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Abstract
The perception of an acoustic rhythm is invariant to the absolute temporal intervals constituting a sound sequence. It is
unknown where in the brain temporal Gestalt, the percept emerging from the relative temporal proximity between acoustic
events, is encoded. Two different relative temporal patterns, each induced by three experimental conditions with different
absolute temporal patterns as sensory basis, were presented to participants. A linear support vector machine classifier was
trained to differentiate activation patterns in functional magnetic resonance imaging data to the two different percepts.
Across the sensory constituents the classifier decoded which percept was perceived. A searchlight analysis localized activation
patterns specific to the temporal Gestalt bilaterally to the temporoparietal junction, including the planum temporale and
supramarginal gyrus, and unilaterally to the right inferior frontal gyrus (pars opercularis). We show that auditory areas not only
process absolute temporal intervals, but also integrate them into percepts of Gestalt and that encoding of these percepts persists
in high-level associative areas. The findings complement existing knowledge regarding the processing of absolute temporal
patterns to the processing of relative temporal patterns relevant to the sequential binding of perceptual elements into Gestalt.

In everyday hearing, humans are able to recognize a familiar
rhythm, for example, the rhythm of a song, independently of
the tempo at which it is played. This is exemplary of the fact
that all auditory experiences unfold in time, comprising per-
cepts of auditory Gestalt based on the rhythmic structure of
sounds. The pattern resulting from the relative temporal rela-
tionship between acoustic events is the basis for the perceptual
emergence of temporal Gestalt. This Gestalt percept is invariant to
the absolute temporal relationship between constituent acoustic
events, but depends on the relative temporal relationship

between them (Hulse et al. 1992). It is unknown, where in the brain
percepts of temporal Gestalt are generated.

Temporal information influences audition across domains
from the perception and identification of general environmental
sounds, referred to as auditory objects (Griffiths and Warren
2004), their localization and movement detection in space (Carlile
and Leung 2016) to speech (Poeppel 2014) and music (Grahn 2012)
perception. Rhythmic patterns carry emotional information in
speech (Trost et al. 2017), inform interpersonal communication
(Keller et al. 2014), and are a key factor influencing auditory
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stream segregation (Bendixen 2014). Specifically, rhythmic pat-
terns define perception by influencing sensory processing in
speech and nonspeech sounds (Bonte et al. 2009; Rimmele et al.
2011; Arnal and Giraud 2012; Geiser et al. 2012; Geiser and
Gabrieli 2013; Bendixen et al. 2015; Kotz and Schmidt-Kassow
2015; Schwartze and Kotz 2016; Ghitza et al. 2012; Arnal et al.
2015) possibly through predictive mechanisms. Thus, rhythmic
temporal patterns guide our listening and scaffold the auditory
experience across domains of audition.

How the brain represents auditory temporal Gestalt is, to our
knowledge, unknown. The processing of absolute temporal
aspects in sounds, such as the discrimination of two rhythms at a
given tempo, is associated with activity in the supplementary
motor area, the dorsolateral prefrontal cortex and basal ganglia
(Schubotz et al. 2000; Rao et al. 2001; Belin et al. 2002; Bengtsson
et al. 2009; Geiser et al. 2012; Konoike et al. 2012; Thaut et al. 2014;
Teki et al. 2011; Chen et al. 2008; Grahn and Rowe 2009). While these
brain areas are involved when two sequences with two specific
absolute temporal patterns are compared, the representation of the
related temporal Gestalt might lay within these or other brain areas.
In a recent paper, it was hypothesized how the brain could encode
relative temporal patterns (Geiser et al. 2014). The time-locked neu-
ral activity to each acoustic event could first provide a passive repre-
sentation of the global temporal pattern, potentially in sensory
cortices. Then, higher-level, relative timing computations on this
temporal representation binding them into percepts of Gestalt could
be performed by distributed neuronal ensembles.

The challenge of investigating auditory temporal Gestalt, like
many other Gestalt percepts, is the nonlinearity of its emergence
linked to its perceptual invariance. That is, the emergence of the
percept is not directly proportional to its constituent sensory input.
Consequently, evidence on Gestalt processing is often derived from
the two perceptual extremes, thus comparing the processing of a
Gestalt with the processing of non-Gestalt (Keil et al. 1999; Altmann
et al. 2003; Grassi et al. 2016). While this approach reveals brain
areas involved in the processing of Gestalt, it cannot identify where
in the brain the Gestalt percept is itself represented. The loci of
representation can only be revealed by comparing two different
Gestalt percepts. At the same time, the percepts must be investi-
gated independently of their sensory basis, by matching for sensory
input so that activation differences do not represent sensory input
differences, and must also be induced equally by different sensory
sequences. In the present study, we are able to investigate tempo
invariant encoding of temporal Gestalt in the brain by applying a
machine-learning pattern classification approach to fMRI data.

Materials and Methods
Participants

A total of 19 participants performed the experiment (9 females,
aged 26.0 ± 5.23 years; mean ± SD, min/max = 21/41). Participants
gave written informed consent in accordance with procedures
approved by the local committee on the use of humans as experi-
mental participants and according to theWorld Medical Association
Helsinki Declaration as revised in October 2008. Participants were
paid for their participation. All participants were right-handed,
according to the Annett-Handedness-Questionnaire (Annett 1992),
and reported no history of neurological, psychiatric, or hearing
disorders.

Stimuli and Design

Participants listened to sound sequenes and responded to
questions presented after each sound sequence. The auditory

stimuli contained four consecutive tones with a duration of
200ms and were constructed by means of Audacity (2.0.6). An
isochronous baseline condition (BA) was constructed in which
the temporal interval between all tones was identical. Two cat-
egories of temporally grouped experimental conditions (R1 and
R2) represented each a specific rhythm, thus, a specific relative
temporal pattern (Fig. 1). Both categories started with the same
temporal “base” interval and comprised an interval that was
shortened and another that was lengthened (each by 50% of
the “base” interval). Both BA and experimental conditions R1
and R2 were presented with 3 different absolute temporal inter-
vals as “base” interval (t1 = 300, t2 = 400, t3 = 500ms) resulting
in a tempo of 1.67 (t3), 2 (t2), and 2.5 (t1) beats-per-second,
respectively. Thus, the stimulus material consisted of a total of
3 (BA, R1, R2) × 3 (t1, t2, t3) conditions. To induce perceptual
variance, t1 was constructed with a drum sound (264 Hz base
frequency) and t2 and t3 were constructed with a pluck sound
(261Hz base frequency). Each condition was presented 55
times. All presented stimuli were normalized based on the
root-mean-square amplitude.

Auditory stimulus sequences were presented through fMRI-
compatible insert earphones by Sensimetrics (http://www.sens.
com/). Participants’ ears were covered with foam ear-defenders
for comfort. Stimulus sequences were presented at a comfort-
able listening level and participants’ responses were recorded
using Presentation software (Neurobehavioral Systems, http://
www.neurobs.com/). For each participant five runs of stimuli
were acquired, each comprising 99 experimental stimuli and 22
empty trials. Each trial was preceded by a fixation cross pre-
sented for 300ms followed by a blank screen for 100ms. The
order of the stimuli was pseudorandomized and counterba-
lanced such that each of the conditions was equally often pre-
ceded by all stimulus conditions (Aguirre et al. 2011). Each run
lasted approximately 12.17min, resulting in a total of approxi-
mately 61min of functional data. The intertrial interval (ITI)
was jittered resulting in an ITI of either 6 or 6.5 s (50%) balanced
over experimental conditions. The questions were presented
jittered in steps of 200ms between 1.395 and 2.395 s after the
offset of the experimental stimulus and the jitter was balanced
over experimental conditions.

Procedure and Apparatus

The task applied in this paradigm had to ensure that listeners
paid attention to the relative temporal pattern of the sound
sequences, while the types of answers had to be orthogonal to
the sound categories so the classifier does not encode the
response type. After each stimulus participants had to answer

Figure 1. Left: Oscillograms visually representing the relative temporal patterns

of the two temporally grouped experimental conditions (R1 and R2) and the iso-

chronous baseline condition (BA). Right: Nine experimental conditions comprising

three different tempi (t1, t2, t2). Per relative temporal pattern, each tempo results

in a different absolute temporal pattern.
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as quickly as possible a previously unknown question regarding
the sound sequence. For example: “Were pauses 2 and 3 differ-
ent?” or “Was it a guitar sound?” Importantly, participants had
to keep a representation of the pattern in mind in order to be
able to answer some of the questions, as categorizing them
into R1 and R2 was not enough to answer the questions regard-
ing the perceived temporal pattern. A total of 20 different ques-
tions was constructed and pseudorandomly distributed over
experimental conditions in such a way that the number of
answers per type (e.g., “yes”–“no”) was balanced over experi-
mental conditions. Two potential answers were given side by
side on the screen, and participants indicated their answer in
the form of a two-alternative forced choice on each presented
sequence by pressing one of two buttons. Participants were
motivated to indicate their answer as quickly and as correctly
as possible as there was a limited time window to answer
(2.5 s) and as they received financial reimbursement for each
correctly answered question in addition to their hourly pay-
ment. Participants performed a series of practice trials outside
of the scanner until they were familiar with the task.

fMRI Acquisition

Structural and functional data were collected on a 3 T Siemens
Prisma scanner equipped with a 64-channel head coil at the
Center for Biomedical Imaging (CIBM) at the University Hospital
Lausanne (CHUV). A 3-dimensional high-resolution isotropic
T1-weighted sequence (TR/TE/flip angle = 5.0 s/2.88ms/0°) pro-
vided 176 contiguous slices with 240 × 256mm in-plane resolu-
tion and a slice thickness of 1.2mm (voxel size = 1 × 1 ×
1.2mm) (Marques et al. 2010). Functional MRI images were con-
tinuously acquired using a standard gradient echo sequence
(TR/TE/flip angle = 2 s continuous/30ms/90°) that acquired 33
axial functional images with 192 × 192mm in-plane resolution,
2.5mm slice thickness and a 0.25mm interslice gap (voxel size
= 1.96 × 1.96 × 2.75mm) in ascending order covering the major-
ity of voxels in the temporal, frontal and occipital lobes (see
Supplementary Material S1).

fMRI Analysis

Imaging data processing was carried out by Nipype v0.11.0
(Gorgolewski et al. 2011), integrating algorithms of the software
packages FSL v5.0 (Smith et al. 2004), AFNI v7.18.1710 (Cox
1996), FreeSurfer v5.3.0 (Dale et al. 1999), ANTS v2.1.0 (Avants
et al. 2011), ART (as implemented in Nipype) and SPM12.
Structural data underwent cortical reconstruction and parcella-
tion of the anatomical images using the default processing
stream in FreeSurfer, the accuracy of which was verified manu-
ally via visual inspection.

Preprocessing
The anatomical image was used for spatial normalization to the
MNI152-template. An anatomical mask was used to constrain all
analyses. A mask including voxels that were covered in at least
5% of the volumes in each session was used for the first-level
analysis. For the group analyses, a conjunction of all ANTS-
normalized subject specific masks was further constrained by
including only gray-matter voxels based on the Harvard-Oxford
cortical and subcortical structural atlases (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Atlases). Voxels were considered as being gray-
matter if the probability was above 50%. EPI-data were despiked
by means of AFNI on a voxel-by-voxel basis using interpolation
to replace this voxel’s value with a value based on neighboring

voxels. Volumes were corrected for slice-time acquisition relative
to the 17th (i.e., middle) slice. Correction for motion was done by
realigning every functional volume to the mean functional vol-
ume of the current run. Slice-time correction, motion correction
and spatial smoothing (FWHM: 4mm). To correct for session-
related mean and scaling effects, we applied second-order
detrending as implemented in the TSNR function of Nipype. The
functional mean image resulting from this correction was then
used to flag motion and intensity artifacts in the functional
volumes. This was done with “artifact detection,” an algorithm
implemented in Nipype that excluded volumes with a global
intensity differing from the time series mean by more than 3
standard deviations or those in which a participant’s composite
head motion (the Euclidian combination of head translations
and rotations) exceeded 1mm between adjacent volumes. The
mean functional image resulting from the TSNR function was
used to calculate a corregistration matrix between the functional
and the anatomical space using FreeSurfer’s bbregister. Flagged
outliers were excluded from the analysis by regressing them out
in the individual statistics.

Univariate Analysis
Individual statistics were based on a least-square estimation
using the GLM for serially autocorrelated observations and was
performed separately on each voxel in the individual partici-
pant’s space (Friston et al. 1995) with SPM12. Nine covariates of
interest were calculated, representing the stimulus onset of the 9
experimental conditions. Covariates were convolved with the
canonical hemodynamic response function. The serial autocorre-
lation of the BOLD time series was modeled using a first-order
autoregressive mode. The five experimental runs were treated as
separate sessions. No global intensity normalization was applied.
Realignment-parameters were included as regressors of no inter-
est in the statistical model. A temporal high-pass filter of 128 s
was applied to remove low-frequency drifts over a timescale lon-
ger than this cutoff. The first-level model was masked with the
mean functional image over all five sessions resulting from the
TSNR function. On average, 3.8 out of 365 volumes per session
and subject were identified as outliers and regressed out from
the individual analysis. For the random-effects analysis contrasts
of interest on the individual level were calculated and normal-
ized to an MNI152-template using ANTS with a spatial resolution
of 2 × 2 × 2mm3. One-sample t-tests and F-tests were performed
on the second level. T- and F-maps were thresholded on the vox-
el level at P < 0.001, and topological False Discovery Rate (FDR)-
correction for multiple comparisons, as implemented in Nipype,
was applied on the whole-brain activation cluster-extent level at
P < 0.05 (Table 1).

Multivariate Pattern Analysis
In order to identify if activation patterns in the brain differ
between rhythmic conditions, a classifier was iteratively
trained on 80% of the data to discriminate between experimen-
tal conditions, and the resulting prediction accuracy on the
remaining 20% of the data was averaged (Haxby et al. 2001;
Haxby 2012). The classification of the data was done with
PyMVPA v2.4.1 (Hanke et al. 2009). A three-way classification
“R1 versus R2 versus BA” was performed. To prepare for the
analysis, the β-maps from the GLM were normalized by voxel-
wise z-scoring per run across conditions and conditions neces-
sary for each classification in subject’s native space. Thus, each
cross-validation was based on 30 (6 × 5) β-maps. Whole head z-
statistic maps were then used for the classification analysis.
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For the classification analysis a linear support vector machine
(SVM) from the LIBSVM package (https://www.csie.ntu.edu.tw/
~cjlin/libsvm) as implemented in PyMVPA was used. As the
dataset was presented in five sessions, a five-fold leave-one-run-
out cross-validation (i.e., training on 80% and testing on 20% of
the data) was performed on the whole-brain (Pereira et al. 2009).
The SVM C hyperparameter was automatically scaled according
to the data norm for each training data fold. Voxels representing
the top 5% of all F-values from a one-way ANOVA on all experi-
mental contrasts in the training set entered the whole-brain
cross-validation. The group-level accuracy and confusion matrix
was obtained by averaging the confusion matrix or accuracy of
all participants. Significance testing in the cross-validation was
performed on accuracy values by a one-sampled t-test with the
test-value 33.33% for the three-fold discrimination. Bonferroni–
Holmes correction was applied for post hoc testing.

Searchlight Analysis
As an approach to localize brain regions with high discriminative
information, we performed a searchlight analysis that is more
sensitive to functional brain organization (Kriegeskorte et al.,
2006). The searchlight analysis was performed across the brain
in subject space and for each subject and pair of conditions, sep-
arately. Every second voxel was taken as a center point for a
sphere with a radius of 3 voxels (i.e., 7mm radius, up to 123 vox-
els). For each of those spheres, a five-fold leave-one-out cross-
validation was performed, resulting in one accuracy value per
sphere. The classification accuracy of a given voxel was the aver-
age accuracy of all spheres that included this voxel. The resulting
subject specific accuracy maps per classification pair were nor-
malized with ANTS into the MNI152-template space and aver-
aged over all participants to obtain the group classification
accuracy map. As a three-way classification in the searchlight
approach impairs interpretability by hiding which particular
category discriminations are driving the overall accuracy, two-
way classifications were done including “R1 versus R2” and “R
(R1 and R2) versus BA.” For the second classification, an

unbalanced number of elements per condition was available (R =
30, BA = 15). Therefore, we report an average of 30 classifications,
each of which was based on a random set of 15 elements from R.

Significance testing in the searchlight analysis was performed
by using permutation and bootstrap sampling methods, followed
by cluster thresholding with correction for multiple comparisons
as suggested by Stelzer et al. (2013) and implemented by PyMVPA
on images spatially normalized to the MNI space with a voxel
resolution of 2 × 2 × 2mm3. The permutation was achieved by
conducting the previously mentioned searchlight for each sub-
ject an additional 99 times, each time with randomly permuted
data labels resulting in one condition relevant accuracy map and
99 “noise” accuracy maps per subject. For the bootstrapping pro-
cess, new group-level “noise” accuracies maps were generated by
selecting randomly 1 of the 100 accuracy maps per subject and
averaging them into a new group-level chance accuracy map.
This process was repeated 100 000 times to create a voxelwise
null distribution of the classification accuracy map on the group
level. All volumes were thresholded with a voxelwise threshold
of P < 0.001. Afterwards, the distribution of maximal cluster size
was determined from all thresholded chance accuracy maps as a
family-wise error (FWE) measure. Probability of clusters in the
thresholded empirical accuracy map was evaluated using this
distribution (threshold P < 0.05).

Results
Behavioral Data

Participants were proficient in performing the task indicating
that the Gestalt percepts were, in general, successfully induced.
Mean accuracy of performance was on average 82.3 ± 1.1%
(standard error), ranging from 70.6% to 90.4%. Correct responses
were significantly more frequent in the isochronous baseline
(95.8 ± 1.1%) compared with the grouped condition, R2 (78.5 ±
1.5%; t(18) = 247.11, P < 0.001) and significantly more frequent in
the grouped condition, R2, compared with the grouped condi-
tion, R1 (72.7 ± 1.1%, t(18) = 40.2, P < 0.001). As not all questions

Table 1 Brain areas resulting from the univariate analyses

MNI coordinates
(mm)

Mean
t-values

Extent
(voxels of 2 ×
2 × 2mm3)

Peak location according to Harvard-Oxford probabilistic atlas

x y z

Temporally grouped rhythms versus isochronous baseline rhythms (R > BA)
38 −48 52 3.99 1360 47% Superior_parietal_lobule, 22% Angular_gyrus, 6% Supramarginal_gyrus_posterior_division
42 −36 40 3.87 208 25% Supramarginal_gyrus_posterior_division, 14% supramarginal_gyrus_anterior_division, 8%

postcentral_gyrus, 5% superior_parietal_lobule
50 −34 50 3.85 96 29% Supramarginal_gyrus_posterior_division, 29% supramarginal_gyrus_anterior_division, 13%

postcentral_gyrus, 1% angular_gyrus
Isochronous baseline rhythms versus temporally grouped rhythms (BA > R)
18 68 4 4.06 2624 73% Frontal_pole
54 −24 20 4.18 2392 58% Parietal_operculum_cortex, 10% planum_temporale, 4% central_opercular_cortex, 4%

supramarginal_gyrus_anterior_division
−6 58 6 4.11 1232 65% Frontal_pole, 15% paracingulate_gyrus, 4% frontal_medial_cortex
−40 −4 −6 4.10 1192 98% Insular_cortex
−38 6 −10 4.23 120 95% Insular_cortex
−44 0 6 3.99 72 64% Central_opercular_cortex, 20% insular_cortex
−36 −22 14 3.91 56 49% Insular_cortex, 14% Heschl’s_gyrus_(includes_H1_and_H2), 9% central_opercular_cortex, 3%

parietal_operculum_cortex
−36 −26 10 3.61 8 60% Heschl’s_gyrus_(includes_H1_and_H2), 3% planum_polare, 3% insular_cortex, 2%

planum_temporale
−34 −22 18 3.75 8 53% Insular_cortex, 11% central_opercular_cortex, 8% parietal_operculum_cortex
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asked in the task related to the percepts of Gestalt, the few error
trials cannot be directly attributed to a failure in representing the
Gestalt percept. All trials were subsequently used for fMRI analysis.

fMRI Data

Based on a univariate analysis approach, no statistically signifi-
cant group activation difference was observed when comparing
the two temporally grouped experimental conditions (R1</>R2)
at a voxelwise threshold of P < 0.05 and a cluster-wise threshold
of P < 0.05 corrected. All temporally grouped experimental con-
ditions (R1 and R2) compared with the isochronous baseline con-
dition resulted in activity in the right superior parietal lobe
including a cluster in the angular gyrus (AG) and two clusters in
the supramarginal gyrus (SMG). The reverse contrast revealed
activity in the frontal pole (FP), the left and right insula, the left
Heschl’s gyrus including the planum temporale (PT), and the left
opercular cortex (Table 1, Supplementary Material S2).

An multivariate pattern analysis (MVPA) analysis revealed with
what precision brain activation patterns can predict which percept
was induced in the brain and identified the loci of brain activation
patterns between percepts. In a multivariate cross-validation
approach a classifier on voxel-based brain activation patterns
trained across the tempi of the sequences (t1, t2, t3) was able to pre-
dict not only whether a temporal grouped experimental stimulus
(R) or an isochronous baseline stimulus (BA) had been presented
but, more importantly, which of the two temporally grouped experi-
mental conditions (R1 or R2) was perceived. The discrimination
accuracy for the three-way classification of BA, R1, and R2 was
62.46% (t(18) = 11.11, P < 0.001). Each of the three experimental condi-
tions was successfully classified (BA = 78%, t(18) = 16.81, P < 0.001
corr.; R1 = 55%, t(18) = 6.39, P < 0.001 corr.; and R2 = 54%, t(18) = 5.75, P
< 0.001 corr.). Figure 2 illustrates the performance of the three-way
classifier by separately indicating hit-rates and misidentifications
for each experimental condition thus illustrating the contribution of
each experimental condition to the average discrimination accuracy.

To identify the brain regions decoding the different rhythms
we performed a searchlight analysis on the two critical com-
parisons; the comparison between two temporally grouped
experimental conditions, R1 and R2, and the comparison
between both temporally grouped experimental conditions, R,
and the isochronous baseline condition, BA. We identified brain
locations in which patterns discriminated between the two
temporally grouped experimental conditions in the right infe-
rior frontal gyrus (IFG) and bilaterally in the temporo-parietal
junction (TPJ) including the PT and SMG (Fig. 3, top, Table 2).
Classification of the difference between temporally grouped
experimental conditions (R) and the isochronous baseline con-
dition (BA) yielded large parts of the brain, including the
regions that discriminated between the 2 temporally grouped
experimental conditions. Differentiation at a classification
accuracy higher than 68.47%, corresponding to values above
the 95th percentile of all voxels, yielded 8 clusters (Fig. 3, bot-
tom, Table 2) including the left and right lateral occipital lobe
(LOL), the right middle frontal gyrus (MFG), the left precuneus
(PCUN), the left supplementary motor area (SMA), the right pre-
motor cortex, the right insula (IN), the left and right supramar-
ginal gyrus (SMG), the superior parietal lobe and angular gyrus,
and right the frontal pole (FP).

Discussion
The perceptual binding of acoustic events across time is inherent
to hearing and allows perceiving acoustic scenes rather than

sequences of independent sounds. Based on brain activation pat-
terns, a linear SVM classifier identified which relative temporal
pattern had been presented. Importantly, the classifier was
trained across absolute temporal patterns (tempi) of sequences
providing a strong indication that the classifier had identified the
neural activation pattern associated with the Gestalt percept,
thus the relative temporal pattern. A searchlight analysis identi-
fied the regions involved in the representation of a specific tem-
poral Gestalt. Activation patterns in the TPJ of both hemispheres
(including the PT and parts of the SMG) and the IFG in the right
hemisphere discriminated between the two different temporally
grouped percepts of temporal Gestalt. Our findings reveal for the
first time secondary and higher cortical areas which contribute to
the representation of temporal Gestalt.

Temporally grouped (Gestalt) and isochronous baseline
rhythms and, moreover, two different forms of temporally
grouped experimental rhythms were successfully classified based
on cerebral activation patterns across the whole brain. This clas-
sification was achieved across tempi and timbres. While the iso-
chronous baseline was identified at the highest extent,
importantly, the two temporally grouped conditions were identi-
fied to a similar extent by the classifier (Fig. 2B). The classification
is therefore based on brain activity that is specific to the temporal
Gestalt percept induced by the stimulus and independent of the
absolute temporal relationship between the constituent sounds.
These results indicate that a specific brain activation pattern
encodes the temporal Gestalt of an acoustic sequence, mirroring
the perceptual characteristic of temporal Gestalt, that is, percep-
tual invariance across tempi (Hulse et al. 1992).

The representation of the specific temporally grouped
Gestalt was localized bilaterally in the TPJ and in the right IFG.
To our knowledge, this is the first study that successfully iso-
lates brain activity specific to temporal Gestalt. Previous studies
had focused on the processing of rhythmic pattern differences

Figure 2. Results of the three-way multivariate cross-validation in which the

classifier was trained on a sample set of stimuli from the category BA, R1, and

R2 across all 3 tempi. (A) depicts predictions in % per condition (chance level

identification = 33%). (B) visualizes the same classification indicating predic-

tions separately for each subcondition. Identifications above chance level are

highlighted in bold.
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between beat and non-beat based rhythms and between iso-
chronous and non-isochronous rhythms (Grahn and Brett 2007;
Geiser et al. 2008, 2012; Bengtsson et al. 2009) or task related
activity in listening, discrimination, and reproduction tasks
(Chen et al. 2008; Konoike et al. 2012; Thaut et al. 2014) and
were not designed to identify the encoding of Gestalt. Here, we
show for the first time that the relative temporal distance
between acoustic events in a sequence of sounds and their
resulting Gestalt percept is encoded in two specific cortical
regions, namely the TPJ and the IFG.

Activation patterns in the TPJ that decoded temporal Gestalt
extended bilaterally from the PT to lateral–parietal regions. The
PT is known as a computational hub in auditory processing. It is
suggested to underlie the functional specialization of hemi-
spheres due to its sensitivity to specific temporal intervals
(Griffiths and Warren 2002; Josse et al. 2003; Poeppel 2003). Our
results point to an additional function of the PT in the integra-
tion of temporal Gestalt. We did not simply test the distinction
between two temporal patterns, but between two relative tempo-
ral patterns. Thus, in this brain area a specific voxel activation
pattern contributes to the representation of a temporal Gestalt

that can emerge from a slower or a faster sequence of tones,
thus from different absolute temporal intervals. Our findings
indicate that the PT encodes the integration of temporal inter-
vals into a temporal Gestalt and could, thus, underlie perceptual
invariance of temporal Gestalt across temporal inputs.
Discriminating voxel activation patterns in TPJ also included
multisensory areas in the lateral parietal cortex that have earlier
been associated with Gestalt representation in the visual domain
based on both simultanagnostic behavior after lesions in TPJ
(Valenza et al. 2004; Huberle and Karnath 2006, 2010; Ritzinger
et al. 2012) and imaging studies in healthy participants (Huberle
and Karnath 2012; Rennig et al. 2015). In the auditory domain,
parietal aspects of TPJ are known to process sounds in space
(Romanski et al. 1999; Maeder et al. 2001; Tian et al. 2001;
Altmann et al. 2008; Ducommun et al. 2002; Tata and Ward 2005;
De Santis et al. 2007). Our results not only confirm the role of the
TPJ in Gestalt processing by expanding it to auditory temporal
Gestalt, but also suggest that already secondary auditory corti-
ces, namely the posterior superior temporal gyrus (pSTG) are
sensitive to temporal Gestalt and that this process relies on both
the left and the right hemispheres. This is an additional function
of the pSTG that complements its known role in temporal
processing.

Activation patterns in the frontal cortex that decoded tempo-
ral Gestalt were localized to the right IFG, namely, the pars oper-
cularis and extended into the precentral gyrus. As part of the
ventral pathway in human auditory perception (Clarke et al. 2000;
Thiran and Clarke 2003; Arnott et al. 2004; Zundorf et al. 2016;
Alain et al. 2001), this region likely plays a role in auditory object
recognition (De Lucia et al. 2009). This is the first account of an
involvement of these brain regions in temporal Gestalt encoding.
One limitation of the decoding approach as used in this study is,
that it does not provide information about why specific brain
areas display increased classification accuracy (Serences and
Saproo 2012). It is possible that two distinct, spatially separated
populations of neurons encode different experimental conditions
or, alternatively, that neurons encoding two conditions are spa-
tially intertwined in both populations of neurons. In the case of
temporal Gestalt it is likely that the TPJ encodes a representation
that is closer to the timing characteristic inducing the percept,
while the IFG represents the higher or more abstract contextual
binding of a temporal Gestalt.

The classification between temporally grouped experimental
conditions (R1 and R2) and the isochronous baseline condition
(BA) in the searchlight analysis localized discriminating patterns
in a wide network of medial and lateral cortical and subcortical
areas, including the PCUN, SMA, MFG, right premotor cortex, and
superior parietal lobe. These results conform to a large literature
associating these areas with temporal tasks. Areas that are fre-
quently reported in temporal discrimination tasks or rhythm
reproduction tasks include SMA (Schubotz et al. 2000; Rao et al.
2001; Belin et al. 2002; Lewis et al. 2004; Grahn and Brett 2007;
Geiser et al. 2008, 2012; Bengtsson et al. 2009; Teki et al. 2011;
Konoike et al. 2012; Thaut et al. 2014; Riecker et al. 2002; Chen
et al. 2008; Grahn and McAuley 2009; Schwartze et al. 2011) and
dorsolateral prefrontal cortex (Chen et al. 2008; Grahn and Rowe
2009). We restricted the results of this searchlight analysis to the
most significant voxels, as the standard significance threshold
had revealed discriminating patterns in even larger parts of the
cortex. Explanation for this large network could be two-fold.
First, in the baseline condition the identification of the category
was often sufficient to perform the task while the two experi-
mental conditions required the representation of the temporal
Gestalt. Thus, as suggested by the behavioral results, performing

Figure 3. Searchlight result: Regions that show a significant classification above

chance level (P < 0.05, cluster-level corrected) on a standard MNI152-brain for

(top) 2 temporally grouped experimental conditions (R1 vs. R2) and (bottom)

temporally grouped experimental and isochronous baseline conditions (R vs.

BA, >95th percentile of classification accuracy). The group maps were created

by averaging the individual discriminative voxel maps of all participants. Color

coding indicates discrimination accuracy. RH = right hemisphere; LH = left

hemisphere.
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the task on the two experimental conditions was more difficult
than performing the task on the baseline condition. Task diffi-
culty is often associated with brain activity that is spread across
several cortical areas. Second, a searchlight analysis can poten-
tially display over-sensitivity to activation pattern differences
when discriminating voxels that are highly dispersed in the
brain, because a minority of voxels suffices to identify a search-
light as informative (Etzel et al. 2013). Thus, it is likely that a few
highly informative voxels associated with task difficulty account
for the large network involved in discriminating between experi-
mental and baseline stimuli.

The here described machine-learning experiment showed
how neural mechanisms underlying invariance in perceptual
categories can be investigated. Our results extend previous
research on perceptual categories that are nonlinearly related to
their sensory basis such as machine-learning research on
speech perception (Lee et al. 2012; Borghesani et al. 2016;
Markiewicz and Bohland 2016) and general perceptual object
and concept processing (Linden et al. 2012; Ley et al. 2014; Klein
and Zatorre 2015; Schindler et al. 2013; Zhang et al. 2015; Wurm
and Lingnau 2015), but also research using alternative experi-
mental paradigms such as bistable stimuli or illusory percepts
(de-Wit et al. 2012; Ishizu and Zeki 2014; Kok and de Lange 2014;
Grassi et al. 2017; Murray and Herrmann 2013; Kubilius et al.
2015). Future experiments should additionally test whether clas-
sifiers resulting from MVPA can in fact generalize across physi-
cally different stimuli (Correia et al. 2015; Arsenault and
Buchsbaum 2016; Derrfuss et al. 2017; de Borst et al. 2016) by
testing the classifier on items of a perceptual category with a
sensory basis unrelated to the one used for classifier training.

In conclusion, we investigated for the first time where in the
brain temporal Gestalt percepts emerge and localized this pro-
cess to the TPJ (including the PT and the SMG) and the right
inferior frontal cortex. The results of this study are of relevance
as Gestalt processing is a core capacity of perception. Rhythmic

aspects of auditory perception are considered a fundamental
mechanism for correct language perception and suggested to
be impaired in children with speech and language deficits
(Cumming et al. 2015). Our results provide a keystone towards
a model of rhythm perception by indicating that both sensory
and higher cortical areas encode temporal Gestalt. Finally, the
study provides an example of how we can tackle the neural
basis of perceptual invariance using neuroimaging methods.
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Table 2 Brain areas discriminating between experimental conditions according to a searchlight analysis

MNI coordinates
(mm)

Mean prediction/
classification
accuracy (%)

Extent (voxels of
2 × 2 × 2mm3)

Cluster location according to Harvard-Oxford probabilistic atlas

x y z

Discrimination between temporally grouped rhythms and isochronous baseline rhythms (R and BA) (clusters = voxels > 95% discrimination
accuracy)

32 −70 46 70.52 25 728 Lateral occipital cortex, superior division: 32.79%, precuneous cortex: 11.81%, angular
gyrus: 7.91%, superior parietal lobule: 5.68%, supramarginal gyrus, posterior
division: 5.36%

−2 20 48 69.58 3680 Paracingulate gyrus: 38.97%, superior frontal gyrus: 23.98% (supplementary motor
area (SMA) according to AAL)

28 4 58 69.83 3072 Middle frontal gyrus: 25.93%, superior frontal gyrus: 22.52%
−32 −72 44 68.96 1296 Lateral occipital cortex, superior division: 61.42%
−38 −46 44 69.22 1288 Superior parietal lobule: 26.19%, supramarginal gyrus, posterior division: 24.43%,

angular gyrus: 9.84%
46 28 30 69.02 824 Middle frontal gyrus: 47.74%, frontal pole: 8.12%
34 26 0 68.67 56 Frontal orbital cortex: 37.57%, insular cortex: 15.86%, frontal operculum cortex:

14.71%
46 44 8 68.56 16 Frontal pole: 89.5%
Discrimination between temporally grouped rhythms (R1 and R2)
54 14 18 57.24 4216 Inferior frontal gyrus, pars opercularis: 31.24%, precentral gyrus: 26.48%
68 −28 18 56.93 2016 Supramarginal gyrus, posterior division: 24.50%, Superior temporal gyrus, posterior

division: 23.02%, planum temporale: 8.75%
−64 −30 26 56.75 1832 Supramarginal gyrus, anterior division: 32.75%, parietal operculum cortex: 12.25%,

planum temporale: 12.15%, postcentral gyrus: 8.68%, superior temporal gyrus,
posterior division: 5.57%, supramarginal gyrus, posterior division: 5.42%
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