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Time-Dependent Deep Image Prior
for Dynamic MRI

Jaejun Yoo , Kyong Hwan Jin , Harshit Gupta , Jérôme Yerly ,
Matthias Stuber, and Michael Unser , Fellow, IEEE

Abstract— We propose a novel unsupervised deep-
learning-based algorithm for dynamic magnetic resonance
imaging (MRI) reconstruction. Dynamic MRI requires rapid
data acquisition for the study of moving organs such
as the heart. We introduce a generalized version of the
deep-image-prior approach, which optimizes the weights
of a reconstruction network to fit a sequence of sparsely
acquired dynamic MRI measurements. Our method needs
neither prior training nor additional data. In particular, for
cardiac images, it does not require the marking of heart-
beats or the reordering of spokes. The key ingredients of our
method are threefold: 1) a fixed low-dimensional manifold
that encodes the temporal variations of images; 2) a network
that maps the manifold into a more expressive latent space;
and 3) a convolutional neural network that generates a
dynamic series of MRI images from the latent variables
and that favors their consistency with the measurements in
k-space. Our method outperforms the state-of-the-art meth-
ods quantitatively and qualitatively in both retrospective
and real fetal cardiac datasets. To the best of our knowledge,
this is the first unsupervised deep-learning-based method
that can reconstruct the continuous variation of dynamic
MRI sequences with high spatial resolution.

Index Terms— Accelerated MRI, unsupervised learning.

I. INTRODUCTION

THE aim of dynamic magnetic resonance imaging (MRI)
is to capture the dynamics associated with moving organs,
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which requires a fast imaging process. A typical approach
is to accelerate data acquisition by a partial sampling of
the k-space. The resulting partial loss of data must then be
compensated to maintain the image quality. Several meth-
ods have addressed this by exploiting spatial or temporal
redundancies, including parallel MRI [1]–[4], k-t acceleration
methods [5]–[7], compressed sensing (CS) MRI [8]–[16], low-
rank methods [17]–[19], manifold-learning methods [20]–[25],
and many others. In the specific case of cardiac applica-
tions, the current state-of-the-art methods further improve the
reconstruction by exploiting the fact that the heart motion is
approximately cyclic. They typically use electrocardiograms or
self-gating techniques [26], [27]. However, all of these meth-
ods are limited by constraints over the signal-to-noise ratio
(SNR), restrictions in the coil design, hand-picked priors,
multiple processing steps, or inefficient algorithms in their
deployment of the standard convex-optimization techniques.

More recently, inspired by the development of deep-
learning techniques in various imaging modalities [28]–[31],
supervised-learning approaches have been applied to the
fast and accurate reconstruction of partially sampled
MRI [32]–[40]. These methods, however, heavily depend on
a training dataset, especially on ground-truth data (i.e., fully
sampled measurements), which are typically unavailable for
dynamic MRI. Unlike the direct deep-learning approaches,
the model-based deep-learning framework of [41] formulates
the image recovery as an optimization scheme. By unrolling an
iterative algorithm, it minimizes a cost function that combines
data consistency and a deep-learned prior. Because the learned
prior incorporates patient-specific noise patterns into the algo-
rithm, this approach successfully recovers images with fast
reconstruction and acceptable quality. However, it still requires
ground-truth data to train the denoising network.

A. Contribution

In this paper, we propose an unsupervised learning frame-
work in which a generative network is optimized to reconstruct
a sequence of golden-angle radial lines in k-space, also called
spokes. Inspired by deep image priors (DIP) [42], we use the
architecture of a convolutional neural networks (CNN) as an
implicit prior to constrain the search space of the optimization
problem. To learn the temporal dependencies of the dynamic
measurements, we impose a one-dimensional manifold para-
meterized by time. Using this explicit cue, the network learns
to encode the temporal variations of the sequential images
into the spatial closeness of the samples on the imposed
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Fig. 1. Overview of our framework. (A) Schematic illustration of the dynamic MRI data-acquisition procedure. We use a nonuniform fast Fourier
transform with a golden-angle scheme and spoke sharing. (B) Proposed framework based on latent mapping and deep image priors. The block
labeled gφ is a mapping network (MapNet) of fully connected layers and the block labeled hψ denotes the generative CNNs.

manifold. This simple temporal coupling enables our model
to outperform the other CS algorithms [15], [16], [26], [27]
without bells and whistles—note that our approach is purely
unsupervised and optimized in an end-to-end manner. We fur-
ther improve the reconstruction by introducing a mapping
network (MapNet) that brings more flexibility to our latent
space [43], [44]. MapNet consists of a few fully connected
layers with nonlinear activations that learns to map the fixed
manifold into a more expressive latent space. This allows the
subsequent generative network to adapt its input to a given
dataset, thereby improving image quality (Figure 1).

In short, our generative model takes the latent variables
from MapNet and reconstructs dynamic images by exploiting
its powerful structural prior. With the extensive analyses in
Section IV and experimental results in Section V, we show
that the manifold design and MapNet are both essential to
achieve good reconstructions.

B. Related Work

1) Unsupervised Learning: Starting from the seminal work
of DIP [42], there have been several studies that applied
unsupervised learning to medical imaging, such as MRI [45]
and positron emission tomography [46], albeit both cases
address the reconstruction of static images. The authors of [47]
used DIP for video compression. Their work is the closest
work to ours but, unlike our goal (the reconstruction of an
image sequence), theirs is to find compact codes for the rep-
resentation of video frames. To find such codes, they optimize
both the network weights and latent variables. Without any
constraint on the latent space, however, the latent codes may
diverge to an arbitrary space. To prevent this, they imposed
either low-rank or similarity constraints on the latent sequence.
As it turns out, this optimization not only requires additional
effort to tune hyper-parameters but also entails a singular-
value decomposition at each iteration, which severely increases
the computational burden. By contrast, our solution imposes
an explicit manifold and lets a mapping network adapt the
manifold to data, which makes the training much simpler and
easier. In addition, their forward model is an identity operator,
while ours is an MR measurement operator with severe under-
sampling.

2) Manifold Learning: Recently, several manifold-learning
methods have been proposed for dynamic MRI reconstruc-

tion [20]–[23]. The main assumption of these approaches is
that each image frame can be modeled as a point on some
smooth, low-dimensional manifold in a high-dimensional
space [48]. Because the knowledge of the manifold is essential
for these approaches, most methods require navigator signals
that are used to estimate the manifold structure. Specifically,
a series of radial spokes with the same orientations are needed
periodically, which results in a large overhead. In addition,
without dedicated setups, these approaches cannot be readily
applied to the golden-angle sequences implemented on several
scanners. In this paper, we do not consider such additional
acquisitions. Thus, these manifold-learning methods cannot
be applied to our case. In [25], the authors proposed a two-
step approach for the application of the manifold approach
to the navigator-free setup. They first estimated the manifold
using the low-frequency part of the k-space measurements,
which is used in model optimization. However, when the
low-frequency part is not densely sampled (e.g., only five
radial spokes per frame), the manifold estimation becomes
inaccurate, which severely affects the quality of the final
reconstruction. By contrast, our method does not require
navigator signals and, in fact, is agnostic to sampling patterns
since the latent manifold is captured by the network in a data-
adaptive way.

II. METHODS

We first briefly recapitulate the content of deep image
prior (Section II-A) as well as the physics of dynamic MRI
(Section II-B). Then, we describe our method based on DIP
with a mapping network and on the learning of the underlying
latent manifolds (Section II-C).

A. Deep Image Prior

The deep image prior (DIP) [42] is a recent approach that
has been proposed to solve static linear inverse problems,
such as image denoising, inpainting, and superresolution.
DIP has been found to capture advanced image statistics in a
purely unsupervised way with neither pre-training nor external
training data. Taking a random but fixed latent variable z ∈ RL

as input, DIP optimizes the parameters θ of an untrained
neural network fθ to produce an output fθ (z) that is consistent
with the measurement y ∈ RM . The problem being solved is
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formalized as

θ∗ = arg min
θ

�y − H( fθ (z))�2
2 , (1)

where H ∈ RM×N is a forward model. For example, in the
superresolution problem, y is a noisy, low-resolution image
and H is a downsampling operator. The output of the opti-
mized network x∗ = fθ∗(z) then yields a reconstructed
image of surprisingly good quality. This has been ascribed
to the implicit representation bias of the CNN architecture,
which favors a natural-looking output image over a noisy
unstructured one. In this paper, we extend the concept of
DIP to solve the more challenging problem of dynamic
MRI reconstruction.

B. Dynamic MRI

We use a radial 2D MRI acquisition scheme where the
instrumentation is such that it physically records a temporal
sequence of radial lines of the Fourier transform of a fixed
slice (image) of a 3D volumetric object. The underlying
2D image is represented by a vector x ∈ CN , where N is the
number of pixels. At a given time point t , the vector of k-space
measurements y(t) ∈ CM0 consists of the uniform samples of
the 2D Fourier transform of the image taken along a radial line
at some orientation ϑ = ϑ(t). Because of the central-slice
theorem, these measurements can also be interpreted as the
1D Fourier transform of the Radon transform of the image at
angle ϑ . By repeating this process with a sufficiently dense
sequence of angles ϑk ∈ [0, π), and assuming the images
to be static, one obtains a complete dataset from which a
high-quality (static) image can be reconstructed using standard
tomographic techniques. Now, the difficulty with dynamic
imaging is that the underlying image is not static but varies
through time, which calls for a more sophisticated reconstruc-
tion procedure.

1) Forward Model: The measurement process that relates the
image at time t and the k-space measurements with angle
ϑ = ϑ(t) is linear and formally described by the relation

y(t) = H
(
ϑ

)
x(t), (2)

where H(ϑ) is the (M0 × N) system matrix that represents
the combined effect of taking the 2D Fourier transform of x
and resampling along a radial line with direction ϑ . The type
of measurement provided by (2) is referred to as an angular
spoke. In practice, we acquire a series of K spokes taken at
regularly spaced time point tk = t0 + k�t , k = 0, . . . , (K −1)
with step size �t . The spoke orientations follow the golden-
angle strategy

ϑk = ϑ0 + ω0 k�t, (3)

where ϑk gives the orientation of a spoke at time tk =
t0 + k�t , with ω0 its angular velocity. The golden-angle
specificity is the irrationality condition (ω0�t/π) /∈ Q, which
is approximated by setting (ω0�t) ≈ 111.25◦ [15]. Then, our
task is to reconstruct the image sequence {x(tk)}K−1

k=0 from the
measurement sequence {y(tk)}K−1

k=0 .

2) Spoke-Sharing: The ambitious goal of accelerated
dynamic MRI is to reconstruct {x(tk)}K−1

k=0 —or, even better,
x(t) for t ∈ [t0, TK−1]—from the finite set of measurements
{y(tk)}. However, a single orientation per frame does not
provide enough information to recover the corresponding
instantaneous two-dimensional image x(tk). To overcome this
issue, we assume that the changes are slow over some small
number of neighboring spokes (ns), so that x(t) ≈ x(tk)
for all t ∈ Tk = [tk − ns�t/2, tk + ns�t/2). The sharing
parameter ns ∈ 2 N + 1 is the number of radial lines used
for the reconstruction of one frame; it controls the temporal
resolution.

To further describe this pooling process, we introduce the
augmented measurement vector yk = (

y(tm)
)k+(ns−1)/2

m=k−(ns−1)/2 of
size M = (ns × M0). Correspondingly, we define the column-
wise concatenated system matrix Hk = (H(ϑk))

k+(ns−1)/2
m=k−(ns−1)/2,

whose time dependence is indicated by the index k. This
results in the forward imaging model

yk = Hk x(tk), (4)

where the matrix Hk ∈ CM×N encodes the (pseudo-
simultaneous) acquisition of ns spokes at time tk . The underly-
ing strategy is called spoke sharing. Because of the irrationality
condition of the golden-angle approach, no direction will
ever be measured twice. While the imaging model (4) is
more favorable than (2) because of the augmented number
of measurements, the problem is still ill-posed because M =
ns M0 remains smaller than N (the number of unknowns).
The common practice, therefore, is to introduce an appropriate
regularizer. In this paper, we propose to constrain the solution
by applying a deep image prior that is shared among all
frames.

C. Proposed Framework

To address the dynamic MRI reconstruction problem,
we propose a new framework, time-dependent deep image
prior (TD-DIP). We first modify the original DIP so that
it takes a sequence of input and output pairs (Figure 1).
More specifically, we optimize an untrained neural network fθ
to map a sequence of inputs {zk}K−1

k=0 to the spoke-shared
measurements {yk}K−1

k=0 , thereby reconstructing the sequence
of images {x(tk)}K−1

k=0 by searching for

θ∗ = arg min
θ

1

K

K−1∑
k=0

�yk − Hk fθ (zk)�2, (5)

leading to x∗(tk) = fθ∗(zk). Note that the optimization is done
in the measurement domain. This enforces the image sequence
to be consistent with the measurements, while the modified
DIP scheme regularizes the reconstructed images.

1) Manifold Design: To fully exploit the characteristics of
dynamic MRI, the underlying model must be able to effec-
tively encode the temporal variations of the measurements
while preserving the structure of the individual frames. To this
end, we propose to design a manifold Z , thereby effectively
injecting a specific prior into the network. For example,
an ordered sequence {zk} from a straight-line manifold will
guide the network to associate spatial closeness of input
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Algorithm 1 TD-DIP for Dynamic MRI. We Use Adam
Optimizer [49] With n iter = 10,000 and B = 1

Input: Set of measurements {yk}K−1
k=0 , number of iterations

n iter, batch size B , and number of cycles p.

1) Select a manifold Z .
2) Sample {zk}K−1

k=0 from Z .
3) Optimize θ .

for niter iterations do
• Randomly sample a batch {k0, . . . , kB−1} of size B

from {0, . . . , K − 1}.
• Compute the batch loss of (6).
• Update θ with gradient ∇θ L B(θ).

end for
4) Reconstruct images

{
(h ◦ g)θ∗ (zk)

}K−1
k=0 .

variables with temporal closeness of images. This encourages
the network to reconstruct an image sequence with temporally
similar attributes. For a nearly periodic signal such as the
cardiac motion, we can encode the expected behavior by
letting the manifold take the structure of a three-dimensional
helix.

2) Mapping Network (MapNet): Although a careful choice
of temporally meaningful manifolds typically results in an
excellent performance, the fact that the design is hand-crafted
may also sometimes limit the performance of the network [43].
To add flexibility to our model and to exploit the rich represen-
tation power of the network, we introduce a mapping network
(MapNet) refer to as gφ . In our design, MapNet involves a
few fully connected layers with nonlinearities. It learns to
map a fixed manifold into the more expressive latent space
W = gφ(Z). More specifically, our model fθ now has
a hierarchical architecture that consists of the MapNet
gφ followed by the CNN hψ so that fθ = hψ ◦ gφ and
θ = {φ,ψ} (Figure 1 (B)). This leads us to replace (5) by

L K (θ) = 1

K

K−1∑
k=0

�yk − Hk(h ◦ g)θ (zk)�2. (6)

The role of gφ is to appropriately warp the input manifold to
facilitate hψ in its reconstruction of the true dynamics. Overall,
the insertion of gφ provides better flexibility to our model and
lets us efficiently exploit the representation power of neural
networks, resulting in a good reconstruction.

3) Final Algorithm: Our optimization scheme is given in
Algorithm 1. We minimize the loss function (6) using standard
gradient-descent methods [49] for niter iterations. At each
iteration, instead of (6), a batch loss L B(θ) is updated where a
batch {k0, . . . , kB−1} of size B is randomly sampled from the
index set {0, . . . , K − 1}. The corresponding input variables
{zkb }B−1

b=0 are fed to the network and its parameters are updated
using the gradient with respect to θ .

III. EXPERIMENTS

A. Datasets

All experimental datasets are breath-hold MR images.
We assume a twofold upsampling of measurements for

every dataset. Therefore, the size of the reconstructed fields of
view is half that of the first dimension of the measurements.

1) Retrospective Dataset: A cardiac cine dataset was
acquired using a 3T whole-body MRI scanner (Siemens; Tim
Trio) equipped with a 32-element cardiac coil array. The acqui-
sition sequence was bSSFP and prospective cardiac gating
was used. The imaging parameters were as follows: FOV =
(300 × 300)mm2, acquisition matrix size = (128 × 128),
TE/TR = 1.37/2.7 ms, receiver bandwidth = 1184 Hz/pixel,
and flip angle = 40◦. The number of frames was 23 and the
temporal resolution was 43.2 ms. The resulting fully sampled
Cartesian trajectories are used as ground truth. To retro-
spectively simulate the radial sampling, we implemented the
forward model using the golden-angle strategy. Sinograms
are obtained as shown in Figure 1. The number of spokes
for reconstructing a frame is ns = 13. For a single-cycle
simulation, the dimension of the sinograms is (K ×ns × Mω ×
C) = (23 × 13 × 256 × 32). For a multicycle simulation,
we acquire p = 13 cycles, which results in K = 13 ·23 = 299
frames.

2) Fetal Cardiac Dataset: Fetal cardiac MRI data were
acquired on a 1.5 T clinical MR scanner (MAGNETOM Aera,
Siemens AG, Healthcare Sector, Erlangen, Germany) with an
18-channel body array coil and a 32-channel spine coil for sig-
nal reception. We used an untriggered continuous 2D bSSFP
sequence that was modified to acquire radial readouts with a
golden-angle trajectory [27]. The acquisition parameters were:
FOV = (260 × 260) mm2, acquisition matrix size = (256 ×
256) pixels, slice thickness = 4.0 mm, TE/TR = 1.99/4.1 ms,
RF excitation angle = 70◦, radial readouts = 1400, acquisition
time = 6.7 s, and bandwidth = 1028 Hz/pixel. The number
of shared spokes for reconstructing a frame is ns = 5.

B. Baseline Methods

We apply three baseline methods.
1) NUFFT is a nonuniform, zero-filled fast Fourier

transform.1

2) GRASP [15] is a golden-angle radial sparse parallel
MRI algorithm, which extends the idea of k-t SPARSE-
SENSE [12] to volumetric golden-angle radial acquisi-
tions. Here, the spoke-sharing strategy is not applied.

3) Reordering Method (RD) [26], [27] is a three-
step algorithm. RD first reconstructs real-time images
of limited image quality and uses these images to
reorder or self-gate the measurements, which in turn
are used for the final reconstruction with k-t SPARSE-
SENSE [12]. In the retrospective experiment, where we
know the phase indices, we use the exact order of frames
for self-gating.

C. Estimation of Cardiac Cycles

For the processing of the fetal cardiac dataset, RD and
our algorithm both require a rough estimate of the num-
ber of cardiac cycles seen over the whole duration of a
sequence of data acquisition. It can be typically obtained from
k-space. Simple techniques to estimate the cardiac cycles from

1https://github.com/marchdf/python-nufft
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TABLE I
ARCHITECTURE OF OUR GENERATIVE CONVOLUTIONAL NETWORK (hψ ). CONV.: CONVOLUTION;

BN: BATCH NORMALIZATION; NN INTERP.: NEAREST-NEIGHBOR INTERPOLATION

radial data have been previously reported by [26], [50], [51].
Radial acquisition schemes sample the center of k-space at
every readout, which supports the extraction of physiological
motion signals. The central k-space coefficient of a radial
readout (i.e., the echo peak) corresponds to the complex
sum of the transverse magnetization across the entire image
volume. In the presence of moving structures such as a beating
heart, changes in the overall transverse magnetization due
to motion will induce a modulation of the consecutive echo
peaks. (Trajectory imperfections and eddy currents can also
modulate echo peaks, but their frequency responses differ from
the physiological motion frequencies and, thus, can be filtered
out.) The resulting signal can then be used to estimate the
number of cardiac cycles and to inform the manifold network.
For our fetal cardiac dataset, we find that the time-course has
approximately 13 periods so that we finally set p = 13.

D. Evaluation Metric

We use the regressed SNR and structural similarity index
(SSIM) [52] as quantitative metrics, where higher scores
correspond to better reconstructions. With the oracle x and
the reconstructed image x∗, RSNR and SSIM are given by

RSNR = max
a,b∈R

20 log
�x�2

�x − a x∗ + b�2
,

SSIM = (2μx∗μx + c1) (2σx∗x + c2)(
μ2

x∗ + μ2
x + c1

) (
σ 2

x∗ + σ 2
x + c2

) . (7)

Here, μx∗ and μx are the expectations, σ 2
x∗ and σ 2

x are the
variances, and σ 2

x∗x is the covariance of x∗ and x, respectively.
In addition, c1 and c2 are stabilization parameters chosen as
c1 = (0.01ξ)2 and c1 = (0.03ξ)2 with ξ being the dynamic
range of the pixel intensity.

E. Implementation Details

We use an Intel i7-7820X (3.60GHz) CPU and an NVIDIA
Titan X (Pascal) GPU. Pytorch 1.0.0 on Python 3.6 is used to

implement our generative model.2 The network is optimized
until niter = 10,000 with B = 1 using the Adam optimizer [49]
with default settings and a learning rate of 10−3.

F. Architectures

The mapping network gφ comprises two consecutive fully
connected layers of 512 hidden dimensions with ReLUs in
between. It outputs an L = 64-dimensional latent vector
which is reshaped to (8 × 8) for the subsequent generative
network hψ (Table I). The generative network consists of
convolutional layers, batch normalization layers, ReLUs, and
nearest-neighbor interpolations. We apply zero-padding before
convolution to let the size of the output mirror that of the
input. At the last layer, ReLU is not used. The output has two
channels because MRI images take complex values.

IV. DESIGN OF THE LATENT SPACE

In this section, we analyze the individual components of our
model and compare the performance with baselines. We first
demonstrate the simplest setup that reconstructs a single heart
cycle. We then move on to a more complicated dataset that
has multiple heart cycles.

A. Straight-Line Manifold for a Single Heart Cycle

A straight-line manifold can help the network to encode
the temporal variations of images. To implement it, we first
sample z0, zK−1 ∼ U(RL). Then, the intermediate zk are
obtained by linear interpolation. This yields a straight-line
manifold that simply joins the end points as

zk = (1 − αk) z0 + αk zK−1, (8)

where αk = k/(K − 1).
Although simple, this configuration already outperforms

the other baseline methods and successfully reconstructs the
dynamics for a single cycle dataset (Table II).

2Our code is available at https://github.com/jaejun-yoo/TDDIP
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Fig. 2. Visual comparison of reconstructed (y-t) images using the baseline methods and ours with each configuration in Table III. The reconstructed
images from fully sampled Cartesian trajectories are used as a ground truth. A white line at the heart region indicates the cross section that is
visualized. Here, for simulating RD [26], [27], we reorder the spokes of each frame from 13 periods resulting in 169 spokes per frame. For a better
comparison, the absolute residual images to the ground truth are provided in the lower panels.

TABLE II
PERFORMANCE ON THE RETROSPECTIVE

DATASET FOR A SINGLE HEART CYCLE

B. Manifolds for Multiple Heart Cycles

In practice, the measurements generally span several heart
cycles. To better exploit the fact that the cardiac movement
has a nearly periodic behavior, it is of interest to explore more
sophisticated manifolds.

• Segmented Line. We first sample p + 1 = 14 landmarks
{z(τ )}τ∈[0...13] ∼ U(RL), where p is the number of cardiac
periods. We generate a set of equispaced intermediate
zk of each segment by a linear combination of zτ and
z(τ+1), ∀τ ∈ [0 . . . 12].

• Circles. Let zk = (z(k)1 , z(k)2 , z slack) ∈ RL and zslack ∼
U(RL−2). The first two coordinates (z(k)1 , z(k)2 ) are points
from a unit circle with p cycles. The slack coordinates
do not depend on k. Thus, we have that

zk =
(

cos(
2π p k

(K − 1)
), sin(

2π p k

(K − 1)
), z slack

)
. (9)

• Helix. Similar to “Circles”, the first two coordinates of
zk are points from a unit circle with p cycles. The slack
coordinates zslack ∼ U(RL−2) are now scaled by k

(K−1) ,
leading to

zk =
(

cos(
2π p k

(K −1)
), sin(

2π p k

(K −1)
),

k zslack

(K −1)

)
. (10)

1) Effect of the Manifolds: In Figure 2, we show the recon-
structed (y-t) images of the cross section that is denoted by

TABLE III
PERFORMANCE ON THE RETROSPECTIVE DATASET FOR MULTIPLE

HEART CYCLES. AVERAGED RSNR AND SSIM OVER FIVE RUNS

OF EACH CNN LATENT SPACE DESIGN ARE SHOWN

a white line in the GT (y-x) image.3 When we use a straight-
line manifold, the network fails to capture the heart movement
and outputs the same static image over all frames. This is
natural since most of the pixels are static and the dynamic
parts are localized in a small area. Thus, the network easily
finds a local minimum that corresponds to an image that
remains constant over all frames. However, as soon as we
switch to “periodic-like” manifold designs, the network starts
to reconstruct the movement (Table III). For example, when we
use a line with 13 segments as input, the performance is better
than the RD that uses the same information. Using circles with
13 repetitions as input manifold, we improve even further.
However, the helix input manifold gives the best performance
among the others without MapNet because the heartbeat is
nearly periodic.

2) Effect of the Mapping Network: In addition to the choice
of its manifold, our method has another design choice: its
mapping network. By introducing MapNet, the network can
adapt its input manifold to a given dataset, which allows us
to further improve the reconstruction (Table III). This can be

3For display purposes, we show only one cycle of our cross section.
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Fig. 3. Visual comparison of reconstructed (y-x) images using NUFFT, GRASP [15], RD [26], [27], and our method at both (A) diastole and
(B) systole. The absolute residual image to the ground truth is also given.

clearly seen in the t-SNE visualization of the mapped latent
space (Figure 7), which we discuss in Section VI.

In summary, our analysis shows that both a careful design of
the manifold and the use of a mapping network are necessary
to achieve the best performance. Based on these, from now
on, we use ‘Helix+MapNet’ as our default setup.

V. RESULTS

We first show results on the retrospective dataset, where
the desired behaviors of the reconstruction methods are well-
defined. We then illustrate on the fetal cardiac dataset that the
observations extend well to a real scenario.

A. Retrospective Dataset: Multiple Heart Cycles

The benefits of our method are evident in both the (y-t) view
(Figure 2) and (y-x) view (Figure 3) of each frame. In Figure 2,
both GRASP and RD reconstruct the movement of the heart.
RD shows a better performance than GRASP, which was
expected because it takes advantage of the period information
that is estimated while reordering the frames. However, as can

be seen in the residuals, GRASP and RD show significant
errors in the reconstruction of the dynamics. In the (y-x) view
of Figure 3, we report the RSNR scores of each method for the
corresponding frames. Here, GRASP shows blurring artifacts,
while the residual image reveals errors around the wall of the
heart in both the GRASP and RD reconstructions. By contrast,
our method gives better results with fewer artifacts. This
difference is more prominent at systole (Figure 2 (B)), a heart
phase when the cardiac motions are captured better by our
model than the others, quantitatively and qualitatively. The
systolic phase captured by GRASP and RD is too flat, causing
the severe errors concentrated near the heart area. Especially,
the RSNR value of RD drops from 24.26 dB to 22.88 dB,
while our method works similarly at both phases (27.46 dB
at diastole and 27.98 dB at systole). This is clearly seen in
the residual images. Compared to the other baselines, our
method provides the closest reconstruction to the ground
truth with very small errors. Here, for better visualization,
we increased the magnitude of the residual images ten times.
We see likewise in Figure 4 that our method provides a stable
reconstruction quality over the entire cardiac cycle.
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Fig. 4. Entire cardiac cycle reconstructed by our method and the absolute residual images to the ground truth.

B. Fetal Cardiac Dataset

Having demonstrated the superior behavior of our method
on the retrospective dataset, we now assess our model on
real data. In the absence of ground truth, we shall take the
static image that is generated from all spokes as pseudo-gold
standard (Figure 5 first column)—note that it is of high quality
only in the regions that are not moving.

Like in the retrospective experiments, GRASP and RD are
able to reconstruct cardiac movements at both systole and
diastole. RD gives much better reconstructions, especially in
the dynamic region (Figures 5 (A) and (A")). However, RD
shows a spurious artifact at the edge area (Figure 5 (B)) and
fails to find the detailed structures of the static background
(Figure 5 (C)). By contrast, our method produces better-
resolved features in dynamic areas. Specifically, it preserves
well the hyperintense dot-like structures (leftmost and middle
arrows in Figures 5 (A) and (A")) as well as the line-like
structure (the rightmost arrow in Figures 5 (A) and (A")).
In addition, our method successfully reconstructs the static
areas. For example, it recovers even a small dot-like feature
(leftmost black arrow in Figure 5 (B)), which RD fails to
recover. It does not suffer from artifacts at the edges (white
arrows in Figure 5 (B)) and recovers the low-intensity back-
ground areas as well (Figure 5 (C)).

In Figure 6, it is apparent that NUFFT completely fails in
capturing the fetal cardiac beats. The GRASP reconstruction
is less noisy but still far from satisfactory. RD fares better;
unfortunately, its reordering process can lead it to superpose
in the same frame spokes that belong to different phases of the
cardiac cycle. By contrast, our method reconstructs each frame
with data from just a few neighboring spokes (ns = 5),4 thus
avoiding the mingling of different cycles. The reconstructed
systolic phase captures the true motion of the heart better.
The cross section from our method is similar to that of RD but

4We have also tried to reconstruct images with fewer spokes (ns = 3) and
even without sharing the spokes (ns = 1). The quality of reconstructed images
degrades as the number of shared spokes decreases, but our method converges
and reconstructs the movements (results not shown).

the motion may look a little smoother in our case (Figure 6,
top row). This is expected because RD uses retrospectively
gated data, while our method uses real-time data (i.e., ours
uses much fewer data per image). In addition, this is also
partly due to our result having more frames for a single
cycle than RD. Specifically, unlike our reconstruction of entire
image frames, RD reconstructs a single cardiac cycle since it
uses multiple Fourier slices of different time frames to recover
a single image. In addition to the absence of ground truth, this
complicates the direct comparison between the results of RD
and our method.

VI. DISCUSSION

A. t-SNE Visualization of the Latent and Image Spaces

To assess the extent of structural change as a func-
tion of time, we used t-stochastic neighborhood embeddings
(t-SNE) [53]. t-SNE is a nonlinear dimension-reduction tech-
nique that is widely used for the mapping of high-dimensional
data such as images or network features into a low-dimensional
space of two or three dimensions. Specifically, the mapping
is such that similar points are grouped together and dissimilar
points are modeled by distant points with high probability.

In Figure 7 (A), we first show the t-SNE result of the
original manifold when the variables are generated according
to (10) with L = 64 and p = 13. Unsurprisingly, this
recovers a helix with 13 cycles. In Figure 7 (B), we show
the t-SNE result of the 64-dimensional latent variables gφ∗ ,
where zk is generated according to (10) with L = 3 and
p = 13. It suggests that the latent variables still lie on a
helical manifold with 13 periods, while the height of the helix
is shortened compared to the original input in Figure 7 (A)—
the first and the last cycles become closer, but they are not
entirely collapsed to a single circle. This implies that MapNet
successfully encoded both the similarity and the dissimilarity
among different cardiac cycles.

Finally, in Figure 7 (C), we display the t-SNE result of
the (256 × 256)-dimensional reconstructed images. It again
shows a helical geometry with 13 local folds, each of
which corresponding to a single cycle of the cardiac motion.
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Fig. 5. Visual comparison of reconstructed fetal hearts: (y-x) images at both systole and diastole. The top row is the results of NUFFT, GRASP [15],
RD [26], [27], and our method (Helix + MapNet). The four bottom rows show magnified views, where A and A” are the heart region at systole and
diastole, respectively.

The irregular shape and length of each fold implies different
movements and rates of the reconstructed cardiac cycles,
respectively. This reveals that the near-periodicity of the data
is well represented by the network. As shown in Section IV,
we ascribe this to the introduction of MapNet that can warp the
given manifold in a data-adaptive fashion, while retaining the
prior information that we inject when we impose the geometry
of the manifold.

B. Benefits of Our Approach

1) Continuous Dynamic Reconstruction: One major benefit
of our approach is that it lets us reconstruct temporally
continuous dynamic images. We showed that the network
fθ∗ successfully captures the underlying nonlinear dynamics
of the image manifold, and the input variable zk lets us

reconstruct the image at the corresponding timestamp
(Figure 7). Because our method represents images as a learned
parametric function fθ∗ , we can recover nontrivial intra-frame
images by navigating between two consecutive input variables,
which would not be possible with other standard interpolation
methods such as temporal bilinear interpolation. Note that this
is a unique benefit of our method that the other algorithms
cannot provide.

2) Memory Savings: In the methods based on compressed
sensing (CS), the gradient updates of the iterative optimization
process necessitate memory that is large enough to hold the
target reconstruction volume. For example, the reconstruction
of 5,000 frames with spatial size (256 × 256) would need one
to handle data of size (256 × 256 × 5,000), which demands
for over a gigabyte of memory. Our approach, by contrast,
requires much less memory. It optimizes the neural network
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Fig. 6. Visual comparison of reconstructed fetal hearts: (y-t) images. A white line in the gold standard indicates the cross section that is visualized.
The top row contains the results of NUFFT, GRASP [15], RD [26], [27], and our method (Helix + MapNet). The two bottom rows provide a comparison
between RD and our method from diastole to systole.

Fig. 7. Visualization of three-dimensional t-SNE embeddings. (A) the fixed latent space of a helix in 64-dimension (‘Helix’); (B) the mapped latent
space by the mapping network in 64-dimension (‘Helix + MapNet’); and (C) its corresponding image space in (256 × 256) dimensions. Here,
the temporal index is color-coded (1,400 frames). There are approximately 13 cycles of heart motion, which are also clearly seen in the embedded
helix of the reconstructed images.

using batches, which requires the simultaneous handling of
only those frames that correspond to the batch size. In short,
the fact that our proposed approach handles few 2D images
whereas CS handles a 2D+t extended sequence leads to

substantial savings, particularly for golden-angle dynamic
MRI with many frames. In our approach, we only store
a 2D generative model; for example, its memory demands
for the spatial size (256 × 256) are about half-a-dozen
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megabytes. This cost is negligible compared to that of the
CS approach.

3) Easier Optimization With Fewer Hyperparameters:
Because our model is fully automated, it leads to a sim-
pler optimization task with fewer hyperparameters than the
conventional methods. For instance, once the model is set,
k-t SENSE requires three additional, interdependent hyper-
parameters whose optimal values are found only after some
substantial grid-search effort. In contrast, our approach has
only two hyperparameters (an initial learning rate and a
number of iterations) that are easy to set and do not affect
much the final performance as long as the model converges.

C. Limitations and Future Work

1) Faster Forward Model: Regarding the execution time,
the major bottleneck of our method is the slow forward
model. It depends on the NUFFT package which, in its current
implementation, does not benefit from a GPU and is a major
cause for slowdown. Indeed, NUFFT takes 47 % of the entire
running time of our algorithm per each iteration; the average
processing time for 100 repetitions is 6.55 s for back and
forth NUFFTs, and 3.08 s for the remaining parts. With a
more efficient, GPU-friendly implementation such as [54], our
algorithm could be substantially accelerated. One obvious way
to achieve this goal is to migrate to a lower-level programming
language than Python. Another way out is to use the Cartesian
sampling pattern. Since our framework is not restricted to the
radial sampling pattern, this will remove the bottleneck while
maintaining all the benefits of using our method.

2) Extension to Free-BreathingSetting: Although breath-held
cine MRI is widely used, it is often challenging for children
and patients with heart failure or respiratory complications.
One of the standard alternatives is an ungated real-time imag-
ing in free-breathing mode using nonuniform acquisitions at
the expense of lower spatial and/or temporal resolution [55],
[56]. Several manifold-learning methods [20], [24], [25] have
been proposed to handle this more difficult scenario. It would
be interesting to extend our generative framework to this free-
breathing setting in the spirit of what has been accomplished
in [57] recently.

3) Extension to Multi-Slice Imaging: In this paper, our main
focus is mainly on reconstructing 2D+t with a single slice
measurement dataset. Similar to what we did for encod-
ing temporal variations, we believe that our technique can
be extended to multi-slice data by designing a manifold
that encodes the spatial variations across different slices.
Another easy extension would be to use a 3D CNNs archi-
tecture. However, from an experiment point of view, we are
still far from performing 3D imaging with high temporal
resolution.

4) Different Architectural Variations: Because the network
architecture that we explored in the paper is never exhaustive,
there can be many architectural variations that would bring
more improvement than the currently reported results. For
example, we believe that adopting the advanced generative
architectures in computer vision area such as style-based
models [43] or good initialization techniques of the network
parameters would further improve the performance easily.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep-learning-
based algorithm for the reconstruction of dynamic magnetric
resonance images (MRI). It provides high spatial resolution
with access to the subframe—or even continuous—temporal
control of dynamic images. By designing a one-dimensional
manifold, combined with a mapping network, our generative
network model fully exploits the representation power of the
networks as well as their structural priors. Our study showed
that the proposed method successfully reconstructs dynamic
MRI in an end-to-end manner and outperforms the state-of-
the-art CS approaches by 3.1 dB. To the best of our knowledge,
this is the first unsupervised-learning approach in accelerated
dynamic MRI.
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