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Abstract

Monte Carlo (MC) simulations significantly contributed to a better
understanding of laser-Doppler flowmetry (LDF). Here it is shown that the
data obtained from standard MC simulations can be reinterpreted and used
to extract more information such as the photo-electric current (i(¢)). This is
important because i () is the starting point for evaluating any existing or new
algorithm to be used in LDF instrumentation. This circumvents the tedious
procedure of generating a specific model (often approximated if possible at
all) each time a different algorithm is considered. By a series of tutorial
examples, the influence of various parameters is investigated, e.g. sampling
rate, total acquisition time and dc filtering. These cases also demonstrate the
fundamental role played by the photons’ random phase in the shaping of the
LDF signal. In particular, it is demonstrated by MC simulation that when
the number of photon-moving red blood cell interactions is too low, then
the Siegert relation that exists between the field and photo-electric current
autocorrelation functions does not hold. This is an important point because
the validity of the Siegert relation is implicitly admitted in the majority of the
classical analytical models for the autocorrelation function in LDF (the classical
MC approach does not allow one to study this problem). The proposed method
and examples could stimulate new ideas and help the scientific community
develop, test and validate new approaches in LDF.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The frequency shift generated by the interaction of near-infrared light with moving red blood
cells has been successfully exploited over the last 30 years to assess, non-invasively, blood
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velocity and flow in human tissues. The development of performant detectors such as CCD
and CMOS has also allowed one to conceive real-time tissue blood perfusion imagers (Serov
et al 2005, Briers 2007, Draijer et al 2009, Raabe et al 2009). On the other hand, the
utilization of high-sensitive avalanche photodiodes or single photon counters combined with
digital autocorrelators has opened the way to the investigation of tissue regions situated at
more than 1 cm deep under the skin surface (for general reviews, see Leahy et al (1999),
Briers (2001, 2007), Humeau et al (2007), Vennemann et al (2007)).

These techniques are based on analytical models that allow one to relate the acquired time-
dependent photo-electric current (i (¢)) to tissue blood velocity- or flow-related quantities. The
models become very different depending on the specific hardware implementations and on
the morphology and optical properties of the observed tissues. Further on, the experimentalist
and the theoretician face the problem of testing their validity, a mandatory step when dealing
with laser-Doppler flowmetry (LDF) research and development.

Two methods are usually considered for LDF testing and calibration: (1) direct
measurements on real tissue preparations, synthetic tissue phantoms or motility standards
(Nilsson et al 1980, Smits et al 1986, Ahn et al 1987, Fairs 1988, Obeid 1993, Liebert et al
1995, 1999, Steenbergen and de Mul 1998a, 1998b, Leahy et al 1999) and (2) testing of
the analytical models alone on numerically simulated data (Stern 1985, Koelink et al 1994,
de Mul ez al 1995, Boas 1996, Kienle 2001). This note deals with the second approach.

Many models are based on approximate analytical expressions for the power spectrum
(P;(w)) or the normalized autocorrelation function (gi(z)(r)) of i(t). Pi(w) and g? (1) are
extremely important because they allow one to extract the tissue blood velocity or the flow
information (Bonner and Nossal 1981). The ‘gold standard’ to test these analytical models
is based on Monte Carlo (MC) simulations of the light transport into the tissue (Wilson and
Adam 1983) with the added capability of taking the laser-Doppler effect into account (Stern
1985, Koelink et al 1994, de Mul et al 1995, Boas 1996, Kienle 2001). The ‘classical’ MC
approach allows one to directly generate, in a numerical way, the key measures P;(w) or
gi(z)(r) without computing i ().

Today, LDF hardware is pushed to its limits, e.g., for full-field LDF (Serov et al 2002,
2005, Serov and Lasser 2005, Binzoni and Van De Ville 2008). This imposes the development
of alternative solutions that allow one to process i (¢) in a different and more efficient manner.
Even hardware implementations for the calculation of P;(w) or gl.(z)(r) become too slow and
expensive as the operation must be applied for thousands of pixels simultaneously and in real
time. Moreover, obtaining i (¢) in a simulation setting would allow us to better understand the
physical parameters that influence the LDF signals but are not related to blood flow and thus
appear as unwanted information (e.g. random phase contributions accumulated by the photons
during their propagation into the tissue).

Consequently, direct access to i(¢) for simulation may become an important issue. The
ability to numerically generate i(#) should allow us to test and validate new ideas and to
develop innovative LDF hardware. For these reasons, the aim of this note is to show that i (¢)
can be obtained by extending/adapting the MC approach. The proposed method implies only
a slight modification of the ‘classical’ MC approach as it exists for direct generation of P;(w)
(see e.g. Soelkner et al (1997)).

2. Material and methods

In this section, we explain how i(#) can be obtained by means of MC simulation. To that
aim, we first summarize the ‘classical’ MC procedure that leads directly to P;(w). We will
point out that a mathematical constraint on the photons’ random phase plays a key role when
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assessing i(#). Next, a series of tutorial examples concerning i(¢) is introduced and their
practical importance is demonstrated.

2.1. Reorganizing data obtained from ‘classical’ Monte Carlo simulations

The ‘classical’ MC code for LDF simulations basically generates Npaker couples
(W(Awp), Awy) (m = 1,2, ..., Npacket), Where W(Aw,) € [0, 1] is the fraction of
photons within a photon packet that has experienced a given laser-Doppler shift Aw,, and
that has reached the photo-detector. The positive integer Npacker corresponds to the number
of photon packets launched in the simulation. When a photon packet does not reach the
photo-detector, it is stored as the couple (W(Aw,,), Aw,) = (0,0). The laser-Doppler
frequency shift, Av,, (Hz), is expressed as an angular frequency: Aw; = 2w Av,,. In practice,
(W(Awy,), Awy,) couples are stored under the form of a histogram; i.e., all W(Aw,,) with
Aw,, € [n&o — 57“’, néw + %"’] are summed and associated with the nth bin and centred at the
frequency ndéw, where dw is the bin width and n € Z is the bin index.

The key point in the present work is that the complete (W (Aw,,), Aw,,) data are stored
as an Npacier X 2 matrix; the histogram representation can always be build afterwards from this
matrix for any chosen dw value. This is the only modification to the core of the MC code with
respect to the ‘classical’ method. The MC code utilized in the present work has already been
presented in Binzoni et al (2008a, 2008b) but any other code can be adapted in a similar way.

2.2. Analytical expressions for the electric field and i (t)

A huge amount of work was done in the past to build a model allowing one to reliably describe
i(¢). Different approaches to the problem have been investigated, going from semi-classical
(e.g. Mandel et al (1964), Lamb and Scully (1969)) to the quantum electrodynamics (QED)
theory (e.g. Glauber (1965), Nussenzveig (1973)) of photo-electric signals. Fortunately, in the
context of biomedical LDF applications, i(#) can be simplified to a well-known expression
(Mandel et al 1964) that is usually written as (Forrester 1961, Cummins and Swinney 1970,
de Mul et al 1995)

i(t) = ea2E(EM), (1)

where £(t) is the (complex) electric field, e ~ —1.602 x 107! s A is the electronic charge
and o is a suitably defined quantum efficiency. For the present purpose, £(#) can be written
in a general manner as

Et) = / w[ﬁ%E(a)) e ?@]e " do, 2)
0

where @ (w) is the wavelength-dependent random phase and g is the constant related to the
degree of spatial coherence used in laser-Doppler theory which explains the absence of explicit
spatial variables in the equations. Note that £ (w) is real-valued. Equation (1) implicitly takes
into account the ‘filter effect’ of the photo-detector that is not capable of detecting the high
end of optical frequencies, ® = wy + Aw, wy represents the laser frequency and Aw the
Doppler shift. Therefore, only the low beating frequencies, Aw, contribute to i (¢). Note that
due to the presence of ®(w), i(¢) is a time-dependent random variable. Due to the form of
equation (1), i (¢) has only positive real values by definition.

Like equation (1), equation (2) is also a simplified model but, in this case, part of the
simplifications is dictated by the MC approach. The MC approach considers that each photon,
after interaction with a scatterer, behaves as a plane wave travelling in a given direction.
These photon waves do not interact inside the tissue, i.e. there are no interference phenomena.
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Moreover, the photo-detector is sensitive only to the squared norm of the electric field.
Intuitively, this explains why the complex electric field £(¢) is defined as a scalar and the
wave vector is not present in equation (2). The exact motivation of equations (1) and (2) is
not trivial, but they form a well-accepted model in the classical LDF literature (Cummins and
Swinney 1970).

The link between equation (2) and the MC data’ (see section 2.1) is simply made by
observing that

W(Aw) x E(wy + Aw)?. (3)

In other words, the weights computed with the MC simulation are proportional to E (wy+Aw)?
and in this note we replace E (wy + Aw)? by W(Aw).

Given B, E (w) and ® (w), it is possible to numerically evaluate (1) and (2). The parameter
B is typically set to 1 for the simulations, and this does not influence the conclusions of the
present work. The function E(w) can be obtained according to equation (3), whereas & (w)
is a critical remaining unknown. In the following section, we will see that the necessary
information allowing one to explicitly define ® (w) can be obtained by studying the ‘classical’
procedure (Forrester 1961, de Mul er al 1995) permitting to directly derive P;(w) from the
MC data.

In conclusion, if we assume for now that ® (w) can be determined, one has potentially two
possibilities: (i) directly compute i () by using E () (derived from the MC data) and @ (w)
and then apply any old or new signal processing technique directly to i(¢) (such is the case
for a real LDF instrument) or (ii) directly obtain the analytical expressions, e.g., for P;(w) or
gi(z)(r) (Stern 1985, Koelink et al 1994, de Mul et al 1995, Boas 1996, Kienle 2001) and then
include the MC-derived data in these expressions to obtain the explicit numerical solution;
this is the ‘classical’ MC approach and does not necessitate the use of ®(w) (see below).

We will see that even if both solutions are compatible, solution (i) represents the best
approach because it is more general and precise than solution (ii); it is similar to the real LDF
data treatment and has the potentiality of easily evaluating future new algorithms.

Equations (1) and (2) hold for any chosen velocity distribution for the red blood cells. The
influence of the velocity is included in the optical spectrum E(w;)? as well as any complex,
multiple-tissue, geometrical shape describing the observed biological sample and introduced
through the MC simulation.

2.3. Definition of P;(w), gi(z)(r) and physical constraints on ()

We present a procedure to analytically obtain P;(w) from i(¢) that is similar to de Mul
et al (1995); see their appendix. We highlight the main points that are important to this work.

2.3.1. Analytical expression for P;(w) and physical constraints on ®(w). By the Wiener—
Khintchine theorem, P;(w) can be expressed as (Cummins and Swinney 1970)

2 0 %)
=/ [/ i(t)i(t+r)dt} e T dr. 4)

By substituting equations (1) and (2) into equation (4) and by using the integral definition of
the Dirac function, one obtains

Pi(w) := '/w i(f)e ' dr

5 In a more precise manner, the ‘wave’ vision (equation (2)) and the ‘particle’ vision (MC simulation, section 2.1)
are linked by the QED theory (Cohen-Tannoudji et al 2004).
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o0 o0
I’i(w)zlénzﬂzezaz/ f E(@)E@)E(w; + 0)E(w; + )
0 0
x e i@ =P @i+0)] GilP@) =@t {4 dgy, . (5)

As already explained by different authors (Cummins and Swinney 1970, Bonner and Nossal
1981, de Mul et al 1995), the essential point is that the second term on the rhs of equation (5)
is non-vanishing only if

w; = w = P(w)) = P(w). 6)

It must be noted that the equality constraint on the phase is not trivial because
®(w) € [0,2r] represents a ‘random variable’. This result comes from the fact that
experimentally, ®(w) ‘decorrelates’ a lot faster than the observed phenomenon. In practice,
@ (w) may reasonably be considered as a uniformly distributed random variable (but this is
not a necessary condition). In other words, relation (6) indicates that if two photons reach the
photo-detector with the same frequency value w, then they must also carry the same (random)
phase value @ (w).

The importance of the above result is twofold: (i) it allows one to include ®(w) in
equation (2) (and thus in i(7)) because it gives the missing information and (ii) it allows
the use of the computer time-saving variance reduction technique (Wang et al 1995). The
variance reduction technique consists in launching a series of photon packets and not single
photons. By construction, photons of the same packet always carry the same frequency and
have followed exactly the same path into the tissue at exactly the same time. The above
observation tells us that these photons must also have the same phase. The fact that it is not
necessary to define a different ®(w) realization for each photon composing a photon packet
and reaching the detector is essential to the variance reduction technique.

In the light of the above discussion it is easy to carry on the calculation, by restarting
from equation (5), and obtain de Mul ef al’s (1995) exact analytical expression for the power
spectrum:

P (w) = P (w)
oo 2
167[2/326202(/ E(w))? da)1> if w=0
= . )
o0
16n2f52e202f E()’E(w) +w)*dw, if o #0.
0

The weight of the Dirac at @ = 0 (first term on the rhs) assures the right value of the dc
component.

2.3.2. Definition of gi(z)(r). The definition for the normalized autocorrelation function of
the photo-current is (Jakeman 1974)

er)~ [T @i +7)de

2
g (r):= lim ()
1vee [T [Ty di]
The field-normalized autocorrelation function, g(l) (), can also be defined as
2T) ' (T ewE@ +1)*drt
gV () := lim @) EeC ) . 9)

S Toso 7)1 EER) dr
Fort =0, gV (7) is 1 for any £(1).



N308 T Binzoni et al

2.4. Plugging MC data into the analytical expressions for i(t) and P;(w)

In section 2.2, we pointed out that the MC data can be used as an input for the analytical
expressions of i(¢) or P;(w), i.e. by replacing E(wy + Aw)? with W(Aw). However, MC
simulations generate only a series of weights for non-uniformly distributed frequency shifts,
Aw,,. The non-uniformly sampled data can be used in two ways: (1) by directly considering
the non-uniform w-sampling and then by solving the equations with the suitable non-uniform
discrete algorithms or (2) by ‘resampling’ the function E (wo+ Aw,,)? by means of a histogram
and then solving the equations for uniform w-sampling, which corresponds to the classical
approach for P;(w). Next, both options are investigated. The former will be applied for the
direct derivation of i (#) and the latter for the classical derivation of P;(w). For simplicity, we
will designate these as the ‘direct method’ and the ‘histogram-based method’, respectively.

2.4.1. Direct method. As already explained, in the MC simulations the continuous-domain
function appearing in the square brackets of equation (2),

| .
Xeon (@) 1= B2 E(w) €, (10)
is obtained as a series of samples at different w; values and for this reason it can be rewritten

as

Npuckcl
Xaiser (@) = Xeon (@) Y Sp(@ — @), (1)
m=1
where dp(.) is the Dirac delta function. The electric field £ (equation (2)) can be expressed in
the discretized form as
Npackcl
| - . )
Eiser(t) = B2 Y [E(wp) @ e (12)
m=1
and can be numerically implemented. As previously explained, the phase ® (w) is defined as
a set of Npycker uniformly distributed independent random numbers ® (w) € [0, 27 ] satisfying

relation (6). From equations (1), (3) and (12), one obtains i (¢) as a function of the non-uniform
MC data:

2
Npacke(
i)~ ea2B| Y [VW(Awy,) ®@raon emitent| (13)
m=1

Note that ¢ in equation (13) is a continuous-domain variable and thus its values can be freely
chosen depending on the needs of the simulation.

2.4.2.  Histogram-based method. The °‘classical’ MC approach does not start from
equation (13) but it directly combines MC data with the analytical solutions for P;(w)
(equation (7)). Even in this case a non-uniform w-sampling can be used, but, to speed
up the calculations, a regular histogram is usually constructed as explained in section 2.1.
This approach assumes the existence of an underlying probability density function, f(Aw),
from which the W (Aw,,) data are taken. The histogram is an estimator of the density f(Aw).
The histogram generated from the W (Aw,,) data and evaluated at the (constant-spaced, dw)
dw, values (Sw, < dwy,+1;Vn € {1,2,..., Npn}) is written in the present work as ﬁw(éwn).
The constant Ny, is the number of bins in the histogram.
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Thus, the analytical expression for P*°(w) (equation (7)) can now be written as

P (Bwi) ~ Phis(Swy)

_ n=0
= Mook . (14)

16724220 %60 Y hw (w)hw Bwn) if oy #0
n=0

Nbin 2
167282202 (Sw)> (Z ﬁw(awn)> if Sap =0

Equation (14) corresponds to the well-known classical numerical equation for Pyig(w)
(de Mul et al 1995), but where the Py (dwy) value for Sw; = 0 is included.

2.5. Data sets for the tutorial examples

The set of MC data used in the tutorial examples has been computed on a PC cluster with
eight nodes as in Binzoni and Van De Ville (2008). In summary, a virtual tissue phantom was
represented by a homogeneous 2500 x 2500 x 2500 mm? cube. LDF was a simple point-
source/detector configuration, with the source centred on and normal to one of the cube’s
surfaces. The cylindrical symmetry allowed one to treat the problem as a point source with
an annular detector (75 um width). The interoptode spacing (0.5 mm) was defined as the
distance between the source and the middle point of the annular detector. The number of photon
packets generated for one simulation was Npacket = 9 X 10°. The absorption coefficient (u,),
the reduced scattering coefficient (1), the refractive index (n), the anisotropy parameter (g)
and the wavelength (1) were set to 0.025 mm~', 0.5 mm™', 1.4, 0.9 and 800 nm, respectively,
for all the simulations. The refractive index for air was set to 1. The physiological parameters
were Prowe € {0.025,0.05,0.075,0.1,0.125,0.15}, (VZ2,..)"* € {1,2,3,4) mm s~' and
Vieans.x € {0, 1,2, 3,4} mm s™!, where Py is related to the fraction of scatterers (red blood
cells) moving inside the tissue and (VBzmwn)l/ ? is the root mean square of the red blood cells’
velocity component due to the ‘Brownian’ motion (normal velocity distribution). Ppeve can
be seen as the probability for a photon packet to interact with a moving particle. The values
here are for explanatory purposes and their range can account for different types of tissues.
The vector Vians = (Vians.x» 0, 0) represents a bulk translational velocity component of the
red blood cells that is parallel to the surface of the cube where the optodes are situated. The
model chosen for the blood flow is only an example. In fact, the behaviour of global mean
blood flow may depend on the type of tissue and thus on the geometry of the related vascular
network (see, e.g., the discussion section in Binzoni and Van De Ville (2008)).

The MC simulations performed with all the possible combinations of these parameters
give a total of 120 MC data sets allowing one to build 120 different i(¢) for a given ®(w)
random realization. The sampling frequency or total time duration of the digitalized i () signal
can obviously be chosen ad libitum. A supplementary set of MC data were also obtained for

Poove = 0.30, (Vémwn>]/2 = 4mm s~ and Vs = (4,0,0) mm s,

3. Results

We use the MC data and the expressions derived above to put together a number of tutorial
examples illustrating i (¢), P;(w) and gi(z)(t) for different physiological and/or instrumental
acquisition parameters. We also investigate the influence of ®(w) on the shape of the LDF
signals. The parameters 8, ¢ and o were simply set to 1 (this does not change the present

results).
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Figure 1. (a) Three versions of i(¢) for different Npucker but common ®(w) (see text).
The physiological parameters were Ppove = 0.15, (V]%mwn)l/ 2 = 2 mm s ! and \st =
(1,0,0) mm s~!. The sampling frequency was 40 kHz. (b) For the same MC data set, i ()
is computed twice, once by using Npacker and once by using Npacket + 746250. The R of the two
i(t) realizations was then obtained. The same operation was repeated for 120 x 8 x 12 different
MC data sets. The number of different ®(w) realizations for each of the 120 MC data sets is 8.
The number of points on the Npacker axis is 12. All the i (#) computed with the same MC data set
have a common ®(w). R was then obtained as a function of Npacker- The sampling frequency was
40kHz and N, is the number of sampling points. The vertical bars represent the standard deviation.

3.1. Example: Monte Carlo generation of i(t) and the role of ®(w)

Figure 1(a) shows i(f) computed by means of the direct method (equation (13)). These
plots give a qualitative picture of the influence of the number of packets (Npacker) On the
derivation of i(z). For large Npacker, 1 (2) tends to converge (e.g., compare Npaerer = 8100000
and Npacker = 9000 000) and plots nicely overlap. For low Npacker (Vpacket = 2700 000), i (¢)
can in principle not be considered as a valid function for further calculations (see, however,
the following sections). To allow the above comparison, the i(¢) curves were generated by
using a common ® (w). Specifically, if for two different choices of Npacket the same frequency
component at w/(27) is used, then they have the same phase, ®(w). Therefore, i(¢) that
is built with larger Npacker has statistically more (different) frequency components, which
explains the difference between the curves in figure 1(a).

To better quantify the role of Npacker, in figure 1(b), we have computed the correlation
coefficient (R) of couples of i(¢) generated using different Npacier values (also see the figure
legend). For two i(¢) realizations to be perfectly equal, R must be 1. In figure 1(b), one
can clearly observe that the mean R (R) increases for larger Npacket and that it converges
to 1. The standard deviation becomes also smaller for larger N, (number of sampling
points), while it decreases for larger Npacker. This confirms the qualitative findings reported in
figure 1(a). In fact, we will see in the following sections that the small difference of R from
1 is due to the phase randomization by ®(w), but that all the necessary information coming
from the (‘physiological’) laser-Doppler shift is already completely contained in i (¢) for small
Npacker values.
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Figure 2. (a) Npacket = 2700000 (green), Npacket = 8100000 (red), Npacket = 9000 000 (black).
P;(w) directly computed from three different i () (where the dc offset has been subtracted). The
MC data sets used to derive the three i () were the same as in figure 1. The number of sampling
points for i(r) was N; = 1024. To obtain comparable data, i(#) was normalized by its energy.
(b) Same as in panel (a) but in this case (P;(w)) represents the mean of 100 spectra. The 100
different spectra were derived by using 100 different ® (w) realizations (all the other parameters
remaining constant). (c) For a given MC data set, P; (w) has been computed twice, once by using
Npacket and once by using Npacket +746 250. The R of the two P; (w) realizations was then obtained.
The same operation is repeated for 120 x 8 x 12 different data sets. The number of different ® (w)
realizations for each of the 120 MC data sets is 8. The number of points on the Npacker axis is 12.
All the P;(w) computed with the same MC data set have a common ®(w). R is then computed
as a function of Npycket. The sampling frequency was 40 kHz and N is the number of sampling
points. The vertical bars represent the standard deviation. (d) Same as in panel (c) but for (P; (w)).

3.2. Example: Monte Carlo generation of P;(w) and the role of ®(w)

Once i(¢) is determined by the direct method, the spectrum P;(w) can be derived as well
(equation (4)). In figure 2(a), we show three P;(w) spectra obtained from different i (¢) (as in
figure 1). Even in this case, the most apparent feature is the effect of the phase randomization.
It is well known that in experimental reality, this problem is solved by taking the ensemble
mean over a large number of P;(w) ({P;(w))) (see figure 2(b)). Compared to P; (), (P;(w)) is
definitively less sensitive to Npqcker and the three curves perfectly coincide. The mean of a larger
number of spectra further improves the coincidence (not shown). Consequently, averaging
smooths out the random phase and the intrinsic laser-Doppler signal remains. Nevertheless,
this does not signify the fact that the influence of ®(w) has completely disappeared (see the
following sections)!

By using the direct method for i(#) and equation (4) to obtain P;(w), the R values for
a set of different P;(w) and (P;(w)) are shown in figures 2(c) and (d) respectively. It can
clearly be seen from figure 2(d) that it is possible to use a very low number of photon packets
(Npacket & 1000 000) to obtain a high-quality (P; (w)) spectrum and this confirms, in a general
manner, the qualitative findings from figure 2(b). The standard deviation is smaller for large
N; additionally, it decreases for increasing Npacket-

It is useful to highlight the fact that the ‘classical’ histogram-based method
(equation (14)) does not allow one to observe the influence of ®(w) on the determination
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Figure 3. (a) (P;(w)), computed by the direct method and equation 2. Ppis(w), computed
by using the histogram-based method (equation (14) and dw =~ 4.88 Hz). (P;(w)) (black) and
Phist(w) (red) are reported together on the same axis. (P;(w)) is the mean of 100 spectra. The
photo-current i(t) was sampled at 40 kHz with N; = 8192. The physiological parameters were
Pove = 0.075, (V2. /2 = 3mm s™! and Vieans = (0,0, 0) mm s~!. (P;(w)) and Phis () are
so similar that in practice, they cannot be distinguished. Npacker = 9000 000. (b) Same as in panel
(a) but with Ny = 512 and §w ~ 78.16 Hz. (c) Zoom of panel (a) allowing one to see the matching
between the two curves. (d) Same as in panel (a) but where the sampling frequency was 2 kHz and
N; = 410 (same total time as in panel (a)).

of the LDF signals and that this makes up one of the advantages of the proposed
approach.

As shown in figure 2, it is possible to remove the dc component from i (¢) by subtracting
the mean value, similar to the procedure in LDF instrumentation. This operation has no real
exact equivalent in the ‘classical’ histogram-based method because the zero-frequency bin of
the histogram also contains frequencies different from zero (due to the bin size o > 0) and
thus prevents precise elimination of only the dc component.

3.3. Example: the influence of the sampling rate and finite time duration of i(t)

In real LDF instrumentation, the signal i (¢) is sampled at a finite sampling rate during finite
time (7;). Consequently, the quantities computed from i(¢), such as P;(w) or (P;(w)), also
depend on these ‘non-physiological’ parameters. This issue can be easily investigated using
the present approach. In figures 3(a) and (b), we show an example where ( P; (w)) was derived
from two different i(#) with different 7; (0.2048 s and 0.0128 s for figures 3(a) and (b),
respectively) but the same sampling rate. The influence of the different 7; values is clearly
visible in the figure; the amplitude and bandwidth are different (this is equivalent to multiplying
i(t) by a ‘square window’ of duration T;).

For the sake of completeness, (P;(w)) was also computed by the histogram-based method
(Prist (Bay); equation (14)). In this case it was necessary to adapt the bin width of the histogram
because, to reproduce the same physical model as for the direct method, one needs 7; = 1/§w
by definition. Both methods give the same results.
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Figure 4. (gi(z)(t)) is the mean of 50 gl.(z) (7) realizations. The photo-current i (t) was sampled

at 1 MHz with Ny = 100000 and Npacker = 9000000. The different g (v) realizations were
numerically estimated from i(¢) by using a standard unbiased algorithm of the autocorrelation
function (reproducing equation (8)).

To better illustrate the similarity of the two methods (direct and histogram-based methods),
figure 3(c) shows a zoom of figure 3(a). The key point is that the noisy aspect of the curves
is not due to ®(w). In fact, applying the histogram-based method is equivalent to taking the
mean of an infinite number of P; (w) in the direct method to obtain ( P; (w)) (see e.g. figures 2(a)
and (b)); in other words, Py (8awy) ~ (P;(8wy)). As we have previously seen, the averaging
procedure renders a smooth (P;(w)). Actually, the remaining noise is produced by the finite
Npacket Value, i.e. the intrinsic error of MC simulation that is reproduced in the same manner
by both approaches.

Another typical issue in LDF instrumentation is the problem of undersampling (Binzoni
and Van De Ville 2008). In figure 3(d), (P;(w)) is shown when i(¢) is undersampled. The
simulation was performed by using both the direct and the histogram-based methods. In the
latter case, the effect of the undersampling was introduced by eliminating from the histogram
frequency bins above the Nyquist frequency. This is obviously only a good approximation that
does not hold in some cases (i.e. Ppis(Swy) # (P;(Swy))). In fact, in figure 3(d), the curves of
(P;(w)) and Py;s(8wy) do not perfectly coincide and the exact solution is given by the direct
method only (in black). This shows that the direct method takes into account the experimental
acquisition parameters in a simple and natural manner.

2

3.4. Example: Monte carlo generation of g

. (t) and the Siegert relation

One of the most interesting functions in LDF is gl.(z)(r). In the past, several analytical
models have been derived with the aim to extract the physiological parameters from the
gi(z)(t) experimental measurements (see e.g. Pines et al (1990), Boas (1996), Skipetrov and
Meglinski (1998), Binzoni et al (2006b)). A numerical model that allows one to test these
analytical models and in particular that can take into account any blood velocity distribution
and the role of ®(w) appears to be extremely useful in this context.
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Figure 5. (gi(z)(t)) is the mean of 50 gl.(z) (7) realizations. The photo-current i (t) was sampled

at 1 MHz with Ny = 100000, Npacket = 9000000, (V2,172 = 4 mm™" and Vigans = (4, 0,0)

mm s~ g}z)(r) was estimated in two ways: (1) directly from i(¢) by using a standard unbiased

algorithm of the autocorrelation function reproducing equation (8) and (2) by using the Siegert
relation and equation (15).

In figure 4, we show three examples of (gfz) (r)) (direct method combined with

equation (8)) obtained by considering different red blood cell velocities. The (gfz) (r))
dependence on velocity clearly appears from the figure. However, the most interesting fact is
that for increasing Pyove values (at 7 = 0), <gi(2)(r)) also increases while remaining smaller
than 2. This means that we are in a situation where the Siegert relation (Jakeman 1974),
which links ¢ (z) and g (z), does not hold ((g” (7)) is not equal to 2 for T & 0) and the
simulation nicely reproduces this behaviour (see below and section 4).

On the other hand, when T — +00 then (gi(z) (1)) = 1. Itis well known that this behaviour
is due to the presence of the random & (w) implicitly included in i (z). In fact, if one sets @ (w)
to a fixed value, then (gi(z)(r)> = 0 for T — +o00 (not shown). This phenomenon cannot be

described by the classical MC simulations allowing one to generate gi(z)(r). In figure 5, the

comparison is made between (gi(z)(r)) estimated by the direct method and that by using the
Siegert relation:

2
g’ ~1+[g"@]. (15)

As expected in this particular setting (Jakeman 1974), the two methods lead to the same result
(i.e. the Siegert relation holds) for large Py only. Even in this case, the behaviour depicted
in figure 5 cannot be reproduced by the classical MC algorithms.

4. Discussion and conclusions

In the present work, it has been shown that the MC data can serve to extract more information
than usually done. To that aim, MC data are kept in their natural representation and used to
directly compute i(¢). Once i(¢) is obtained, any algorithm used in a real LDF instrument
can be tested and validated. This eliminates the tedious procedure of generating a specific
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(often approximate) model, accepting the MC data (e.g. for P;(w) or gl.(z)(r)), each time a
new algorithm is considered. A possible elegant and computationally efficient manner to store
the large amount of MC data is to use a sparse representation. In fact, a very large number
of photon packets do not reach the detector and these values can be represented by zeros,
allowing a sparse representation.

The present approach also eliminates the problem of &y (8w,) construction. In fact, as
was explained in section 2.4.2, hw(8w,) is the estimator of an ‘ideal’ f(Aw) distribution
describing the MC data. Thus, for given MC data, there is in principle only one best /1y (w,),
i.e. the bin width dw can be found by applying an adequate algorithm that optimizes a given
criterion (see e.g. Davies et al (2009)). This means that w has an optimal value which
depends on the MC data only. This is in contradiction with the example from section 3.3
where we needed to predefine different §w values (‘classical’ procedure) to simulate the effect
of different choices of 7;. Moreover, the MC data have a very large discontinuity at @ = 0
that makes the histogram construction problematic in the neighbourhood of the dc bin. The
direct approach proposed here avoids these potential problems.

The different examples also demonstrate another effect that can be described only with
the direct method, i.e. the dependence of gi(z)(r ~ 0) on Py (see e.g. figure 5). The very
short interoptode spacing was chosen on purpose to obtain a very low number of interactions
of photons with moving red blood cells. In fact, with the present interoptode spacing, the
volume visited by the photons can be estimated to be less than 1 mm?>. This implies that for
a low concentration of red blood cells (low Ppove), the number of scattering events (with a
moving cell) is also low (i.e. only low scattering orders). As pointed out also by Jakeman
(1974), the Siegert relation does not necessarily hold in this case and this implies gi(z)(r ~ 0)
smaller than 2. An example has been shown in figure 5, where only large values of Ppove
(i.e. presence of high scattering orders) will lead to gi(z)(r ~ 0) ~ 2 and to the validity of the
Siegert relation.

In practical terms, the geometry of the model utilized in the present tutorial represents
a simplified LDF instrument for skin tissue monitoring (for complex skin models, see e.g.
Meglinski and Matcher (2002), Meglinski et al (2008)). However, for the medical and
biomedical community the interest for LDF goes far beyond this (important) application,
and larger interoptode spacing, allowing one to reach brain, muscle, etc, is often considered.
In fact, all tissues need nutrients, oxygen, mechanisms allowing one to eliminate metabolic
wastes, etc. In this context, blood circulation plays a fundamental role and its dysfunction may
lead to severe pathologies and eventually to tissue necrosis. This is why LDF and in general
near-infrared-based techniques are extremely interesting for physicians even in the case of
tissues such as the skeleton (Binzoni et al 2006a). It is essential to note that from the previous
examples, it is not clear if the Siegert relation still holds for large interoptode spacing (e.g. 3—
4 cm) and for a biological tissue having a low red blood cell concentration (e.g. bone, tendon,
white adipose tissue), as is usually assumed. This may be an intriguing question for future
studies because to our knowledge, all the classical analytical models for gi(z)(t), utilized in
practice, implicitly make the assumption of the validity of the Siegert relation. The proposed
direct method shows that gl.(z)(r ~ 0) < 2 does not necessarily imply bad (8 < 1) spatial
coherence (actually g8 simplifies in the expression for gl-(z)(t); equation (8) and that another
phenomenon related to the random nature of @ (w) must be taken into account.

Actually, together with sgatial coherence, ¢ (w) and coherence length of the laser, other
parameters may influence gi( )(7) and its amplitude gi(z)(t ~ (). In a real experiment, the
light may be detected through an optical fibre and the specific choice of this fibre (e.g.
single-mode, multi-mode) influence gl.(z)(r) (Ricka 1993). Detector nonlinearities (due to
dead-time, afterpulsing) also have a non-negligible effect on the acquired optical signals and
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on gi(z)(r) (Flammer and Ricka 1997). Moreover, the biological tissue itself can manifest
another property that has not been taken into account in the present MC examples, i.e. the
modulation of light polarization (Kuzmin and Meglinski 2007, Meglinski et a/ 2005), and that
influences gi(z) (t) as well. Taking into account these parameters in the generation of i (¢) will
strongly improve the future model.

There is no doubt that there is a feverish activity in the LDF domain and that new
approaches to the hardware (e.g. integrated systems, path-length-resolved LDF, full field
laser Doppler imaging) regularly appear in the literature (for an up-to-date review, see Rajan
et al (2009)). This implies the development of new theoretical models allowing one to
adapt functional algorithms for this instrumentation. Among the last theoretical discoveries
one may also cite the laser-Doppler spectrum decomposition, allowing one to estimate the
speed distribution of the red blood cells (Humeau er al 2007, Wojtkiewicz et al 2009), and the
demonstration of the non-negligible influence of the speckle phenomenon on the laser-Doppler
imaging signal (Rajan et al 2008). These are important topics in LDF that need to be further
understood and developed. Better knowledge of i (¢), a signal common to all the LDF methods,
will certainly allow us to bring new insight.

In conclusion, we hope that the series of tutorial examples have demonstrated the
interesting potentialities of the proposed direct method and that this will help to develop
and test new approaches of LDF.
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