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Abstract
Electroencephalography (EEG) is among the most widely diffused, inexpensive, and adopted neuroimaging techniques. 
Nonetheless, EEG requires measurements against a reference site(s), which is typically chosen by the experimenter, and 
specific pre-processing steps precede analyses. It is therefore valuable to obtain quantities that are minimally affected by 
reference and pre-processing choices. Here, we show that the topological structure of embedding spaces, constructed either 
from multi-channel EEG timeseries or from their temporal structure, are subject-specific and robust to re-referencing and 
pre-processing pipelines. By contrast, the shape of correlation spaces, that is, discrete spaces where each point represents 
an electrode and the distance between them that is in turn related to the correlation between the respective timeseries, was 
neither significantly subject-specific nor robust to changes of reference. Our results suggest that the shape of spaces describing 
the observed configurations of EEG signals holds information about the individual specificity of the underlying individual’s 
brain dynamics, and that temporal correlations constrain to a large degree the set of possible dynamics. In turn, these encode 
the differences between subjects’ space of resting state EEG signals. Finally, our results and proposed methodology provide 
tools to explore the individual topographical landscapes and how they are explored dynamically. We propose therefore to 
augment conventional topographic analyses with an additional—topological—level of analysis, and to consider them jointly. 
More generally, these results provide a roadmap for the incorporation of topological analyses within EEG pipelines.

Keywords Resting-state electroencephalography · Topography · Topology · Network · Computational modelling · 
Reference electrode

Introduction

Electroencephalography (EEG) is a non-invasive neuroimag-
ing technique measuring the electrical activity of the brain 
at the scalp (Biasiucci et al. 2019). EEG has several practi-
cal strengths as a neuroimaging tool (Michel 2009; Michel 
and Murray 2012; Michel et al. 2004; Murray et al. 2008): 
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it is temporally precise, cost-effective, easy to use, portable 
and compatible with other techniques, such as MRI and 
PET. Indeed, these strengths made EEG a primary tool for 
studying brain activity both from the clinical and research 
standpoints (Lepage et al. 2014). EEG primarily measures 
postsynaptic potentials of pyramidal neurons. The neuro-
transmitter release generated by excitatory or inhibitory 
action potentials results in local currents at the apical den-
drites of the post-synaptic neuron, that in turn lead to current 
sources and sinks in the extracellular space. In biophysical 
terms, voltages refer to the exertion needed to move charge 
from one site to another. More practically, this means that 
voltage is the charge differential between a “chosen” elec-
trode and a “reference” electrode (Tivadar et al. 2019; Biasi-
ucci et al. 2019). EEG is the measurement of this voltage as 
it varies in time, and thus results in “time series” across dif-
ferent sites on the scalp. Two issues arise from the biophysi-
cal underpinnings of the EEG signal. First, the brain signals 
recorded at scalp level is given by the synchronous activ-
ity of multiple neurons that volume conduct. Therefore, a 
given electrode not only captures brain activity from directly 
beneath it, but to a certain extent from the entire brain. Sec-
ond, measurements of voltage are referential, meaning that 
EEG time series [including event-related potentials (ERPs)] 
at a given electrode or scalp site will change when the refer-
ence changes, as there is no electrically neutral spot on the 
scalp or body surface. This has led to a long-standing debate 
in the EEG community, discussing which of the references 
is more informative for the analyses (Chella et al. 2016; Yao 
et al. 2019; Hu et al. 2019).

This issue concerns spontaneous data as well as pre-
processed and post-processed averages, and functional con-
nectivity data. Thus, referencing affects both temporal and 
spatial aspects of the recorded potentials (Chella et al. 2016). 
With regards to spatial aspects, the values of the electric 
field at the scalp will change when the reference changes, as 
a different baseline value (i.e. the voltage of the reference 
electrode) is being compared to every other electrode.

In terms of temporal aspects, a non-neutral reference 
introduces time-varying activity into the recordings of all 
electrodes, meaning that both the temporal waveforms, 
as well as their spectral properties suffer from distortions 
(Chella et al. 2016). Therefore, the variance around a mean 
voltage value (e.g., spectral power, amplitude, etc.), as well 
as other derived and associated measures, including results 
of statistical contrasts, will change when the reference 
changes. These facts have generally led to—and to some 
extent continue to result in—misinterpretation and misuse 
of EEG data, despite good quality in experimental design 
(Michel and Murray 2012; Biasiucci et al. 2019; Tivadar 
et al. 2019).

To solve the reference issue, many in the EEG commu-
nity have turned towards the characterization and analysis 

of properties of the electrical field at the scalp, such as topo-
graphical maps and spatial pattern analysis methods, as well 
as source localisation techniques (Wong 2012; Michel and 
Murray 2012; Michel et al. 2004; Grave de Peralta Menen-
dez et al. 2000; Lehmann and Michel 2011; Michel et al. 
2001; Tenke and Kayser 2005; Marinazzo et al. 2019). Treat-
ing the data from the entire electrode montage as a multi-
variate vector has several advantages over waveform-based 
analysis of voltage. First, the shape of the electrical field at 
the scalp will not change with a changing reference (Tivadar 
et al. 2019). Second, multivariate analyses also profit from 
the added information of high-density recordings. They can 
disentangle effects of strength from effects due to changes in 
sources’ configuration or signal latency (Murray et al. 2008). 
Third, topographic information has direct neurophysiologic 
interpretability (Michel and Murray 2012), as biophysical 
laws dictate that differences in topography indicate changes 
in the configuration of active cerebral sources (Vaughan 
1982; Lehmann 1987). Nevertheless, traditional waveform-
based analyses still predominate in the EEG community 
(Luck 2014).

Here, we propose a new method of description of the 
EEG signal, which is robust across different pre-process-
ing and reference choices. We first build representations of 
EEG data based on different types of signal embeddings. We 
then assess their robustness and discriminatory power, e.g. 
between different subjects and tasks, using recent topologi-
cal data analysis tools. These tools have been shown to be 
useful in the analysis of neurophysiological data (Petri et al. 
2014; Petri et al. 2013; Ibáñez-Marcelo et al. 2019a; Bas-
sett and Sporns 2017; Giusti et al. 2016; Varley et al. 2020; 
Billings et al. 2021) because they are built to detect proper-
ties of datasets, e.g. point clouds or weighted networks, that 
are invariant under homeomorphic transformations, which 
include, deformations, rotations, contractions and any other 
continuous transformation (Zomorodian and Carlsson 2005; 
Ghrist 2008). The rationale for this ability is that they cap-
ture and quantify topology, that is, the shape of spaces in 
arbitrary dimensions, including discrete spaces obtained 
from signals, via their topological features, e.g. connected 
components, 1-dimensional holes, three-dimensional cavi-
ties, and the higher-dimensional analogues.

In this way, topological descriptions of EEG data have 
been shown to provide meaningful simplifications of high-
dimensional data, by extracting low-dimensional summaries 
of the dataset’s shape (Giusti et al. 2015), to capture meso-
scale patterns of disconnectivity (Petri et al. 2014; Lee et al. 
2012) and to explicitly encode interactions among many ele-
ments (i.e. nodes in a network, regions of the brain, etc.) 
(Battiston et al. 2020; Iacopini et al. 2019).

We find that embeddings constructed from multi-chan-
nel EEG timeseries, and from their temporal structure, 
are specific to subjects and robust to re-referencing and 
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pre-processing pipelines. By contrast, spaces obtained from 
spatial correlations among electrodes, analogous to tradi-
tional functional connectivity (Sporns 2013; Hutchison 
et al. 2013; Betzel et al. 2014), were weakly characteristic of 
subjects and lacked robustness to changes of reference. Our 
results highlight the utility of the proposed tools to explore 
individual topographical landscapes, and to observe how 
these landscapes dynamically change across time.

Methods

Overview of Analysis Pipeline

In the following sections, we summarise the pipeline we 
adopt to analyse EEG data and compare the results across 
multiple references and pre-processing choices. We start 
from raw EEG signals recorded on the scalp in a cohort of 
21 subjects (Fig. 1a, see section ‘Subjects’). The recorded 
signals are then prepared using three different pre-process-
ing pipelines (Fig 1b, see section ‘Recording Procedure and 

Pre-processing Pipelines’). For each pipeline, we consider 
different EEG references, which can result in signals with 
different waveforms and different relations to one another 
(Fig. 1c): for illustration, we show three EEG signal snip-
pets for various references. For all pre-processing pipe-
lines, subjects and references we compute three different 
representations: functional connectivity (section ‘Functional 
Connectivity Metric Embedding Construction’), the Takens 
embedding (section ‘Delay Embedding Construction’) and 
the direct temporal embedding (section ‘Direct Embedding 
Construction’) (Fig. 1d). For all these representations, we 
extract summaries of their low-dimensional topological 
properties (section ‘Topological Distances Between Spaces’) 
and use them to compute distances between them (Fig. 1e, 
f). Finally, we compare the results obtained from the previ-
ous analysis with a two synthetic benchmarks: one obtained 
by simulating EEG signals (section ‘Simulated EEG Data’) 
and the other obtained by temporally reshuffling the EEG 
data (section ‘Comparison with Temporally Reshuffled Null 
Model’). The following sections provide details on the anal-
ysis steps described above.

(a) (b) (c)

(d) (e) (f)

Fig. 1  Overview of analysis pipeline. The standard pipeline of EEG 
analysis follows these steps: a raw signals are recorded from scalp 
EEG electrodes. b The signals are filtered in order to remove noisy 
or uninteresting frequency bands (here, any activity < 0.1Hz and 
> 60 Hz , as well as 50 Hz electrical line noise) (filtered); recorded 
signals are then cleaned to remove artefacts (i.e. blinks, eye move-
ments, muscle artefacts, heart rate artefacts, electrode pops—i.e. sin-
gle or multiple sharp waveforms that appear after a sudden change 
in impedance, electrode drifts due to sweat,etc.) (clean); interpo-
lated to account for technical issues (i.e. “dead” electrodes), elec-
trode drifts due to sweat or electrode bridging (when electrolyte gel 
spreads between adjacent electrodes), etc. (cleanint). c Pre-processed 
data are then referenced to one of the electrodes or, in some case to 
the average value across all channels. Different reference choices can 
result in different effects: for illustration, we show here three inter-

vals of EEG signals for four different references. Note how the rela-
tion among series can change depending on the choice of the refer-
ence. d In this study we investigate three data representations: (1) X is 
obtained by considering the Pearson correlations among channels and 
results in a description of spatial correlations, (2) T is the Takens (or 
delay) embedding starting from the multivariate EEG timeseries and 
explicitly encoding temporal correlations within the signals, (3) D is 
a variant of T wherein the EEG timeseries is directly embedded, that 
is, without the imposition of time-delay vectors, effectively equiva-
lent to considering the brain configuration space. e We analyse the 
three types of embeddings using persistent homology, which quantita-
tively captures the shape of generic spaces in the form of barcodes or 
persistence diagrams. f Finally, we can associate a distance between 
spaces by measuring distances between persistence diagrams them-
selves
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Subjects

We tested twenty-one right-handed participants (18 male, 
3 female, age range 21–39, mean age ± standard deviation: 
25.76 ± 4.54 years). No participant had a history of or cur-
rent neurological or psychiatric illness, according to self-
report. Data from one participant was excluded due to exces-
sive EEG artifacts, thus leaving 20 participants in the final 
sample (17 male, 3 female; aged 21–39). All participants 
provided written, informed consent to procedures approved 
by the cantonal ethics committee (CER-VD, Switzerland).

Recording Procedure and Pre‑processing Pipelines

Participants sat in a sound-attenuated darkened room 
(WhisperRoom MDL 102126E), and were first tested using 
a multisensory paradigm. Event-related potentials from 
this dataset have already been published in (Tivadar et al. 
2018). After the experimental paradigm, participants were 
asked whether they would like a break before the resting-
state recording was initiated. Participants were then asked to 
close their eyes and instructed not to engage in any specific 
physical or mental activity for 3 min. Continuous EEG was 
recorded at 1024 Hz with a 128-channel BioSemi ActiveTwo 
AD-box (https:// www. biose mi. com/). No online filters were 
used. Online references were the typical BioSemi CMS and 
DRL electrodes, which form a feedback loop that drives the 
average potential of the subject as close as possible to the 
amplifier “zero”. Data were offline re-referenced to at least 
three different references at different pre-processing steps 
(filtered, clean, and cleanint, described in more detail later, 
Fig. 1b). We chose those electrodes on the N = 128 BioSemi 
cap that were closest to and most representative of the typi-
cal classical external electrodes used for referencing (Chella 
et al. 2016). Specifically, we used the average reference as 
well as C17, A23 and D24/B14 as representative of nose, 
inion, and linked-mastoids/earlobes references, respectively. 
Prior to cleaning, a 2nd order Butterworth filter (− 12 dB/
octave roll-off; 0.1 Hz high-pass; 60 Hz low-pass; 50 Hz 
notch) was applied, which was computed linearly in both 
forward and backward directions to remove phase shifts. 
Thus, by filtering, any activity lower than 0.1 Hz and higher 
than 60 Hz was removed, together with 50 Hz activity which 
is typical of electrical noise (i.e. power line noise). These 
filtered data (denoted filtered in the following) constitute 
the first pre-processing pipeline we will consider. Next, we 
further pre-processed the filtered data, by cleaning them 
(clean dataset). Data quality was thus controlled first via 
visual artifact detection and then via ICA decomposition 
in Matlab (R2020a) using the EEGLAB toolbox (Delorme 
and Makeig 2004), in order to exclude any remaining tran-
sient noise, muscle artefacts, heart beat artefacts and lateral 

eye-movements or blinks. These data were also referenced 
to three references, excluding the average reference. This 
constitutes the second pre-processing pipeline. Finally, for 
the third pipeline (cleanint), we further inspected data from 
artefact-contaminated electrodes. These electrodes were 
interpolated using 3D spherical splines (Perrin et al. 1989), 
which take into account all of the electrode sites. We then 
re-referenced our dataset to all the four references specified 
above, including the average reference. To summarize, the 
filtered and clean data were only referenced to C17, A23, 
D24B14, while the cleanint data was referenced to the pre-
viously named electrodes, and additionally to the average 
reference. Lastly, all timeseries were down-sampled to 64 
samples per second to reduce computational load and to 
reflect the absence of spectral content > 60 Hz.

Functional Connectivity Metric Embedding 
Construction

We compute functional connectivity networks using Pearson 
correlations. More precisely, for each combination of subject 
s and reference r, we compute the correlation matrix �s,r , in 
which entry cs,r

ij
 corresponds to the Pearson correlation 

between the timeseries of channels i and j with respect to a 
subject s and reference r. To each subject-reference pair 
(s,  r) we associate to �s,r a discrete metric space Xs,r , 
obtained by mapping the timeseries corresponding to each 
channel i to a point pi ∈ Xs,r . Distances between points are 
given by ds,r

C
(pi, pj) = 1 − c

s,r

ij
 . This defines a metric space 

(Xs,r, d
s,r

C
) for each subject-reference pair (s, r).

Delay Embedding Construction

Despite the presence of unmodeled noise when re-refer-
encing EEG potentials, the EEG signal samples from the 
brain’s dynamical state space. To reconstruct the underlying 
dynamical system, we compute the Takens embedding of 
each volunteer’s re-referenced multichannel EEG record-
ings. As before, for each combination of subject s and refer-
ence r, we compute the Takens embedding Ts,r as follows: 
for a single time series x(t) we build a d-dimensional point 
cloud defined as {x(t0), x(t0 + �),… , x(t0 + (d − 1)�)} for 
all t0 in the time series, and where � is a delay and d the 
embedding dimension. Standard techniques are adopted to 
choose the pair (�, d) . Distances between points in Takens 
embeddings are computed using the canonical Euclidean 
distance, dE , as prescribed by Takens’ embedding theorem 
(Noakes 1991). It is possible to generalize the embedding 
to the case of I time series, which in turn results in a d × I 
dimensional embedding. We therefore consider the metric 
spaces (Ts,r, d

s,r

E
) (Myers et al. 2019).

https://www.biosemi.com/
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Direct Embedding Construction

Following Takens’ finding that the delay embedding charac-
terizes a system’s dynamical state space, Deyle and Sugihara 
(2011) found similar properties when directly embedding the 
temporal evolution of the I dimensional vectors from mul-
tichannel recordings (Deyle and Sugihara 2011). As before, 
for each combination of subject s and reference r, we com-
pute the direct multichannel embedding Ds,r as follows: for 
a multichannel time series x(t, i) we build a I-dimensional 
point cloud defined as {x(t0, i0), x(t0, i1),… , x(t0, iI)} for all 
t0 in the time series, and where I is the number of recording 
channels. Here again, distances between points are com-
puted using the canonical Euclidean distance, ds,r

E
 . Thus we 

develop the metric spaces of the direct embedding (Ds,r, d
s,r

E
).

The benefit of the direct embedding comes from its inter-
pretability. Each embedded point corresponds to the vector 
of signals from all electrodes at a specific time point. The 
embedding therefore corresponds to the configuration space 
obtained from all instantaneous EEG topographies.

One downside of the direct embedding is that the number 
of embedded points increases by a factor of N∕� where N 
is the total number of time points in the recording. In order 
to decrease computation time, we utilize the sparsification 
method of Cavanna et al. (2015) to generated sparse dis-
tance matrices having 10% of the original number of edges 
( � = 0.3).

Topological Distances Between Spaces

We compute distances between spaces corresponding to the 
various embeddings using persistent homology (Edelsbrun-
ner and Harer 2008; Ibáñez-Marcelo et al. 2019b). More 
precisely, we perform standard persistent homology analysis 
on the Rips–Vietoris filtrations defined over the points in 
Xs,r , Ts,r , or Ds,r . Persistent homology works by studying the 
evolution of topological features (connected components, 
1-dimensional cycles, 3d-cavities, etc.) along a series of 
progressively finer simplicial complex approximations. A 
simplicial complex can be intuitively imagined as a higher-
dimensional version of a graph, that in addition to edges 
(that is, pairs of points or vertices, called 1-simplices) also 
allows for other elementary bricks composed by groups 
of k + 1 points, called k-simplices ( k ≥ 2 ). In our case, 
however, we need a way to go from metric spaces to these 
simplicial complex approximations. We do this using the 
Rips–Vietoris construction. It works as follows: given a set 
of points {p0, p1,… , pn} in a metric space M and an arbitrary 
radius r, for each point pi we consider its neighbourhood 
�(pi, r) of radius r; we define simplices in the Rips–Vieto-
ris complex RV(M, r) at distance r as follows: whenever 
�(pi, r) ∩ �(pj, r) ≠ � for some i,  j we add the 1-simplex 
[pi, pj] ; whenever three points pi, pj, pk all have non-empty 

pairwise intersections we add the 2-simplex [pi, pj, pk] , and 
so on for higher dimensions. The collection of all these sim-
plices constitutes RV(M, r).

The choice of r is of course problematic, as it requires 
picking a scale for the simplicial complex reconstruction. 
Persistent homology inverts the problem by scanning the 
properties of RV(M, r) as a function of r. The ordered col-
lection of {RV(M, r)}r is called a filtration of M (Fig. 2a). 
The outputs of persistent homology are barcodes (and 
equivalently, persistence diagrams). These compressed 
summaries recapitulate the homological features of a 
space, describing how long certain topological features 
persist along the filtration (e.g. connected component, 
1-dimensional holes, etc.) (Fig. 2b). Each bar corresponds 
to a specific topological feature and its appearance rb and 
death rd radii correspond to the radii at which that feature 
first appears and disappears, respectively. Persistence dia-
grams provide an equivalent description: each topological 
feature is represented in the 2-dimensional plot by a point 
with coordinates (rb, rd) . We adopt the persistence diagram 
description, because it makes it easier to compute distances 
between them, and use those distances as a measure of 
similarity between the corresponding spaces (Edelsbrunner 
and Harer 2008).

In Xs,r spaces we use the Pearson distance as distance 
between points to construct the filtration (Fulekar 2009). In 
Ts,r and Ds,r spaces we instead adopt the Euclidean distance.

Here, for computational reasons, we focus on the first two 
homological groups: H0 , that describes connected compo-
nents, and H1 , that describes one-dimensional holes. Persis-
tence diagrams are equipped with a metric themselves. We 
can therefore measure distances between them and use this 
homology-based distance as a topological distance between 
spaces (Reininghaus et  al. 2015). We choose persistent 
homology as a descriptor for our study because it allows us 
to compare spaces with different numbers of points, dimen-
sions and metric structure. More precisely, we define the 
homological distance between �s,r and �s′,r′ to be the sliced 
Wasserstein distance between the persistence diagrams cor-
responding to Xs,r and Xs′,r′ . Similarly, we define the homo-
logical distance between Takens embeddings Ts,r and Ts′,r′ 
to be the Wasserstein distance between the corresponding 
persistence diagrams. The same applies for computing dis-
tances between multichannel embeddings Ds,r and Ds′,r′ . For 
completeness, in the following we report the results for H0 
and H1 , although in this study the results from both dimen-
sions typically agree.

Simulated EEG Data

To demonstrate the performance of the present study’s meth-
ods against a known benchmark, we also consider a synthetic 
dataset, (sv, rv) , generated from the brain activity simulation 
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software, The Virtual Brain (tvb) (version 2.2) (Leon et al. 
2013; Schirner et al. 2021). Specifically, we modeled local 
neuronal dynamics as a generic 2-dimensional oscillator. 
Large-scale structural connectivity was taken from the 
default connectivity dataset having 76 nodes (‘connectiv-
ity_76.zip’). The speed of signal propagation was set to 
4ms−1 . Coupling between nodes was set to the recommended 
linear function with a slope of 0.014. The integration scheme 
was specified as ‘HeunStochastic’, with integration rate set 
to 1024 Hz. Cortical activity was simulated across a surface 
mesh having 16384 vertices (‘cortex_16384.zip’). Local cor-
tical connectivity was specified using the prebuilt default 
parameters in the file ‘local_connectivity_16384.mat’. The 
coupling strength between cortical vertices was set to a rec-
ommended global value of 2−10 . Simulated EEG data was 
monitored at 65 sites (‘regionMapping_16k_76.txt’). EEG 
Data were simulated at a rate of 64 Hz for 4.27 min. Data 
from five different references was generated by setting aside 
five EEG channels, chosen at random, to be used as base-
lines; and then subtracting each of the remaining 60 channel 
data from each baseline, in turn. Thus, each simulated EEG 
dataset was of size [5 references × 60 channels × 16384 
samples].

Using the above pipeline as a template, 8 ‘virtual volun-
teers’ were modeled by adjusting the structural connectivity 
weight matrix, and by assigning a different level of additive 
noise to the integration scheme. Specifically, each edge of 
the connectivity matrix was multiplied by a random fac-
tor in [0.75, 1.25]. The default connectivity weights ranged 
between [0,3], with most weights assigned a value of 0. For 
each virtual volunteer, Gaussian noise having unit variance 
and a standard deviation between [0, 0.01] was added at each 
integration step.

Comparison with Temporally Reshuffled Null Model

We also consider an auxiliary randomized version of the 
(s, r) datasets: given each dataset

we keep the vectors the same, but we reshuffle the temporal 
labeling. In this way, we preserve the statistical properties of 
the signal, but destroy the temporal correlations within it. In 
particular, this type of randomization conserves exactly the 
network of spatial correlations between electrodes. That is, 
those captured by the correlation networks �s,r . Similarly, 

�(t) = {x(t0), x(t1),… , x(tT )} ∈ ℝ
N ,

Fig. 2  Sketch of persistent homology computation. a an example of a 
filtration of a data cloud in two-dimensions. As r increases the neigh-
bourhoods become larger, they begin to overlap. When the neighbour-
hoods of two points overlap, an edge (1-simplex) is added. When 
three overlap in pairs, a full triangle (2-simplex) is added, and so on 
for higher-dimensional simplices. Therefore, as r increases, more and 
more simplices appear, making the Rips–Vietoris complex progres-
sively denser and providing a sequence of simplicial approximations 
of the underlying topological space across radii. Persistent homology 
focuses on describing the shape (topological features) of the com-
plexes in this sequence. For example, at the beginning ( r = 0 ), the 
points all belong to components disconnected from each other. As 
r grows, the components begin to merge until only one component 
remains, which contains all points. Around r ∼ 0.65 , a 1-dimensional 

cycle appears in the simplicial complex and persists until around 
r ∼ 1 . A similar analysis can be performed for cavities (homological 
cycles) of arbitrary dimensions (three-dimensional holes bounded by 
triangles, four-dimensional cavities bounded by tetrahedra, etc. b The 
barcodes describing the lifetime of the various connected components 
(red bars), progressively merging into each other until only one sur-
vives (describing H0 ), and the lifetime of the single 1-dimensional 
cycle described above (blue bar, describing H1 ). Barcodes provide a 
summary of the topological properties of a space and can be used to 
compare them in a formal way. We show here the barcode persistence 
because it makes it easier to relate to the filtration. However, they are 
equivalent to persistence diagrams, which in turn are more amenable 
to compute (Wasserstein) distances between spaces
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the direct embedding is unaltered by reshuffling the tempo-
ral labels. For this reason, we only re-analyse the Takens 
embeddings constructed from the randomized data, T∗ . The 
utility of the randomised model is that it provides a bench-
mark for the effect of reshuffling in addition to the observed 
inter-subject similarity. It also allow us to tease apart the role 
of the set of realised brain topographies (well described by 
Ds,r ) from that of their temporal order.

Results

Effects of Re‑referencing on Topology of Functional 
Representations

We quantified the effects of changing the EEG reference on 
three different representations: functional connectivity, com-
puted from spatial correlations between electrodes; direct 
embedding of the brain activations, representing the space 
of sampled configurations; and the dynamical landscape of 
brain activity, as reconstructed from temporal embeddings 
of the signals. More precisely, the first describes how dif-
ferent regions of the brain co-activate and it corresponds 
to how neuroimaging signals are often studied, both with 
fMRI (Bassett and Sporns 2017; Petri et al. 2014) and EEG 
(Sakkalis 2011; Ibáñez-Marcelo et al. 2019b). The direct 
embeddings instead cast EEG signals as points of a high-
dimensional static point cloud, which effectively defines the 
space of realized activations (Donato et al. 2016). Finally, 
the Takens embeddings are used to reconstruct the structure 
of the dynamical attractors of dynamical systems and there-
fore capture the temporal properties of the system (Myers 
et al. 2019). We analysed data from n = 20 subjects, each 
re-referenced to R = 4 different references, using filtered, 
cleaned and cleaned interpolated data. For each pair (s, r) 
we computed the corresponding correlation Xs,r , Takens Ts,r 
and direct Ds,r embedding spaces. We then computed their 
persistence diagrams as described in Methods and measured 
the Wasserstein distances between them. In particular, we 
were interested in quantifying the changes induced by re-
referencing data from the same subject. Figure 3a shows 
the distances between the X spaces computed between all 
subjects and references, for H0 (left) and H1 (right). Fig-
ure 3 parts (b) and (c) show the same for T and D spaces, 
respectively.

Data calculated against different references and belonging 
to the same subject are grouped together in the heatmaps 
(increasing distances go from white to blue). Thus, diago-
nal blocks of short distances (see definition below) suggest 
that re-referencing induces mild changes in the topological 
structure of the spaces under study. It is important to specify 
what is meant by short distances. We choose here to use as 
the benchmark for these effects the distance between spaces 

corresponding to different individuals, but the same refer-
ence site (that is, s ≠ s′ and r = r� ). This choice is predicated 
on the finding that the brain waves of each individual are a 
unique biometric signature for that individual (Poulos et al. 
1999; Marcel et al. 2007; Chan et al. 2018). The boxplots in 
Fig. 3 show this in quantitative form: for each subject (dark 
coloured bars) we plot the distribution of distances between 
the persistence diagrams of spaces obtained from the dif-
ferent referencing. In addition, we plot (in lighter color) the 
distribution of distances between the spaces corresponding 
to different subjects.

It is plain to see that the set of intra-subject distances 
between re-referenced direct and temporal embeddings are 
generally shorter than distances measured between subjects. 
By contrast, we see that the set of intra-subject distances 
between re-referenced correlation spaces X are approxi-
mately the same value as inter-subject distances. Hypoth-
esis testing using the two-sided Kolmogorov–Smirnov test 
( p < 0.01 ) confirms that the correlation metric spaces have 
statistically similar inter-subject embeddings and intra-sub-
ject embeddings.

Beyond statistical significance, we can also quantify how 
dissimilar intra-subject versus inter-subject distances are by 
computing the effect size between distributions, following 
Cohen’s d method (Kelley and Preacher 2012). We find 
that the magnitude of the effect sizes is consistently much 
larger for the direct embedding spaces D and the tempo-
ral embeddings space T than for the correlation spaces X 
(Fig. 4) (Sawilowsky 2009). Indeed, a simple t-test compar-
ing the inter-subject and the intra-subject distances reveals 
that the two distributions are indistinguishable when drawn 
from the correlation spaces. Our results therefore imply 
that the topology of the brain configuration spaces and of 
the temporal embeddings retain individual-specificity after 
re-referencing of the EEG data. By contrast, correlation 
embeddings appear to be unspecific to a given individual 
subject. Observed differences between temporal embeddings 
and correlation embeddings are especially apparent in H1 . 
While the temporal embeddings, T and D, retain their indi-
vidual specificity, the correlation embedding displays many 
instances wherein distances across participants are closer 
than distances across references for the same participant. 
Put another way, in many cases the correlation embedding 
exhibits more diversity when re-referencing a single EEG 
acquisition than when comparing multiple acquisitions from 
different participants (each pegged to the same reference). 
Moreover, this susceptibility to large changes in the cor-
relation space after re-referencing is made plain through 
analysis of the simulated tvb data. Whereas intra-subject 
distances are always greater than inter-subject distances 
when observed through the correlation space. The temporal 
embeddings tend to preserve the expected intra-subject simi-
larities. The one exception to this trend is found in the most 
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Fig. 3  Topological distance between spaces for different references. 
we show the results for the topological distances between the vari-
ous embeddings for H0 , persistent connected components, and H1 , 
persistent one-dimensional cycles (panel a left). We show distances 
between all (s,  r) pairs as heatmaps (with distances growing from 
white to blue). That is, smaller differences between embeddings are 
coded by lighter colours. An example is shown in panel a on the 
right. Rows and columns are ordered by ordered subject and reference 
(s,  r) pairs, which results in references from each subject to be dis-
played in consecutive rows/columns. Therefore, the presence of diag-
onal blocks of short distances (lighter colored squares with respect 
to the off-diagonal blocks) implies that re-referencing induces small 
changes with respect to inter-subject variability. Panels b–d refer 
respectively to the Xs,r Ts,r and Ds,r embedded spaces for the clean-
int datasets. For each embedding type, we compute distances between 
subjects and references for the first two homological groups, H0 and 

H1 , using sliced Wasserstein distances between the corresponding 
persistence diagrams. It is easy to observe and modular block struc-
ture for the Ts,r and Ds,r spaces that is wider than for the Cs,r spaces. 
The boxplots further support this result: we show the distribution of 
within-subject distances between spaces corresponding to different 
references ( d(X∕T∕Ds,r,X∕T∕Ds� ,r� )|s = s�∀r, r� (separated by subject, 
one dark coloured box for each subject, correpsonding to the diagonal 
blocks in the heatmaps) and compare it to the inter-subject distances 
( d(X∕T∕Ds,r,X∕T∕Ds� ,r� )|s ≠ s�, r = r� , lighter color bar, correspond-
ing to the off-diagonal terms in the heatmaps). For the temporal 
embeddings T∕Ds� ,r� , the within-subject distances are smaller (KS 
test, p < 0.01 ) than the between-subject distances, while for the cor-
relation-based embeddings Xs,r the inter-subject distances are compa-
rable with the within-subject distances. Results for other pipelines are 
reported in Figs. 6, 7 and 8
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abstract state space representation, T in H1 . Possibly this 
exception demonstrates the limits of the simulated dataset to 
produce complex EEG data that might preserve higher-order 
topological features of a subject’s brain dynamics.

Role of Different Pre‑processing Pipelines

We next investigated whether the above results vary sig-
nificantly for different choices of pre-processing. Indeed, 
EEG signals usually undergo a series of steps before being 
considered suitable for analysis. We repeated the analysis 
for all the pipelines.

Similarly to what we performed in the previous section, 
we show the results for effect sizes in Fig. 4. We find that 
effect sizes are always larger (in magnitude) for the Ts,r and 
Ds,r spaces than for the corresponding Xs,r spaces, and do 
not differ much across pre-processing pipelines ( d ∼ 1 − 1.5 , 
considered a very large effect (Sawilowsky 2009). This result 
suggests that different pre-processing pipelines do induce 
some changes in the reconstructed topology, but also that 
these changes are negligible compared to what happens in 
the case of correlation networks. Additionally, we confirm 
the result that re-referencing induces changes in the recon-
structed topology of D and T spaces that are much smaller 
than the inter-subject variability.

Comparison with the Temporally Reshuffled Null 
Model

We showed that Ts,r and Ds,r spaces display stronger topo-
logical robustness with respect to those built from spatial 
correlations, while at the same time appearing to be more 
subject-specific. However, we have not ascertained whether 
these properties are a consequence of the statistics of the 
signals themselves, or rather they truly emerge from their 
temporal features. We tested these alternatives by compar-
ing previous results to a null model in which we destroy 

temporal correlations by reshuffling the time labels of the 
instantaneous activity. Note that—by construction—the 
matrices �s,r (and thus the Xs,r spaces) remain exactly the 
same under this reshuffling. In other words, this means that 
we preserve exactly the spatial correlations, while destroy-
ing the temporal ones. The same argument holds for the 
Ds,r embeddings; it is a direct embedding from the multi-
channel EEG signals and therefore reshuffling the temporal 
labels does not change the point cloud. Here, we therefore 
only focus on the effects on Ts,r spaces, by investigating the 
changes induced in the Takens embeddings constructed from 
the reshuffled series, T̃s,r spaces.

In Fig. 5a and b we compare the results for H0 and H1 . 
The first observation is that the distances between reshuffled 
datasets, corresponding to the same subject (across different 
references), appear to be much more heterogeneous than in 
the case of real data. This can be observed in several dif-
ferent ways. The distances between references of the same 
subject are much farther away from each other in the reshuf-
fled case than in the real case (darker colored boxes versus 
the corresponding lighter colored boxes). Similarly, the 
inter-subject distances are typically larger in the reshuffled 
cases. This also holds for the distances between a specific 
real (s, r) pair and its reshuffled version (white box, labeled 
as real-rand in Fig. 5a, b). In fact, this latter distance distri-
bution (real-rand) and the reshuffled inter-subject distance 
distribution (for all pipelines) have averages that are sta-
tistically indistinguishable (Mann–Whitney u test for equal 
mean, null hypothesis not rejected at p < 0.01 ), while the 
real inter-subject distance has a smaller average (significant 
on the same test). The same results hold for the other pre-
processing schemes (Fig. 9).

We further support these observations by computing the 
corresponding effect sizes via Cohen’s d, that is the effect 
sizes of difference between the distributions of distances 
d(Ts,r,Ts,r� ) versus that of d(Ts,r, T̃s,r) . For both H0 and H1 
and for all pipelines, the effect sizes across subjects are 

Fig. 4  Effect size distributions for within-subject versus inter-subject 
distances. For each subject s, we compute the Cohen’s d to compare 
the collection of within-subject Wasserstein distances (computed 
across different references) versus the set of inter-subject Wasserstein 
distances. For each pre-processing step r, and types of embedding 
(T, D, X), we collect the Cohen’s d values across all subjects and dis-
play them as a distribution. Instances where the set of within-subject 

distances are significantly ( p < 0.05 ) different from inter-subject 
distances are marked with an ‘x’. The effect of pre-processing is to 
remove idiosyncratic outliers. We find that for all studied pipelines, 
the temporal embeddings Ts,randDs,r show larger differences (larger 
absolute effect size) with respect to the Xs,r spaces, implying that tem-
poral embeddings are more robust to re-referencing than functional 
connectivity



 Brain Topography

1 3

significantly smaller than zero (Fig. 5c). Hence, destroy-
ing temporal correlations induces varied and heterogene-
ous changes in the topology of the resulting embeddings; 
changes that are much larger than those induced by pure re-
referencing. Interestingly, for the tvb simulated data, signal 
changes related to re-referencing often alter the topology 
of the delay embedding as much, if not to a greater extent, 
than breaking the temporal correlations. This observation 
highlights the stationarity of tvb dynamics. That is, the range 

of temporal states is approximately as large as the range of 
spatial features.

Finally, we queried the magnitude of the changes induced 
by re-referencing with respect to inter-subject variability. 
Similarly to Fig. 4, we computed the effect sizes for the 
distribution of intra-subject and inter-subject distances for 
the real and reshuffled data (Fig. 5d).

That is, for H0 all pipelines display effect sizes signifi-
cantly different from zero for both real and reshuffled data 
(one-sample t-test for mean equal 0, p < 0.01 ). For H1 , only 

Fig. 5  Comparison of real with reshuffled data. a, b Distance distri-
butions (respectively for H0 and H1 ) between references of individual 
subject (solid color), between the temporally reshuffled data (lighter 
color boxes). Inter labels the inter-subject distance distribution for 
both real (solid) and reshuffled data (lighter color). Real-rand (white 
box) represents the distribution of distances between a (s, r) pair and 
its temporally reshuffled version. Distances among references of the 
same subject have generally smaller mean and variance with respect 
to the reshuffled data. Moreover, the distances between a (s,  r) pair 
and its randomized versions are often larger than those between dif-
ferent subjects. c Ee confirm this by computing the correspond-
ing effect size via Cohen’s d, that is the effect sizes of the distances 
d(Ts,r,Ts,r� ) versus that of d(Ts,r, T̃s,r) . For both H0 and H1 and for 
all pipelines, the effect sizes across subjects are significantly smaller 
than zero (varying between −  1 and −  2, considered to be very 
large effects, asterisks indicate significance on one-sample t-test at 
p < 0.01 Bonferroni corrected for multiple comparisons to reject the 

null hypothesis that the effect size mean is 0). This feature does not 
hold for tvb simulations for which the statistical properties of the sig-
nal’s evolution across time vary to the same degree as the statistical 
properties of the signal’s evolution across space. d For all pipelines, 
effect sizes for the intrasubject distance distributions d(Ts,r,Ts,r� ) are 
shown against the inter-subject distributions d(Ts,r,Ts� ,r� ) . Solid color 
boxes indicate comparison between real data, lighter color boxes indi-
cate the same comparison for the reshuffled data. Asterisks indicate 
significance on one-sample t-test at p < 0.01 Bonferroni corrected 
for multiple comparisons to reject the null hypothesis that the effect 
size mean is 0; crosses indicate significance on Mann–Whitney u test 
at p < 0.01 Bonferroni corrected for multiple comparisons to reject 
the null hypothesis that the real and reshuffled samples have the same 
mean. In most cases, the shuffled data significantly blurs the idiosyn-
cratic nature of individual EEG traces, causing rereferenced signals 
within a volunteer to look almost as different as the signal traces 
compared between volunteers
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real data show an effect size significantly smaller than 0 
(same test). Interestingly, when directly comparing the real 
and reshuffled effect sizes, we find significant differences 
(Mann–Whitney u test at p < 0.01 Bonferroni-corrected) 
only for the clean and filtered datasets. Note that this does 
not mean that in the cleanint datasets the actual distances 
are the same. Rather, the effect size between the intra-sub-
ject and inter-subject distribution is similar in the real and 
reshuffled cases in the presence of further pre-processing.

Overall, this pattern suggests that the differences observed 
above originate partially from the statistical properties of the 
signals, irrespective of the time ordering. More precisely, this 
concerns the relative difference across subjects with respect 
to different references of the same subject. However, temporal 
correlations are crucial to constrain the set of possible topolo-
gies describing a subject and to discriminate between subjects 
even when the statistical properties of the signals are similar.

We remark that the embeddings were built using the full 
length of the signal in all cases. They therefore encode the 
whole configuration space of the underlying system. If one 
is interested in detecting specific states at certain points in 
time—for example between the early and final parts of the 
signal, it is necessary to focus on the topology of the reduced 
embeddings, where only the appropriate dimensions of the 
embedding vectors are retained.

Discussion

We studied the topological structure of different representations 
of resting-state EEG signals with a particular focus on how the 
choice of the reference alters the resulting topological observa-
bles. We examined three representations that capture different 
features of the data. The first one was the functional connectivity 
between electrodes, which we computed as Pearson correlations 
between electrode timeseries. When computing these correla-
tions, time is integrated away and for this reason the resulting 
correlations capture the patterns of spatial coactivations among 
signals at different electrodes. The second type of representa-
tion was direct embeddings. In these embeddings, each time 
point is associated with the vector of instantaneous EEG signal. 
Together, all the vectors of instantaneous EEG activations define 
a space that captures the possible configurations of brain activa-
tions. Note that in this construction, relative temporal informa-
tion is lost. Thus, the direct embedding does not encode brain 
dynamics, but rather the range of possible topographies. Finally, 
the third type of representation was given by Takens embed-
dings. These are constructed by concatenating instantaneous 
EEG vectors corresponding to successive time points. In this 
way, they reconstruct the properties of the attractor space of a 
dynamical system (Noakes 1991; Myers et al. 2019).

We found that the extent of topological changes across 
correlation spaces corresponding to different references are 

often comparable with those measured between different 
subjects. We found that the direct embeddings and Takens 
embeddings exhibited limited changes across different refer-
ences and were able to discriminate better across subjects.

The implications of these results are multi-fold. As men-
tioned above, for a fixed reference, the Ds,r space is the con-
figuration space (i.e. phase space) of EEG whole-brain acti-
vations [i.e. topographies (Tivadar et al. 2019)]. The facts 
that the topology of signals does not change significantly 
across references and that it is subject-specific suggest that 
the overall shape of EEG configuration space holds informa-
tion about the specificity of the underlying individual’s brain 
dynamics, similarly to what has been observed for simpler 
dynamical systems (Donato et al. 2016).

However, by construction, the configuration spaces above 
neglect the role of time, i.e. the temporal ordering in which 
brain activity appears. It is reasonable then to ask whether the 
specific order of time points plays a role. The Takens embed-
dings explore exactly this question. In fact, as mentioned, they 
allow us to probe the brain’s dynamical attractor space under-
lying the observed activations (Myers et al. 2019). If there 
was no information in the temporal ordering, the topological 
structures of Ts,r and of its randomized T̃s,r spaces should be 
similar to one another. Instead, we observed a large stand-
ard deviation within embeddings when temporal correlations 
were removed. More precisely, we observed that a much larger 
and more heterogeneous set of topological spaces is explored 
when only spatial correlations and statistical properties of the 
signals are preserved. Conversely, this implies that temporal 
correlations constrain to a large degree the set of possible 
dynamics. These in turn shape how the space of activations 
differs across subjects’ resting-state activity.

There are several ways by which to intuitively under-
stand these findings. One can think the configuration space 
of activations Ds,r as a mountainous landscape, where each 
point represents a state that the brain has accessed during the 
recordings. The Takens embedding instead describes how 
an individual explores this configuration landscape, i.e. the 
order of states as explored by a subject; each point in the 
Takens embedding can be thought as composed by a set of 
successive positions in the configuration space (i.e. a path 
in the mountainous landscape across different states), that 
is, a trajectory through time. We found here that both the 
landscape and how it is explored—the set of trajectories—
change across subjects. However, both of these features are 
very robust to re-referencing and pre-processing choices.

We claim that our results extend to the configuration spaces 
and the set of trajectories of topographies. While we can only 
access information about topographies via their referenced 
instances, our results imply that different reference choices 
are essentially equivalent from a topological perspective. That 
is, for different references we found very similar topologies, 
which therefore implies that we are capturing the topology of 
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the actual space of topographies. This claim is further sup-
ported when considering the properties of temporal versus spa-
tial embeddings in a simulated virtual brain. Here, we know at 
the outset that EEG dynamics will trace a repetitive cycle, and 
that the orientation of this cycle is rotated from the perspective 
of a different reference. The topology of an temporal embed-
ding of the cyclic dynamics is unperturbed after rotation. By 
contrast, drawing correlation distances between spatially-dis-
tinct electrodes causes some electrode pairs to look more-or-
less similar after rotation—thus causing the topology of the 
correlation space to also change. The empirical and theoretical 
utility of the topological description of brain dynamics brings 
us to propose to augment conventional topographic analyses 
with this additional—topological—level of analysis.

Naturally, our work also leads to many novel questions, 
both technical and theoretical: do the topographical config-
uration space and/or its dynamical properties change under 
different conditions, e.g. wake versus sleep, altered states, 
performance of different tasks, etc.? Do shared topological 
structures emerge under such conditions that are stronger than 

inter-individual variability? Previous findings with fRMI and 
EEG suggest that during tasks the spatial correlation structure 
is already sufficient to discriminate between tasks, subjects 
(Ibáñez-Marcelo et al. 2019a, b) or altered states (Petri et al. 
2014). It would be indeed important to ascertain which features 
of the topographic and topological spaces are preserved under 
different conditions, both analytically and empirically (Haufe 
and Ewald 2019), as this would have direct impact on brain 
fingerprinting and on functional neuro-degeneration tracking 
among others (Bari et al. 2019; Rajapandian et al. 2020). This 
is an exciting endeavour that is currently at the forefront of our 
current ongoing investigations.

Appendix

Results for Additional Preprocessing Pipelines

See Figs. 6, 7, and 8.

Fig. 6  Effect of different preprocessing pipelines on correlation spaces Xs,r . Additional pipeline results for Fig. 3: (top row) clean pipeline. (mid-
dle row) filtered pipeline. (bottom row) tvb pipeline
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Fig. 7  Effect of different preprocessing pipelines on Takens embedding spaces Ts,r . Additional pipeline results for Fig. 3: (top row) clean pipe-
line. (middle row) filtered pipeline. (bottom row) tvb pipeline
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Results for Ts,r Spaces from Temporally Shuffled 
Timeseries

See Fig. 9.

Fig. 8  Effect of different preprocessing pipelines on direct temporal embedding spaces Ds,r . Additional pipeline results for Fig.  3: (top row) 
clean pipeline. (middle row) filtered pipeline. (bottom row) tvb pipeline
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Fig. 9  Effect for temporally reshuffled timeseries for clean, filtered, and tvb pipelines
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