl ammatory response  [41] . Potentially affected 
neurons in early development are those of the subplate. 
Subplate neurons express different neurotransmitters 
(e.g. GABA, glutamate), neuropeptides (Reelin) and 
growth factors (BDNF, PAF) receive synapses and make 
connections with cortical and subcortical structures. 
These neurons play several important roles during brain 
development including: (1) they produce axons for the 
internal capsule which will serve as guiding axons for ax-
ons originating from neurons in layers V and VI; (2) be-
tween 25 and 32 gestational weeks, they produce axons 
for the corpus callosum; (3) they act as the waiting zone 
for thalamocortical axons (with which they establish syn-
apses) before they invade the cortical plate and reach
layer IV. 

 Specifi c immunocytochemical markers (e.g. CD68) 
have identifi ed marked increases of activated microglia 
in diffuse white matter injury  [42] . Microglia are already 
widely dispersed throughout the immature white matter 
by 22 weeks’ gestation. These cells are fully capable of 
producing potentially toxic infl ammatory mediators, free 
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radicals and reactive oxygen intermediates  [43] . The 
phagocytic activity of microglia and their capacity for 
oxidative mediated injury are potently enhanced by in-
fl ammatory mediators (IFN- � , TNF- � , IL- �  and bacte-
rial lipopolysaccharide LPS)  [44] . Presence of activated 
microglia inducing cell death in immature white matter 
both in preoligodendrocytes as well as in astrocytes has 
been widely confi rmed  [45, 46] . 

 Oxidative stress on neuronal membranes, detected as 
isoprostanes, also has direct effects on neuronal growth 
with a reduction of dendritic length and dendritic spine 
density which in the adult is transitory  [47]  but might be 
different in the developing brain. Pro-infl ammatory cy-
tokines such as IL-6 and TNF- �  further have been shown 

to impair hippocampal neurogenesis  [48] . Based on these 
fi ndings, oxidative stress induced by the protracted hy-
poxia and the subsequent re-oxygenation phase occurring 
frequently in the preterm infant with respiratory prob-
lems is another mechanism by which developmental 
events can be altered. The matrix metalloproteinases 
(MMPs) are a family of extracellular proteases implicated 
in brain development and disease  [49] . In many adult 
infl ammatory and ischemic disorders MMPs are highly 
expressed in the CNS but their role in altering brain de-
velopment is not yet clear. 

 These studies indicate that there exists a developmen-
tal period during which the lung and brain share a devel-
opmental vulnerability to injury by infl ammation which 

  Fig. 2.  Schematic representation of the factors involved in developmental modulation in lung and brain develop-
ment including specifi c features of neuroimaging by advanced MRI. 
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may lead to permanent alteration of structure and func-
tion through a concomitant alteration of the developmen-
tal program ( fi g. 2 ). 

 Glucocorticoids as a Developmental 
Modulator in the Lung 

 Over the last three decades, the effects of antenatal 
glucocorticoids (GCs) on fetal lung maturation and the 
pulmonary surfactant system have been a topic of intense 
scientifi c and clinical interest  [50, 51] . In humans GCs 
primarily stimulate the synthesis of surfactant phospho-
lipids by inducing de novo synthesis of fatty acids. Ad-
ditionally, GCs increase the expression of surfactant pro-
teins B, C and D by increasing the transcription of the 
genes  [52] . On a structural level GCs promote lung cell 
proliferation, the differentiation of type II alveolar epi-
thelial cells and the thinning of the alveolar walls medi-
ated by growth factors such as TGF- � , VEGF and others. 
These changes occur with physiological levels of GCs 
which increase in the fetus during the last trimester of 
pregnancy. In earlier developmental periods formation of 
alveoli can be largely prevented by GC treatment which 
accelerates alveolar wall thinning but inhibits outgrowth 
of new interalveolar septa  [53]  which results in decreased 
alveolar number  [54] . These changes of decreased alveo-
larization can persist and lead to defi nitive alteration of 
lung development  [55] . Interestingly, these changes in-
duced by synthetic GCs seem to be dependent in part on 
the type of synthetic GC used, with hydrocortisone af-
fecting alveolar growth less than dexamethasone  [56]  
( fi g. 2 ). 

 Glucocorticoids as a Developmental 
Modulator in the Brain 

 GCs have powerful brain-programming properties 
 [57] . One of the most intensively studied programmed 
systems is the hypothalamic-pituitary-adrenal (HPA) 
axis. The axis mediates the release of GCs to diurnal cues 
and stress. GCs act predominantly via intracellular recep-
tors which function as ligand-activated transcription fac-
tors. There are two receptor subtypes: the lower affi nity 
glucocorticoid (GR) and higher affi nity mineralocorti-
coid (MR) receptors. 

 GCs are essential for many aspects of normal human 
brain development. They affect most regions of the de-
veloping brain and regulate neurogenesis and neuronal 

survival. Experiments describing the effects of injecting 
pregnant rats with dexamethasone (DEX) have shed 
some light on the involvement of prenatal GC exposure 
in fetal programming of the brain  [58] . At conventional 
therapeutic doses DEX is a potent GR but not MR ago-
nist. Decreased brain weight is a well-established conse-
quence of perinatal DEX administration. Prenatal DEX 
exposure in late gestation infl uences brain development 
altering the induction of nuclear transcription factors 
such as c- fos  and AP-1 that regulate brain cell differen-
tiation with long-term c- fos  induction, resulting in a sub-
sequent decline in brain cell number. Even at doses that 
were devoid of lasting effects on somatic growth DEX 
elicited defi cits in the number and size of neural cells with 
the largest effect in the cerebral cortex  [59] . Recent stud-
ies using dosages similar to or below those used for lung 
maturation in preterm infants indicate that, during criti-
cal developmental periods, DEX administration evokes 
lasting alterations in neural cell numbers and synaptic 
function in forebrain regions with a predilection for the 
male vs. female brain  [60] . In the hippocampus GR acti-
vation induces apoptosis of granule cells by increasing the 
ratio of the proapoptotic molecule Bax relative to the an-
tiapoptotic molecules Bcl-2 or Bcl-x(L); the opposite ef-
fect is observed after stimulation of MR which enhances 
neuronal survival  [61] . These are important mechanisms 
to help understand the differential effects of different cor-
ticosteroids used in therapeutic interventions. 

 Under normal conditions access of maternal endoge-
nous GC to the fetus is low and this is related to the ex-
pression of 11 � -hydroxysteroid dehydrogenase in the 
 placenta, which protects the fetus from high maternal GC 
concentrations. This enzyme though has a low affi nity for 
synthetic GCs such as bethamethasone and DEX that 
pass rapidly from the mother to the fetus. 

 Several clinical conditions potentially expose the fetus 
and the preterm newborn to GCs. Firstly maternal stress 
and placental insuffi ciency can lead to fetal exposure of 
higher cortisol levels  [62] , secondly, induction of lung 
maturation achieved by synthetic GC administration an-
tenatally and thirdly postnatal GC treatment for chronic 
lung disease. From the mid-1980s, postnatal corticoste-
roids were increasingly prescribed for the prevention or 
treatment of chronic lung disease (CLD), supported by 
evidence of benefi t on some short-term outcomes, includ-
ing earlier weaning from mechanical ventilation and a 
reduction in CLD  [63–66] . CLD and prolonged mechan-
ical ventilation, both tightly related to infl ammation, are 
themselves risk factors for a developmental insult to the 
brain in preterm infants as illustrated above. GCs as po-
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tent anti-infl ammatory agents though were hoped to re-
duce the systemic effects of infl ammation and oxidative 
stress for the developing organism. However, several ran-
domized controlled trials have been reported with an in-
crease of neurodevelopmental disabilities associated with 
postnatal corticosteroid use  [67–70] . Similar reports also 
had been published earlier for the effects of multiple dos-
es of antenatal corticosteroids  [71] . Most of the studies 
have been done with synthetic DEX, which is a potent 
activator of GR rather than MR. Hydrocortisone on the 
other hand has higher MR affi nity which might prove 
neuroprotective. A recent study looking at outcome after 
treatment of CLD with hydrocortisone indicates no dif-
ference in neurodevelopmental outcome for hydrocorti-
sone treatment  [72] . 

 Steroid hormones are therefore another environmen-
tal factor operating in early life that potently affect the 
developing organism altering structure and function 
( fi g. 2 ). 

 Visualization of Developmental Disruption by 
Lung Imaging 

 MRI is a new noninvasive method to study human 
lung growth during the second and third trimester. The 
excellent tissue contrast of MRI allows a detailed struc-
tural assessment of the fetal lung  [73] . Using different 
ultrafast MRI sequences important data concerning the 
characteristics of the pulmonary parenchyma can be ob-
tained  [74] . Fetal MR volumetry allows identifi cation of 
lung growth and diagnosis of hypoplasia. The evaluation 
of signal intensities using different MR sequences pro-
vides information about the tissue maturational status of 
the fetal lung and allows identifi cation of pulmonary tis-
sue pathologies. The median pulmonary volume at 20 
weeks’ gestational age was shown to be around 10.17 cm 3 . 
Values then increase exponentially after 24 weeks’ GA, 
showing a considerable variability of lung volumes be-
tween 51.16 and 132.96 cm 3  after 35 weeks’ GA ( fi g. 3 ) 
 [73] . Several developmental processes may account for 
the changes observed in the signal intensities on T2-
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  Fig. 3.  MR lung volumetry results of 106 fetuses, with normal his-
tory or with abnormalities not associated with restricted lung 
growth. An exponential regression curve showed the best fi t (r 2  = 
0.81). There is only a minimal growth of lung volumes between 140 
and 175 days, at 20 and 24 GW, respectively. With permission from 
Kasprian et al.  [73] . 

  Fig. 4.  Coronal T2-weighted sequences of a fetus at 27 GW with 
severe pulmonary hypoplasia and hydrops. Measured lung size was 
11.65 cm 3  and size of the pleural cavity was 54.84 cm 3 . The signal 
intensity of the fetal lung appears markedly hypointense. Arrows 
indicate lung parenchyma. With permission from Kasprian et al. 
 [73].  
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weighted lung imaging. In parallel with the increase in 
future airspace and permanent secretion of lung fl uid, an 
accumulation of free protons and the decrease of the wa-
ter binding hyaluronic acid fraction could be responsible 
for the changing appearance of the developing lung on 
T2-weighted sequences, which has a large interindividual 
variability  [75] . Pulmonary hypoplasia may be the end-
point of many processes that infl uence human lung de-
velopment. Pathologically, pulmonary hypoplasia is de-
fi ned by a reduction of total size, lung weight/body weight 
ratio, radial alveolar count and DNA content. Marked 
reduction of signal intensities and lung volumes  [76–78]  
are characteristic fi ndings in fetuses with pulmonary hy-
poplasia ( fi g. 4 ). After GC administration for lung matu-
ration by which the alveolar size increased and interlobu-
lar septal volume decreased  [79]  parallel changes are ob-
served in T2-weighted imaging with a brighter signal (T2 
increase)  [73] . 

 Alterations in lung volumes calculated from lung MR 
imaging together with changes in MR signal intensities 
can detect in vivo disruption of lung development. 

 Visualization of Developmental Disruption 
and Plasticity by Neuroimaging 

 Neonatal sonography is still the best bedside technique 
to image the neonatal brain. Leviton and Paneth  [80]  pos-
tulated in 1990 that ultrasonographic white matter echo-
densities and echolucencies in low-birth-weight infants 
predicted later handicap more accurately than any other 
factor. Since then many studies have shown neurodevel-
opmental delay in preterm infants with normal postnatal 
ultrasound scans  [81] . Unlike intraventricular hemor-
rhage or cystic periventricular leukomalacia, develop-
mental disruption in both white matter and cortical gray 
matter have no focal appearance. Diffuse white matter 
injury by its specifi c pathological features might be dif-
fi cult to diagnose by ultrasound. Inder et al.  [82]  recently 
compared early ultrasound assessment with conventional 
MRI at term age in a nonselected cohort of preterm in-
fants, and found a low predictive value of ultrasound for 
white matter lesions that were apparent on MRI. One 
typical conventional MR imaging pattern of white matter 
injury consists of punctate periventricular areas of signal 
hyper intensities on T1-weighted images ( fi g. 5 ) and signal 
hypointensities in T2-weighted images  [83, 84] . The neu-
ropathological correlate of these signal abnormalities may 
result from some hemorrhagic components of the lesions 
but more likely represents the cellular reaction of glial 

cells and macrophages, which contain lipid droplets  [85] . 
Another feature of chronic white matter alteration in con-
ventional MR imaging in the immature brain is charac-
terized by a persistent high signal intensity of the white 
matter in T2-weighted images ( fi g. 6 ). In several studies 
diffuse excessive high signal intensity (DEHSI) in the ce-
rebral white matter on T2-weighted imaging was present 
in 40 to 75% of low-birth-weight preterm infants imaged 
at term  [81] . Its association with very early gestational 
age, was recently demonstrated in a cohort of premature 
infants studied by conventional MRI at term  [86] . This 
study further illustrated the specifi c pattern of global al-
teration of the very immature brain at term with marked 
reduction of white matter volume, T2-weighted hyperin-
tensity of white matter, delayed myelination, ventriculo-
megaly and signifi cantly enlarged subarachnoid spaces 
indicating cortical atrophy. In a logistic model major risk 
factors for this abnormality were perinatal infection par-
ticularly maternal fever and hypotension with inotrope 
use  [86] . These diffuse white matter alterations were fur-
ther associated with higher CSF IL-6, and TNF- �  levels 
which confi rms the high likelihood of infl ammatory pro-
cesses at the origin of these specifi c diffuse cerebral al-
terations in very immature infants  [87] . Similar correla-
tion with image abnormalities were found for lipid (8-
isoprostane, malondialdehyde) and protein (protein 
carbonyls) peroxidation products in CSF of preterm in-
fants  [88] . 

 Imaging techniques to study both acute brain injury as 
well as the brain’s potential for plasticity are being used 
increasingly to study immature white matter. The most 
promising imaging techniques are diffusion-weighted 
(DWI) and diffusion-tensor (DTI) imaging which mea-
sure the self-diffusion of water. The two primary pieces 
of information available from DWI studies – water ap-
parent diffusion coeffi cient (ADC) and diffusion anisot-
ropy measures – change dramatically during develop-
ment, refl ecting underlying changes in tissue water con-
tent and cytoarchitecture  [89] . The above-described 
typical white matter changes in preterm infants at term 
demonstrating higher ADC values in the area of T2 hy-
perintensities  [90, 91]  which most likely is related to dis-
ruption of normal microstructure with potential neuroax-
onal loss (with loss of associated pre-oligodendrocytes). 
Quantitative measures of diffusion at term among pre-
mature infants with perinatal white matter alterations, 
when compared to preterm infants without white matter 
injury, showed lower anisotropy values, an expression of 
altered white matter fi ber connectivity in the central peri-
ventricular white matter and also in proximal fi bers of the 
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posterior limb of the internal capsule  [92] . Long-term fol-
low-up of preterm infants with DTI have shown distinct 
changes in cerebral connectivity in both the corticospinal 
tracts and commissural fi bers  [93] . The use of DTI allows 
three-dimensional reconstruction of white matter con-
nectivity which might become an important tool to assess 

abnormalities in cortical connectivity and structural and 
functional plasticity  [94, 95] . 

 Another recent imaging development is 3D-MRI, 
combined with image post-processing techniques, which 
allows volumetric assessment of brain development and 
an absolute quantitation of myelination and cortical de-
velopment  [96, 97] . In premature infants with white mat-
ter injury the volume of myelinated white matter at term 
as well as the volume of cortical gray matter was signifi -
cantly lower with a compensatory increase in CSF  [98]  
( fi g. 7 ). In a recent population study, similar volumetric 
changes of overall brain development in preterm infants 
were confi rmed with signifi cant reduction of myelinated 
white matter and cortical gray matter in preterm infants 
compared to full-term infants with a reduction also of 
deep nuclear gray matter (basal ganglia) most pronounced 
in the lowest gestational ages. There was a signifi cant re-
lationship between severity of respiratory illness and the 
deep nuclear gray matter volumes indicating develop-
mental disruption at multiple levels  [99] . Neuropatho-
logical examination of cerebral cortex in preterm infants 
revealed cortical dysplasia in cortical areas overlaying 
white matter destruction  [39] . These abnormalities of 
cortical development are found secondary to disturbanc-
es of afferent input to and efferent output from areas of 
the cortex by disruption of the respective white matter 
axons  [39] . Long-term follow-up studies of preterm in-
fants have confi rmed the permanent character of these 
disruptive/adaptive changes in brain development. Re-
cent evaluations of 8-year-old former preterm infants 
with volumetric brain assessment showed persistence of 

  Fig. 5.  Conventional T1-weighted MR images in coronal ( A ,  B ) and axial plane ( C ). A normal preterm infant at 
31 weeks GA;  B  and  C  illustrating bilateral periventricular lesions with high T1 signal intensities in a preterm 
infant of 31 weeks GA (white arrows). 

  Fig. 6.  Conventional T2-weighted MRI of a normal full-term infant 
( A ) with thin area of low signal in the T2-weighted MRI correspond-
ing to myelin deposition in the posterior limb of the internal capsule 
(white arrow).  B  Corresponding T2-weighted MRI in an ex-preterm 
infant of 25 weeks GA imaged at 40 weeks GA, with severe bron-
chopulmonary dysplasia showing diffuse white matter lesions 
(black arrows) and missing signal change in the posterior limb 
(white arrow) of the internal capsule, indicating delay in myelina-
tion. 
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cortical gray matter reduction accompanied with a reduc-
tion in the volume of the hippocampus which correlated 
with cognitive scores indicating long-term functional 
consequences  [100]  ( fi g. 8 ). Both cortical volume and cor-
tical thickness were shown to be reduced in 15-year-old 
adolescents who had been born prematurely  [101] . 

 Dramatic changes in brain volumetric assessments 
have also been found after exposure to corticosteroids. 
Multiple antenatal doses of corticosteroids were associ-
ated with a marked reduction in cortical surface at birth 
 [102]  and postnatal dexamethasone treatment resulted in 
a 30% reduction of cortical gray matter volume without 
any changes in white matter characteristics  [103]  ( fi g. 9 ). 
As outlined above, different corticosteroids might have 
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different modulatory actions on brain development. It is 
interesting to note that a recent study on the long-term 
effects of hydrocortisone treatment for neonatal chronic 
lung disease did not show any long-term changes in corti-
cal and hippocampal development with no effects on neu-
rodevelopmental outcome  [100] . This opens up the pos-
sibility to consider hydrocortisone treatment for chronic 
lung disease as the infl ammatory processes of CLD re-
main a potent risk factor for abnormal brain develop-
ment. A recent study by Doyle et al.  [67]  indicates that 
for patients with high risks of CLD ( 1 65%) corticosteroid 
treatment was associated with a reduction in death or ce-
rebral palsy. 

  Fig. 7.  Figure illustrating the effects of prematurity ( B ) and white matter injury ( A ) on subsequent brain develop-
ment at term with a signifi cantly lower cortical gray matter volume, lower myelinated white matter and higher 
CSF volumes determined by 3D-MRI with post-acquisition image analysis in a group of preterm infants with 
perinatal white matter injury compared to control preterm and full-term infants ( C ). With permission from Inder 
et al.  [98] . 
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  Fig. 8.  Correlation of cortical gray matter volume and neurocognitive scores (WISC) at the age of 8 years in pre-
term infants. With permission from Lodygensky et al.  [100].  

 Conclusions 

 The progressive understanding of the mechanisms of 
developmental disruption and developmental plasticity 
in different organs may help explain the long-term effects 
of prematurity and its associated environmental cues im-
portant for organ development. Developmental disrup-
tion and plasticity occurs in both lung and brain and is 
tightly linked to events inducing infl ammation, oxidative 
stress and endocrine disruption. Future studies on pul-
monary and neurological outcome in premature infants 
will have to focus not only on lung and brain injury pre-
vention but enhancement of developmental plasticity. 
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  Fig. 9.  Axial T2-weighted magnetic resonance images from a pre-
mature infant at term treated with systemic dexamethasone for 
neonatal chronic lung disease ( A ), and a premature infant at term 
who never received dexamethasone ( B ). With permission from 
Murphy et al. [103]. 
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