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ABSTRACT: From epidemiological studies it is known that diabetes patients display increased risk of 

developing dementia. Moreover, cognitive impairment and Alzheimer’s disease (AD) are also 

accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence 

for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. 

Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as 

well as recurrent hypoglycaemia are the factors that most likely affect brain function and structure. While 

difficult to study in patients, the mechanisms by which diabetes leads to brain dysfunction have been 

investigated in experimental models that display phenotypes of the disease. The present article reviews the 

impact of diabetes and AD on brain structure and function, and discusses recent findings from 

translational studies in animal models that link insulin resistance to metabolic alterations that underlie 

brain dysfunction. Such modifications of brain metabolism are likely to occur at early stages of 

neurodegeneration and impact regional neurochemical profiles and constitute non-invasive biomarkers 

detectable by magnetic resonance spectroscopy (MRS). 
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Diabetes mellitus can be defined as a chronic metabolic 

disorder characterized by hyperglycaemia, resulting from 

inappropriate insulin secretion and/or action [1]. The 

vast majority of the diabetes cases are included in two 

main categories, classified according to the underlying 

cause, which are type 1 diabetes (T1D) or insulin-

dependent diabetes, generally caused by an autoimmune 

reaction to antigens of pancreatic β-cells, leading to 

impaired insulin production, and type 2 diabetes (T2D) 

or insulin-resistant diabetes, characterised by 

inefficiency of insulin action. While T1D is mainly 

observed in children and adolescents, T2D is more 

common among adults, accounting for more than 90% of 

the diabetes cases worldwide. The prevalence of diabetes 

and impaired glucose tolerance achieved now epidemic 

proportions, respectively at 6.9% and 8.3% of the world 

population, and predicted to raise to 8.0% and 10.1% in 

2035 [2]. Moreover, diabetes is nowadays a leading 

cause of death accounting for 8.4% of global mortality in 

people aged between 20 and 79 years [2]. The main 

contributor for the high prevalence of diabetes is the rise 

of obesity, related to the combination of ample food 

availability and a sedentary lifestyle, contrasting to less 

abundant food supplies and higher physical activity 

observed until a century ago. 

Diabetes is associated with the occurrence of well 

described microvascular complications that affect 

different organs, leading most commonly to retinopathy, 

nephropathy and peripheral neuropathy, which 

development is dependent on the duration of the disease 

and glycaemia control [3]. When the control of the 

disorder allowed patients to live longer and without these 
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traditional complications, diabetes-associated brain 

dysfunction was observable. The concept that diabetes 

affects the central nervous system (CNS) was recognised 

in 1922, when evidence appeared for diabetes-induced 

cognitive dysfunction [4], and the term “diabetic 

encephalopathy” was introduced in 1950 to describe the 

complication of diabetes resulting on brain dysfunction 

and leading to cognitive impairment [5].  

Several clinical studies reported lower performance 

on several cognitive domains in T1D patients, when 

compared to the general healthy population, including 

notably learning and memory impairment [6-10]. The 

magnitude of these cognitive deficits is often mild but 

severe cases can occur [11, 12]. Along with these deficits 

on brain function, diabetes was also reported to induce 

structural alterations, neuronal loss, demyelination and 

gliosis [13]. Accordingly, magnetic resonance imaging 

(MRI) and computed tomography showed general brain 

atrophy and increased occurrence of white mater hyper-

intensities that are thought to result from small infarcts 

[14-16]. In T2D patients, impaired cognitive function 

was observed in particular when solving complex 

cognitive tasks [17-22]. Cognitive dysfunction is further 

accentuated in elderly T2D patients with reduced 

diabetes control [23, 24]. In summary, diabetes causes 

cognitive dysfunction that is moderated at younger age 

but can be accentuated in elderly diabetic patients and by 

poor control over blood glucose levels, and hampers 

daily functioning, thus reducing the quality of life. The 

neurochemical mechanisms underlying the development 

of diabetes-associated cognitive decline are poorly 

understood. Animal experimentation has begun aiming 

to understand the mechanistic processes leading to 

diabetic encephalopathy, but greater efforts must still be 

taken to achieve this goal. 

 

Cognitive impairment in diabetes and AD 

 

The prevalence of neurodegenerative disorders leading 

to dementia is raising worldwide due to aging of the 

population (increased lifespan), a situation that 

represents an enormous social burden [25]. While 

Alzheimer’s disease (AD) is the most common type of 

dementia, accounting for 60-80% of cases [26], about 

8% of all cases of dementia can be attributable to 

diabetes mellitus [27] and this tends to increase with the 

growing prevalence of diabetes. The high incidence of 

Alzheimer's disease in T2D is linked to insulin 

resistance, hyperinsulinemia and hyperglycemia, as well 

as commonly accompanying hypercholesterolemia, 

hypertension and obesity [28, 29]. Cognitive dysfunction 
in patients with diabetes particularly impairs the ability 

to control glycaemia and thus is also associated with 

enhanced risk of severe hypoglycaemia episodes and 

cardiovascular diseases, relative to patients without 

cognitive abnormalities [30, 31]. Thus, preventing these 

events and their associated morbidity is of clinical 

importance. For that, the mechanisms of diabetic 

encephalopathy must be understood, and the discovery 

of reliable disease biomarkers and design of preventive 

strategies are necessary. 

Diabetic encephalopathies in T1D and T2D differ in 

the underlying mechanisms and the nature of resulting 

cognitive deficits. Encephalopathy in T1D occurs in 

younger patients and involves impaired learning abilities, 

intelligence development and memory retrieval. 

Although uncontrolled sustained hyperglycaemia leads 

to brain alterations and functional deterioration due to 

degeneration of the microvasculature, another major 

underlying component leading to encephalopathy in T1D 

patients appears to be insulin deficiency with 

downstream effects on the expression of neurotrophic 

factors, on the efficiency of neurotransmission, and on 

oxidative and apoptotic stressors, resulting in loss of 

neuronal integrity and connectivity defects in the still 

developing brain [29]. Furthermore, T1D patients are at 

risk for developing hypoglycaemia unawareness and 

associated complications (see section “Hypoglycaemia 

and hypoglycaemia unawareness”). 

In contrast to T1D, clinical research over the two 

last decades has established a striking link between 

encephalopathy in T2D and AD. T2D is associated with 

an increased risk of cognitive dysfunction and dementia, 

affecting the brain by mechanisms that include: (1) 

metabolic and vascular risk factors within the metabolic 

syndrome such as dyslipidaemia, hypercholestrolemia 

and hypertension, which were found to be associated 

with cerebrovascular disease, accelerated cognitive 

decline and dementia; (2) hyperglycaemia that has 

adverse effects on the brain and its vasculature; (3) 

insulin that can directly modulate energy metabolism, 

synaptic plasticity and learning and memory, as well as 

regulate the metabolism of the β-amyloid peptide (Aβ) 

and Tau protein, the building blocks of amyloid plaques 

and neurofibrillary tangles [28, 32, 33]. 

 

Brain metabolism and cognitive performance 

 

Glucose catabolism is the major pathway of energy 

production in the mature brain, thus constituting the 

bioenergetic basis for neurotransmission. Therefore, 

increases in glucose metabolism during brain activation 

have been used for functional mapping by 2-deoxy-

glucose autoradiography and positron-emission 

tomography (PET), and indirectly influence 
hemodynamic changes observed with functional MRI. 

Moreover, pathways of brain glucose oxidation have 

been suggested to be linked to the glutamine-
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glutamate/GABA cycling between astrocytes and 

neurons, i.e. the rates of glutamatergic and GABAergic 

neurotransmission [34]. For the sake of example, this 

was demonstrated by measuring a reduction of 

extracellular glucose in the hippocampus during a 

hippocampal-dependent spatial memory test [35, 36]. 

Moreover, blockade of brain glucose transport or 

astrocytic glucose metabolism inhibits memory 

consolidation (see [37] and references therein). In line 

with this, somatosensory stimulation increases the rate of 

glycogenolysis [38, 39] and thus reduces brain glycogen 

levels [40, 41], the glucose storage in the brain. Thus, 

impaired brain glucose homeostasis may compromise 

learning processes and memory consolidation, and this 

could constitute a link between diabetes and brain 

alterations leading to encephalopathy. 

 

Brain metabolism in aging 

 

Mitochondrial production of reactive oxygen species 

(ROS) is the main drive for accumulated cellular stress 

that primarily leads to aging-associated impairments of 

mitochondrial functions such as regulation of Ca2+ 

homeostasis and ATP synthesis, that is energy 

production (reviewed in [42]). In turn, defects in energy 

metabolism at the level of the tricarboxylic acid (TCA) 

cycle, electron transport chain and oxidative 

phosphorylation further enhance the ROS production and 

affects amino acid homeostasis (see [43] and references 

therein). Moreover, faulty mitochondrial ATP synthesis 

triggers higher demand from glycolysis. A 13C MRS 

study in the human brain demonstrated that the neuronal 

TCA cycle is indeed reduced in elderly subjects, 

resulting in deficient glutamate-glutamine cycling 

between neurons and astrocytes [44]. In contrast, glial 

oxidative metabolism was increased probably due to 

astrogliosis [44]. A large longitudinal MRS study in 

C57Bl/6 mice over 2 years further confirmed the age-

induced impairment in amino acid homeostasis, with 

substantial reduction in the levels of neuro-active amino 

acids including the major excitatory and inhibitory 

neurotransmitters, respectively glutamate and GABA 

[43]. These metabolic modifications that occur in the 

brain due to cellular damage accumulated during lifespan 

are crucial for functional deterioration in aged subjects 

[45] and are further accentuated in neurodegenerative 

disorders [42].  

 

Brain metabolism in AD 

 

Impaired cerebral energy metabolism is known to occur 
in AD patients. PET with [18F]fluorodeoxyglucose in AD 

patients revealed progressive reduction in glucose 

metabolism, namely in parietal and temporal lobes [46]. 

This method has thus been employed to identify mild 

cognitive impairment and early stages of AD in living 

patients. Accordingly, after glucose administration, 

glucose was observed in the brain of AD patients at 

higher levels than healthy subjects [47], likely reflecting 

reduced glucose metabolism. Indeed, recent studies 

suggested that hypometabolism of glucose in the brain of 

AD patients is closely linked to cognitive decline [48] 

and can be indicative of larger subsequent cerebral 

atrophy [49]. Although cerebral atrophy is not generally 

related to the regional binding of the Pittsburgh 

compound B (measuring levels of Aβ aggregation), a 

relationship between Aβ deposition and atrophy was 

observed in early AD [49, 50]. Interestingly, it was also 

recently suggested that brain areas of high resting 

glucose metabolism (reflecting high neuronal activity) in 

healthy elderly individuals generally correspond to those 

where the level of regional Pittsburgh compound B 

uptake is greater in AD patients [51]. This suggests that 

Aβ deposition may be dependent on neuronal activity, 

probably because neuronal activity-associated high 

mitochondrial metabolism is prone to oxidative stress. 

It is known that Aβ neurotoxicity involves induction 

of oxidative stress with concomitant damage to 

biomolecules including membrane lipids, proteins and 

nucleic acids, which promotes synaptic and 

mitochondrial dysfunction and eventually leads to 

apoptosis. These events are also promoted by 

intracellular neurofibrillary tangles that are formed by 

hyperphosphorylation of the microtubule-associated 

protein Tau. In brief, mitochondrial dysfunction involves 

electron transport chain dysfunction, opening of the 

mitochondrial permeability transition pore that disrupts 

oxidative phosphorylation, impaired mitochondrial 

dynamics that regulates axonal transport, and reduction 

of mitochondrial creatine kinase activity that decreases 

the energetic buffering effect of phosphocreatine [42, 

52]. This then leads to synaptic dysfunction mainly due 

to insufficient energy supply for neurotransmitter 

recycling and for maintenance of cellular 

electrochemical gradients (Ca2+ and Na+ homeostasis). 

However, little is known about AD-induced specific 

alterations of neuronal and astrocytic metabolism 

involved in neurotransmission. Studies in vivo in AD 

patients [53] and in rodent models of the disease [54, 55] 

using 13C MRS pointed towards a reduction of glucose 

oxidative metabolism, namely in neurons with 

concomitant increased lactate production, and a 

reduction in the rate of glial pyruvate carboxylation that 

is necessary for de novo synthesis of amino acids, 

namely glutamine, glutamate, GABA and aspartate. 
Decreased glutamate levels were recently reported in the 

brain of AD patients [56]. In addition, Penner et al. 

found that glutamate concentration was increased in the 
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right hippocampus of AD patients after four months of 

galantamine treatment relative to pre-treatment levels, 

and those variations in glutamate levels were related to 

variations in N-acetylaspartate (NAA) content and 

cognitive performance [57]. Interestingly, it has been 

recurrently demonstrated that the regional levels of NAA 

and glutamate in the brain are positively associated since 

both are mainly located within neuronal cells (see [43] 

and references there in). NAA is believed to be produced 

in neuronal mitochondria and then used for myelin 

synthesis in olygodendrocytes [58]. Thus it is plausible 

that dysfunctional mitochondria are unable to produce 

sufficient NAA for adequate maintenance of myelin 

sheaths around long axonal fibres.  

The majority of the clinical studies using 1H MRS 

consistently revealed that the brain of AD patients 

contains less NAA and more myo-inositol, compared to 

cognitively healthy elderly subjects, and that the 

concentration of these two neurochemicals is correlated 

to the decline in cognitive performance [42]. In general 

these modifications of NAA and myo-inositol are 

interpreted as loss of neuronal integrity and gliosis, 

respectively [58]. Consistent with neurodegeneration, 

hippocampal NAA levels were found to be positively 

associated to hippocampal volume across subjects 

presenting mild to moderate severity AD and age-

matched healthy controls [59], i.e. loss of NAA 

correlates with atrophy of the cerebral tissue. 

Furthermore, the modifications of NAA and myo-inositol 

in the posterior cingulate of AD patients were associated 

to reduction of diffusion parameters measured by 

diffusion tensor imaging, namely mean diffusivity and 

fractional anisotropy [60], consistent with astrogliosis 

and/or axonal degeneration.  

 

Insulin signalling defects in aging and AD   
 

Insulin receptors are ubiquitously expressed in the brain, 

especially in the hippocampus, cortex, hypothalamus, 

olfactory bulb and pituitary, with particular high density 

in neurons. Insulin in the brain can reach local levels one 

order of magnitude greater than in plasma (due to local 

production) and exert its actions not only through insulin 

receptors but also via insulin-like growth factor 1 (IGF-

1) receptors that are as well widely distributed 

throughout the brain [61, 62]. The insulin/IGF-1-

mediated activation of complex signalling cascades 

serves the regulation a plethora of cellular processes 

including growth, differentiation and metabolism [63]. In 

the CNS, insulin exerts further control over 

neurotransmission, synaptic plasticity and cognitive 
processes, cellular proliferation and antiapoptotic 

mechanisms, and antioxidant defence [64, 65]. 

Therefore, defects in brain insulin signalling pathways 

result in altered brain function.  

Cellular challenges during normal aging lead to 

many homeostatic alterations and ultimately result in 

neurodegeneration, impaired neuronal function and 

reduced cognitive performance [45]. Epigenetic factors 

modulated by aging and a sedentary lifestyle have been 

described to induce a metabolic shift by attenuating 

mitochondrial metabolism and increasing reliance on 

glycolysis [66]. This alteration starts a damaging cycle 

involving oxidized membrane receptors, signalling 

molecules, transcription factors, and epigenetic 

transcriptional regulators [62, 66]. Accordingly, decrease 

in insulin receptor levels and impaired insulin signalling 

was observed in the hippocampus, cortex and choroid 

plexus [62], and insulin resistance was reported to be 

associated with cognitive decline in non-demented aging 

[67].  

Impaired insulin signalling is believed to be 

associated with extracellular Aβ deposition and with 

hyperphosphorylation of the microtubule-associated 

protein Tau and formation of neurofibrillary tangles, 

which are hallmarks of AD. Through the 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) 

pathway, insulin stimulates amyloid precursor protein 

metabolism, promotes Aβ release from neurons 

preventing its intracellular accumulation, and increases 

insulin-degrading enzyme (IDE) protein levels [68]. 

Thus, insulin resistance may contribute to increase 

intracellular Aβ and its extracellular accumulation. Since 

IDE degrades insulin and Aβ, as well as other peptides, 

altered insulin levels can also interfere with the clearance 

of Aβ [69]. On the other hand, insulin binding and 

receptor autophosphorylation are inhibited by Aβ [70]. 

Tau phosphorylation is inhibited by insulin, and 

impaired insulin signalling in a neuron-specific insulin 

receptor knockout mouse resulted in reduced 

phosphorylation of Akt and GSK3β, leading to increased 

Tau phosphorylation [71]. 

AD is in fact associated with impaired expression of 

insulin receptors [33] and altered insulin and IGF-1 

levels [32, 72], which affects the cAMP response 

element-binding protein (CREB) pathway that controls 

memory formation, and the PI3K/Akt pathway signalling 

that regulates glucose homeostasis, thus increasing 

glucose levels and potentiating the formation of 

advanced glycation end-products [61, 73]. In line with 

this, intranasal insulin administration has been effective 

in enhancing cognitive performance in healthy humans 

and some patients with AD [74, 75] and in improving 

memory formation in rodents [76], which may include 

regulation of glucose uptake and/or metabolism [77]. In 
contrast, decreases in insulin or IGF-1 signalling in 

rodent models of AD triggered reductions in Aβ 

deposition and in cognitive performance [78-81]. In 



J. M. N. Duarte                                                                                                                        Brain Metabolism in Diabetes       

Aging and Disease • Volume 6, Number 5, October 2015                                                                               308 
 

summary, insulin signalling appears involved in the 

pathophysiology of AD, but the link between T2D, AD 

and cognitive dysfunction remains unclear. 

 

Neurodegeneration in animal models of diabetes 

 

Elderly-associated mild memory and cognitive 

impairment and AD are accompanied by atrophy of 

hippocampal formation [82-85]. When compared to 

healthy subjects, individuals with T2D display deficits in 

hippocampal-based memory performance with 

preservation of other cognitive domains, and show 

reduction of hippocampal volume but not other brain 

areas [86]. Cognitive dysfunction during diabetes is 

therefore particularly associated with significant changes 

in the integrity of the hippocampus, a brain region 

considered to mediate memory formation in animals, and 

electrophysiological analyses indicate that diabetes 

induces defects on long-term potentiation (LTP) in 

hippocampal slices, a form of synaptic plasticity 

considered to reflect learning and memory processes in 

mammals [87, 88]. Based on this, the vast majority of 

translational studies in animal models of diabetes were 

dedicated to the study of hippocampal structure and 

function. Impaired hippocampal-dependent spatial 

learning and memory have been demonstrated in 

different animal models of diabetes using the Morris 

water maze [89-93] and the Y-maze [94, 95].  

 

Insulin-sensitive diabetes 

 

Diabetic encephalopathy can derive from cellular 

damage caused by both glucose neurotoxicity upon 

hyperglycaemia and defective insulin signalling by either 

insulin deficiency or receptor desensitization [96]. Most 

translational/pre-clinical studies aiming to identify 

mechanisms of diabetic encephalopathy have 

investigated animal models characterised by insulin 

deficiency (being sensitive to insulin administration) and 

chronic hyperglycaemia. Such experimental diabetic 

conditions cause deficits in spatial learning and synaptic 

plasticity [90], synaptic degeneration [97-99], increased 

astrocyte reactivity and proliferation [98, 100, 101], 

oxidative stress [102] and altered metabolism [98, 103]. 

Furthermore, chronic hyperglycaemia and 

hypoinsulinemia in an animal model of T1D 

(streptozotocin-treated rats) lead to impairment of 

multiple neuromodulation systems in the hippocampus 

that control metabolism and synaptic activity [97, 98, 

104, 105]. This may contribute to altered synaptic 

plasticity and memory performance, and constitute a 
potential target for neuroprotection. Given the close link 

between brain function and energy metabolism [34], 

metabolic alterations have been described in the brain of 

experimental models of T1D. These could involve both 

substrate delivery through the blood-brain-barrier (BBB) 

and intermediary metabolism in neurons and astrocytes.  

Structural alterations were reported in the BBB of 

diabetic animals [106], consistent with increased BBB 

permeability observed in individuals with diabetes [107], 

suggesting that loss of BBB integrity may be involved in 

CNS dysfunction in diabetes. However, permeability of 

the BBB to glucose does not seem to be altered in the 

hippocampus and cortex of streptozotocin-induced T1D 

rats [98, 103]. Therefore, hyperglycaemia in 

uncontrolled diabetes results in proportionally increased 

glucose concentration in the brain. How the higher levels 

of glucose in diabetes are handled by neurons and 

astrocytes has not been clearly demonstrated.   

Reduced hippocampal neurogenesis was reported to 

occur in two models of T1D, the non-obese diabetic 

(NOD) mice [108] and the streptozotocin-induced 

diabetic rats [109, 110]. Compared to non-diabetic 

controls, neuronal loss was observed in streptozotocin-

induced diabetic rats [111] and BB/Wor diabetic rats 

[112]. Before the loss of neurons, synaptic deterioration 

was observed in the brain of diabetic Chinese hamster 

[113] and streptozotocin-induced diabetic rats [93, 97, 

98, 114, 115]. In line with this, the efficiency of 

neurotransmission was found altered in diabetic brains. 

In particular, glutamatergic neurotransmission is strongly 

impaired in diabetes [88] and is probably associated with 

a reduction in energy metabolism supporting the 

glutamate-glutamine cycle [34]. Cortical slices but not 

synaptosomes prepared from the brain of streptozotocin-

induced diabetic rats displayed reduced uptake of 

glutamate [116], suggesting impaired glutamate 

clearance by astrocytes that can result in higher levels of 

glutamate in the synaptic cleft and induce excitotoxycity. 

Also the content of dopamine, norepinephrine and 

serotonin was reported to be altered in certain brain 

regions in alloxan-induced [117] and streptozotocin-

induced [114, 115] diabetic rats, which may be 

prevented by insulin treatment [115]. 

These structural and neurochemical alterations result 

in functional anomalies. The latencies of auditory and 

visual potentials were found to be prolonged in 

streptozotocin-induced diabetic rats [118, 119] and type 

1 BB/Wor diabetic rats [120, 121] in relation to controls. 

Likewise, in hippocampal slices from streptozotocin-

induced diabetic rats, LTP is impaired, whereas long-

term depression (LTD) is enhanced when compared with 

control rats [90, 91, 122, 123]. These altered 

hippocampal synaptic transmission and plasticity were 

paralleled by reduced spatial learning and memory [91] 
that was prevented by glycaemia control with insulin 

treatment [122].  

In insulin-deficient mice, intranasal insulin treatment 
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was shown to ameliorate synaptic degeneration and 

deficits in learning and memory, without preventing 

hyperglycaemia [124]. This suggests that impairment of 

central insulin signalling is an important factor for 

diabetes-induced brain injury. However, in contrast to 

hypoinsulinemia and associated hyperglycaemia, the 

mechanisms of impaired insulin sensitivity leading to 

altered brain homeostasis, synaptic activity and memory 

performance are much less understood.  

 

Insulin-resistant diabetes 

 

Animal models of insulin resistance displayed lower 

insulin levels in the brain. Namely, obese (fa/fa) and lean 

heterozygous (Fa/fa) Zucker rats had lower 

immunoreactive insulin in the olfactory bulb, 

hypothalamus, hippocampus, cerebral cortex, amygdala, 

midbrain and hindbrain, in comparison to lean 

homozygous (Fa/Fa) Zucker rats [125]. Reduction in 

insulin levels was also found in the cerebrospinal fluid of 

high-fat fed, insulin-resistant dogs and were suggested to 

result mainly from impaired transport from plasma 

across the BBB [126]. However, insulin has been 

proposed to be produced in the brain [62] and could 

possibly counterbalance an eventual reduction in the 

uptake from blood. Nevertheless, aberrant insulin 

regulation in the brain will certainly have consequences 

for brain function. In pre-diabetes or T2D, insulin 

resistance is directly associated with reduced cortical 

glucose consumption and cognitive impairment [127]. 

Furthermore, like in AD, deficient insulin-PI3K/Akt 

signalling in animal models of diabetes may further 

induce hyperphosphorylation of the Tau protein and 

favour Aβ deposition [61] that leads to formation of 

neurofibrillary tangles and amyloid plaques.  

In a mouse model of obesity-associated T2D, 

NONcNZO10/LtJ mice under an 11% fat diet, we 

recently reported impaired hippocampal-dependent 

spatial memory as indicated by decreased spontaneous 

alternation in the Y-maze, which was accompanied by 

decreased density of nerve terminal proteins 

(synaptophysin, SNAP25), glutamatergic markers 

(vesicular glutamate transporters), increased astrogliosis 

(immunoreactivity to glial fibrillary acidic protein, 

GFAP) and altered adenosinergic modulation system in 

the hippocampus compared to controls (NON/LtJ mice) 

kept under the same diet [95]. Interestingly, we failed to 

identify diabetes-induced neuronal loss in brain sections 

stained either cresyl violet or FluoroJade-C, which was 

corroborated by the lack of altered microtubule-

associated protein 2 (MAP2) immunoreactivity, a marker 
of neuronal density [95]. This indicates that T2D 

primarily causes synaptic deterioration without neuronal 

death, which resembles the events occurring in aging 

[128] and models mimicking early AD [129, 130], thus 

corroborating the association of insulin resistance and 

T2D with increased incidence of AD. Moreover, 

compared to non-diabetic Wistar rats, also non-obese 

insulin-resistant Goto-Kakizyki (GK) rats displayed 

reduced spatial memory, which was accompanied by 

reduced pre-synaptic markers and increased glial specific 

proteins in the hippocampus [131]. Altered expression of 

genes involved in neurotransmission (among others) was 

found in the cortex of GK rats [132], indicating that 

diabetes-induced synaptic alterations are not region 

specific. A recent publication also reported that, relative 

to controls, GK rats display learning and memory 

deficits in a Morris water maze that are proportional to 

the grade of insulin resistance, reduction in dendritic 

spine density and neuronal viability in CA1 of the 

hippocampus, and impaired insulin-stimulated 

Akt/CREB phathway [133], consistent with AD-like 

pathology. Furthermore, synaptosomal preparations from 

the brain of GK rats show impaired mitochondrial 

function and increased vulnerability to oxidative stress 

and Aβ toxicity [134, 135], suggesting impaired 

intermediary metabolism at the level of the synapse. 

Although the brain of diabetic GK rats is more 

susceptible to Aβ toxicity and oxidative stress than 

control Wistar rats, it is not known if Aβ accumulation, 

Tau hyperphosphorylation and formation of 

neurofibrillary tangles occur in the brain of this model 

for non-obese insulin-resistant diabetes. In obese 

BBZDR/Wor rats that develop insulin resistance with 

hyperinsulinemia and hyperglycaemia, neuronal 

degeneration, reduced presynaptic densities and gliosis 

was reported in the frontal cortex, as well as down 

regulation of IGF-1 receptors and increased APP, β-

secretase, Aβ and phosphorylated Tau [29, 136]. Insulin 

receptor substrate 2 knockout mice, a model of insulin-

resistant diabetes, also displayed hyperphosphorylated 

Tau in the hippocampus [137].  

In addition, glutamatergic and GABAergic neurons 

may adapt differently to diabetic encephalopathy, since 

there was a reduction in vesicular glutamate transporters 

(VGLUT1/2) in the hippocampus of NONcNZO10/LtJ 

mice compared to non-diabetic NON/LtJ mice, and a 

lack of diabetes-induced modification of vesicular 

GABA transporters [95]. The preservation of 

GABAergic nerve terminals in diabetes is also 

corroborated by Galanopoulus et al. who found reduced 

glutamate decarboxylase activity in cortical slices but not 

synaptosomes prepared from brains of streptozotocin-

induced diabetic rats [116], which suggests that diabetes 

may impact the metabolism of GABA in glial cells but 
not in inhibitory nerve terminals. Interestingly, 

glutamatergic nerve terminals are also more susceptible 

to Aβ-induced toxicity than GABAergic terminals, 
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namely in the hippocampus [130]. Indeed, it is generally 

accepted that mainly glutamatergic and cholinergic 

pathways are disrupted in AD [138], and there is a 

growing body of evidence that GABAergic function is 

preserved in early phases of AD but becomes impaired 

when the disease is well established [139, 140].  

In summary, although the mechanistic link from 

impaired oxidative glucose metabolism caused by insulin 

resistance to altered neurotransmission and impaired 

brain function remains to be fully elucidated, it may 

involve increased metabolic rates in glial cells due to 

astrogliosis and impaired neuronal metabolism, 

associated to synaptodegeneration. Probably, these 

metabolic alterations are caused by mitochondrial 

dysfunction that causes oxidative stress and affects 

neurotransmission efficiency at glutamatergic 

(excitatory) rather than GABAergic (inhibitory) nerve 

terminals, and which may occur much before appearance 

of neurofibrillary tangles/amyloid plaques. Insulin 

resistance-induced alterations of neuronal and glial 

energy metabolism remain to be investigated. Moreover, 

efforts should be devoted to the study of experimental 

models displaying insulin-resistance without the 

confounder of severe hyperglycaemia that causes 

microvasculature deterioration. 

 

Neurochemical profiling in models of diabetes by MRS 

 

Proton MRS became a tool of choice to investigate 

metabolic alterations induced by neurological disorders 

in a non-invasive manner [58] and it has also been 

employed to study brain metabolism in experimental 

models of diabetes. Diabetic rats under chronic 

hyperglycemia, induced by streptozotocin 

administration, display a plethora of metabolic 

alterations in the hippocampus and cortex, most of which 

are normalized upon acute restoration of euglycaemia 

[98, 103]. Some of the metabolites more affected by 

hyperglycemia were myo-inositol, taurine and creatine, 

which are considered major organic osmolytes regulating 

brain osmotic adaptation. Similar results were obtained 

in Goto-Kakizaki rats, an experimental model of insulin 

resistance and T2D [131]. High concentration of myo-

inositol was also reported in the hippocampus of Zucker 

diabetic fatty rats compared to controls [141] and in the 

brain of diabetes patients [142, 143]. Thus, the study of 

the neurochemical profile supports the hypothesis that 

diabetes-induced hippocampal dysfunction involves 

deregulation of the osmotic balance. In contrast to AD, 

NAA levels do not appear altered in the diabetic brain, 

suggesting preservation of neuronal integrity, despite 
synaptic degeneration. 

Similar to what is observed in AD patients, double 

transgenic mice expressing human mutant APP and 

human mutated PS1 (APP/PS1) display decreased 

glutamate and NAA concentrations in the hippocampus, 

that were observed at the time where hippocampal 

volume was already reduced but amyloid plaques were 

not yet present [144-146]. When amyloid deposits 

became detectable, these mice also presented increased 

brain myo-inositol levels, when compared to wild type 

mice [147], which were accompanied by astrogliosis 

[148]. Increased myo-inositol and glutamine and 

decreased NAA and glutamate were reported to occur in 

the cortex of these mice and, once amyloid plaques are 

observed, NAA levels were inversely associated to the 

area of cortex occupied by plaques [144].  

Dedeoglu et al. but not Marjanska et al. reproduced 

these findings in mice possessing only the mutated APP 

gene. Both authors reported, however, higher cerebral 

taurine to creatine ratio in the brain of APP transgenic 

mice compared to wild type mice [145, 149]. These 

results were confirmed by MRS of brain extracts, in 

which glutathione levels were additionally found to be 

lower than in controls [149], consistent with redox 

deregulation [52]. 

 

Hypoglycaemia and hypoglycaemia unawareness  

 

Postprandial hyperglycaemia periods are often prevented 

by insulin administration, principally in cases of T1D. 

However, episodes of severe hypoglycaemia are a major 

complication of this glycaemia control. Diminished brain 

function during acute hypoglycaemia leads to potential 

physical danger and, moreover, recurrent hypoglycaemia 

imposes long-lasting damaging effects on brain function 

[150, 151]. Cognitive performance is altered during 

experimentally induced hypoglycaemia [152-158], and 

some studies in patients with T1D suggested an 

association between recurrent hypoglycaemia and 

cognitive impairment [11, 16, 159-162]. 

During severe hypoglycaemia, the absence of 

sufficient glucose supply to the brain leads to 

neuroglycopenia that results in energy deprivation and 

thus other substrates are mobilised for ATP synthesis. 

Hypoglycaemia causes a reduction in brain glycogen and 

lactate levels and then depletes metabolic intermediates, 

namely glucose-6-phosphate, pyruvate, citrate, 2-

oxoglutarate and malate [163], and leads to progressive 

reduction of brain glutamate, glutamine, GABA and 

alanine with concomitant increase in aspartate that can 

efficiently act on NMDA receptors [164-168]. The 

transition to encephalographic silence in hypoglycaemia 

(i.e. cessation of neural activity) is accompanied by a 

rapid decline in levels of phosphocreatine, nucleoside 
triphosphate, and an increase in inorganic 

orthophosphate, as measured in vivo by 31P MRS [166]. 

In this isoelectric state, most glycolytic and citric acid 
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cycle intermediates are very low and glucose-6-

phosphate and pyruvate are virtually absent [163]. Only 

when glutamate and glutamine become substantially 

exhausted, aspartate becomes an important energy source 

[168]. Glucose administration to recover from 

hypoglycaemia allows for metabolic recovery and nearly 

restores amino acids to pre-hypoglycemia levels [166, 

168]. 

The occurrence of recurrent hypoglycaemia episodes 

impacts the body’s defence mechanisms against 

hypoglycaemia episodes. Many diabetes patients display 

a progressive decay in the counter-regulatory response 

over time, resulting in reduction of hypoglycaemia 

awareness [169, 170], where the glycaemia threshold for 

counter-regulation symptoms and cognitive dysfunction 

is shifted to lower plasma glucose levels and may be 

detected only upon severe neuroglycopenia [171]. 

Together, the hypoglycaemia-induced decrease in the 

sympathoadrenal response to blood glucose variations 

and the hypoglycaemia unawareness are termed 

hypoglycaemia-associated autonomic failure (HAAF). 

HAAF in diabetes patients leads to an increased risk for 

the occurrence of severe hypoglycaemia episodes. 

Beyond the precise mechanisms that sense blood 

glucose and link the sensory machinery to the autonomic 

and endocrine responses which alert the patient to the 

low blood glucose levels and ultimately restore glucose 

homeostasis, very little is known about the mechanisms 

responsible for hypoglycemia unawareness [172]. It has 

been proposed that adaptation to recurrent 

hypoglycaemia involves increased fuel availability to the 

brain from the blood stream, namely glucose [173-175] 

and acetate [176, 177]. In line with this, from studies in 

both humans and rodents, it has been proposed that 

recurrent hypoglycaemia leads to enhanced expression 

and density of glucose carrier proteins [178-180]. In 

addition to increased substrate uptake from the blood, 

hypoglycaemia unawareness could be linked to the so-

called glycogen “supercompensation”, in which the brain 

adapts to hypoglycaemia by increasing glucose storage 

in the form of extra glycogen content [181, 182].  

In neurons, the machinery for glycogen synthesis is 

believed to be physiologically inactive and glycogen 

phosphorylase nearly absent, rendering astrocytes the 

primary glycogen storage [183]. However, a recent study 

reported that cultured neurons have measurable glycogen 

levels and that its metabolism is important upon hypoxia 

[184]. Brain glycogen concentration lies between 3 and 7 

μmol/g and has a turnover time of 5-10 hours [34]. For 

these concentration and turnover, a 10% reduction of 

glucose supply and a resting glucose consumption of 0.4-
0.5 μmol/g/min would lead to depletion of glial glycogen 

in a couple of hours [185], emphasizing its role in 

buffering substrate delivery to the brain. Brain glycogen 

content is reduced upon insulin-induced hypoglycaemia 

due to increased glycogenolysis and, in contrast, it 

increases with circulating insulin and with brain glucose 

concentration [34]. Brain glycogen may also have a role 

in buffering fuel demands upon increased neuronal 

activity: it accumulates under deep anaesthesia but 

somatosensory stimulation upregulates glycogenolysis 

leading to a decrease in brain glycogen levels [40, 41]. 

Although suggesting a direct role of glycogen in brain 

function, this was not observed under visual stimulation 

in either rodents [41] or humans [186]. 

Using 13C MRS to measure enrichment from 13C-

labelled glucose, Choi and co-authors submitted rats to 

hypoglycaemia and found that the rat brain displayed a 

153% increase in glycogen compared to baseline after 

recovering for 7 hours under hyperglycaemia [181]. In 

mice, 6 hours after recovery at euglycaemia from 

insulin-induced acute hypoglycaemia caused a 25% 

increase in whole brain glycogen content [182]. 

However, 27 hours after the hypoglycaemia period, brain 

glycogen levels had return to baseline levels. The authors 

observed similar results when animals were submitted to 

daily recurrent hypoglycaemia insults for 9 days. In line 

with the effect of systemic hypoglycaemia, 

neuroglycopenia induced by repetitive intracere-

broventricular injection of 2-deoxy-D-glucose for 3 days 

induced increases in brain glycogen content in the 

hypothalamus and cortex by 69% and 153%, 

respectively, in comparison to saline-injected rats [187]. 

Such glycogen modifications were associated to 5'-

adenosine monophosphate-activated protein kinase 

(AMPK), a glucose sensor that is suppressed by high 

glucose [188] and activated by low glucose 

concentrations [189]. In contrast, Herzog et al. failed to 

detect glycogen supercompensation after acute or 

recurrent hypoglycaemia in the rat cerebellum, cortex 

and hypothalamus [190]. In line with this, after recovery 

from chronic and sustained hypoglycaemia bellow 3 mM 

for 2 weeks, brain glycogen levels and turnover were not 

different from control rats [191]. A recent study on 

patients with T1D did not support the glycogen 

supercompensation hypothesis [192]. Interestingly, brain 

glycogen supercompensation was also observed in rats 

after depletion upon exhaustive exercise [193]. In this 

study, brain glycogen levels were decreased with 

exhaustive exercise and were supercompensated at 6 

hours after exercise in several brain areas, and it was 

sustained until 24 hours after exercise in both cortex and 

hippocampus (long-lasting supercompensation).  

Increased glial glycogen stores can eventually 

sustain neuronal activity for a longer period [194] during 
a subsequent hypoglycaemia episode and, therefore, 

contribute to the shift in the glycaemia threshold at 

which counter-regulation initiates. However, it remains 
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to be addressed whether excessive content of glycogen 

can effectively buffer brain glucose supply to glucose-

sensing neurons for longer periods.  

All together, these data suggest that glycogen 

content and metabolism may have an important role in 

hypoglycaemia unawareness, even though very little is 

known on brain glycogen metabolism in diabetes 

conditions. Animal models of diabetes characterised by 

insulin deficiency and chronic hyperglycaemia show 

unaltered glucose transport at the blood-brain-barrier 

[98], thus leading to high brain glucose concentration at 

hyperglycaemia. In chronic, sustained hyperglycaemia, 

the rodent brain does not display evident alteration of 

brain glycogen levels [195-198]. On the other hand, it is 

not clear whether insulin regulates whole brain glycogen 

deposition.  

 

 

 

 

  

 
 

 
Figure 1. Events associated to impaired insulin signalling and leading to cognitive deterioration. 

Insulin regulates synaptic activity and glucose metabolism. Thus impaired insulin signalling leads to 

synaptic dysfunction and altered glucose homeostasis that impacts energy metabolism, osmolarity and 

redox balance. Furthermore, Aβ clearance and tau phosphorylation are under control of insulin/IGF-1 

receptors. Hence, T2D leads to increased amount of amyloid precursor protein (APP), Aβ accumulation 

and tau hyperphosphorylation, leading to the formation of neurofibrillary tangles. Increased oxidative 

stress upon redox imbalance further affects mitochondrial metabolism and favours protein aggregation. In 

fact, advanced glycation end-products (AGE) in oxidative stress lead to a number of protein 

modifications that have functional consequences on metabolic pathways for signaling and energy 

production. While impaired energy metabolism may directly impact synaptic efficiency due to impaired 

membrane repolarisation and neurotransmitter synthesis/recycling, neurofibrillary tangles resulting from 

protein aggregation lead to degeneration of nerve terminals. This leads to cognitive impairment and is 

accompanied by astrogliosis and possibly by neuroinflamation. 

  

 

 



J. M. N. Duarte                                                                                                                        Brain Metabolism in Diabetes       

Aging and Disease • Volume 6, Number 5, October 2015                                                                               313 
 

Whether hypoglycaemia-induced brain glycogen 

supercompensation occurs in diabetes conditions remains 

to be clearly demonstrated. Recently, a study on a small 

sample of patients with insulin-dependent diabetes and 

hypoglycaemia unawareness suggested that brain 

glycogen concentration is even slightly lower than in 

healthy subjects (although not significantly different) 

[192]. However this was never studied in well controlled 

experimental models of diabetes, and the effects of 

severity and duration of the hypoglycaemia insult, as 

well as the conditions of recovery from hypoglycaemia, 

on the degree of glycogen supercompensation remain to 

be ascertained.  Moreover, a possible involvement of 

glycogen metabolism in impaired insulin signalling in 

T2D was never investigated.  

In summary, in addition to diabetes itself, the 

occurrence of recurrent hypoglycaemia episodes due to 

treatment are also responsible for CNS injury. While 

some studies reported that cognitive decline in diabetic 

patients treated with insulin can be largely attributed to 

recurrent episodes of hypoglycaemia rather than to 

hyperglycaemia, others do not support this notion [199, 

200]. Because, T1D patients without hypoglycaemia 

episodes also display a decline in cognitive function 

[201, 202], insulin signalling defects and glucose 

neurotoxicity remain the most important contributors for 

the development of dementia. 

 

Conclusion 

 

Uncontrolled hyperglycaemia in diabetes mellitus leads 

to well described microvascular complications that affect 

many organs. While the development and severity of 

these complications is mostly dependent on the degree of 

glycaemia control and duration of the disease, treatment 

with insulin frequently results in hypoglycaemia 

episodes. Both hyper- and hypoglycaemia affect brain 

function and may lead to cognitive dysfunction and 

dementia, but impaired insulin signalling appears as a 

very important factor driving neurodegeneration. 

Experimental diabetic conditions cause deficits in spatial 

learning and synaptic plasticity, synaptic degeneration 

and increased astrocyte reactivity and proliferation 

particularly in the hippocampus and cortical areas 

involved in learning and memory processing (Figure 1). 

These structural and functional modifications are likely 

to involve alterations of cerebral metabolism and, 

because they occur in both insulin deficiency and insulin 

resistance, the lack of adequate cerebral insulin 

signalling seems to be crucial for the development of 

diabetic encephalopathy and AD, with which diabetes 
shares cellular features.  
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