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SynopsisSynopsis
The fraction of white matter lesions exhibiting the central vein sign (CVS) has shown promise as a biomarker in theThe fraction of white matter lesions exhibiting the central vein sign (CVS) has shown promise as a biomarker in the
diagnosis of multiple sclerosis. As manual CVS assessment is not clinically feasible, automated solutions have beendiagnosis of multiple sclerosis. As manual CVS assessment is not clinically feasible, automated solutions have been
proposed to perform this task. A deep-learning-based method called “CVSnet” demonstrated effective and accurateproposed to perform this task. A deep-learning-based method called “CVSnet” demonstrated effective and accurate
discrimination of MS from its mimics but required manual pre-selection. This work extends CVSnet to allow fullydiscrimination of MS from its mimics but required manual pre-selection. This work extends CVSnet to allow fully
automated CVS assessment without manual interaction. High-quality, expert-reviewed segmentations of almost 6300automated CVS assessment without manual interaction. High-quality, expert-reviewed segmentations of almost 6300
lesions were used for training and testing. The proposed method achieved accuracies between 75% and 80% in anlesions were used for training and testing. The proposed method achieved accuracies between 75% and 80% in an
unseen testing set.unseen testing set.

IntroductionIntroduction
In recent years, several studies have shown the feasibility to distinguish multiple sclerosis (MS) from other mimicking diseases by
assessing the fraction of brain white matter lesions that exhibit a central vein, a characteristic referred to as the central vein sign (CVS) (1–
4). While this method could support differential diagnosis and ultimately treatment decisions, manual CVS assessment can be tedious and
very time-consuming, making it unfeasible in clinical routine. To address this problem, a deep-learning prototype method for automated
CVS assessment in brain lesions, called “CVSnet”, was recently introduced and demonstrated effective and accurate discrimination of MS
from its mimics (5,6). However, this method was trained on and solely predicted focal lesions displaying the central vein sign (CVS+) or not
(CVS−), but did not account for so-called “excluded lesions” (CVSe), as defined by the NAIMS criteria (7). CVSe lesions are confluent or have
either eccentric or multiple veins, and should not be considered when calculating the fraction of CVS+ lesions. A manual pre-selection step
was thus required to eliminate CVSe prior to running CVSnet. This hindered integration of CVSnet with current lesion segmentation
algorithms into a fully automated pipeline. The goal of this work was to improve CVSnet to be able to classify CVS+, CVS−, and CVSe lesions
without manual pre-selection, allowing combination with a lesion segmentation algorithm into a fully automated pipeline.

MethodsMethods
Figure 1Figure 1 illustrates the workflow. We enrolled 109 patients with an established MS, clinically isolated syndrome (CIS), or radiologically
isolated syndrome (RIS) diagnosis (N=86; RRMS 42; SPMS 15; PPMS 26; CIS 2; RIS 1) or with an MS mimic (N=23) (patient mean±SD age:
50±12 years; male/female: 45/64), and 12 healthy controls (mean±SD age: 44±9 years; male/female: 6/6). Subjects underwent 3T brain MRI
(MAGNETOM Skyra and MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany, or Achieva, Philips Healthcare, Best, Netherlands).
3D T1w MPRAGE, 3D T2-FLAIR, and 3D T2*w segmented EPI acquisitions were performed. Images were up-sampled to voxel size
(0.55x0.55x0.55)mm  if needed and rigidly registered to the FLAIR space. FLAIR* images were calculated (8). Brain lesions, including
infratentorial, were automatically segmented (9), and quality controlled by a single rater. CVS assessment was conducted on FLAIR*
images by two raters, according to the NAIMS guidelines, yielding 2542 CVS+, 1935 CVS−, and 1815 CVSe lesions. A convolutional neural
network based on the CVSnet architecture (6) (Figure 2Figure 2) was trained for different input configurations using a total of 5636 samples (2261
CVS+, 1778 CVS−, and 1597 CVSe) from 108 subjects and evaluated in 656 unseen samples (281 CVS+, 157 CVS−, and 218 CVSe) from 13
unseen subjects (Figure 3Figure 3). The configurations relied on combinations of the following channels as input: (i) FLAIR*, (ii) T2*, (iii) lesion
mask, and (iv) CSF and gray/white matter concentration maps (cCSF, cGM, cWM) obtained from a partial-volume estimation algorithm (10).
Training and testing were performed based on small 3D patches extracted around each lesion. The following configurations were tested: 
A) FLAIR* 
B) FLAIR* + T2* 
C) FLAIR* + lesion mask 
D) FLAIR* + lesion mask + T2* 
E) FLAIR* + lesion mask + T2* + cGM + cWM + cCSF 
Lesion-wise classification performance was evaluated for all configurations by calculating sensitivity, specificity, and accuracy for each
lesion class. Subject-wise classification performance was evaluated for models D and E.

ResultsResults
Performance in the pure testing set was overall similar across the tested models, slightly increasing with the number of input channels
used (Figure 4Figure 4). Performance was best for CVSe lesions followed by CVS− and CVS+. Overall best performance was achieved by models D
and E with accuracies of 75.5% and 75.0% for CVS+, 77.4% and 77.6% for CVS−, and 79.7% and 80.0% for CVSe lesion types, respectively.
The similar performance of models D and E indicates that adding CSF and brain tissue concentration maps did not help the model to
distinguish the different CVS lesion types. Even model A, relying only on FLAIR* images, achieved accuracies between 69.1% and 79.1%,
indicating that FLAIR* is highly informative for CVS assessment. Subject-wise classification performance was relatively similar across
subjects (Table 1Table 1). Although CVS+ fraction was overall underestimated by the network, assuming a threshold of ≥40% CVS+ (11), the CNN
(models D+E) would have correctly identified all test subjects except one (#4) as MS or non-MS, compared to two MS subjects (#4,#9)
being misclassified as non-MS based on the human raters’ assessment.

Discussion and ConclusionDiscussion and Conclusion
We introduced an improved version of the CVSnet (5,6) deep-learning method for automated CVS assessment. Unlike the previous
method, the new method can classify all CVS types of lesions, enabling its integration with MS lesion segmentation algorithms. This will
allow fully-automated CVS assessment in patients’ brains, speeding up the evaluation of CVS as a diagnostic biomarker for differentiating
MS from mimicking diseases. With accuracies of 75% to 80% in the best models, the network performance approaches levels of human
inter-rater agreement estimated at 83% (12), an important benchmark when considering an unsupervised application of the method. The
similar subject-level performance for cases with few and many lesions underlines the robustness of the method. The consistently higher
detected CVS+ lesion fraction in MS cases suggests that the method could support MS diagnosis.
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FiguresFigures

Figure 1:Figure 1: Study design: Cohort composition,
subject demographics, and MRI acquisition and

processing steps.

Figure 2:Figure 2: CNN architecture: An ensemble of 10
parallel networks was used for classifying lesion

patches as either CVS+, CVS−, or CVSe. With
regard to the previous CVSNet implementation,

a third output class for CVSe was added, and
different combinations of input channels were

tested to investigate their impact on the
classification performance.

Figure 3:Figure 3: Training and testing setup: The total
121 subjects were divided into a subset for

training and a pure testing set. The training data
was augmented 3-fold, resulting in a four times

higher sample number. In a 10-fold cross
validation approach, the training data were

further split into a training and a validation set,
resulting in ten trained networks, which were

combined into one ensemble. Sensitivity,
specificity, and accuracy were subsequently

analyzed in the pure testing set.

Figure 4:Figure 4: Lesion-wise performance comparison
of the different models in the pure testing set

for each class. Overall performance was rather
similar across the models but increased slightly
with the number of used input channels, except

for model E, which showed comparable
performance to model D despite having three
additional input channels. Accuracy levels are

highlighted, as this is regarded the most relevant
metric with respect to a clinical application. With
accuracies of 75% to 80% in the best models, the

network performance is approaching levels of
human inter-rater agreement.

Table 1:Table 1: Subject-wise classification
performance for model D in the pure testing set.
Overall classification performance was relatively

similar across all subjects. Although CVS+
fraction was overall underestimated by the

network, assuming a threshold of ≥40% CVS+
(values highlighted in orange), the CNN would

have correctly identified all test subjects except
one (#4) as MS or non-MS, compared to two MS
subjects (#4, #9) being misclassified as non-MS

based on the human raters’ assessment.
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