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Abstract— Functional magnetic resonance 
imaging has proven useful to decode task-specific 
brain activity and act as brain fingerprints, that is, 
allowing accurate identification of individuals 
within a large group. In this context, the relationship 
between functional activity and the underlying 
structural wiring, extracted from diffusion-weighted 
magnetic resonance imaging, can be a new imaging-
based biomarker characterizing tasks and 
individuals.  To investigate this, we used a recent 
graph signal processing framework to quantify the 
regional function-structure dependencies through 
the structural decoupling index (SDI), in 100 
unrelated healthy volunteers from the Human 
Connectome Project, scanned both during resting-
state and seven different tasks. SDI values of 
different tasks and subjects could be leveraged for 
accurate classification using linear discriminant 
analysis. The accuracies were very high and better 
than the ones obtained with functional connectivity 
alone. Further, we could identify two distinct brain 
networks, including most discriminative regions for 
task decoding and fingerprinting, respectively. 
These results show that rich information is 
contained in brain function-structure relationships, 
and that these provide new promising signatures of 
tasks and subjects. 

Keywords — decoding, fingerprinting, fMRI, 
structural decoupling index, graph signal processing 

I. INTRODUCTION  
The relation between brain functional activity and 

structural architecture remains to date an open question 
in neuroscience. In our previous study, we introduced 
the structural decoupling index (SDI); i.e., a regional 
measure defined within a graph signal processing (GSP) 
framework [1] and quantifying the degree of structure-
function coupling for each brain region [2]. In this 
context, the structural connectome obtained from 
diffusion-weighted magnetic resonance imaging (MRI) 
serves as graph, and the functional MRI activity defined 
at the same nodes (brain regions) as graph signal. During 
resting-state, the SDI showed a very specific spatial 
distribution, spanning from lower-level sensory and 
somatomotor functional areas, with function highly 
aligned to the structure underneath, to higher-level 
fronto-parietal ones, more independent from the 
structure [2]. Here, we investigate for the first time how 
these structure-function dependency profiles change 
across tasks and individuals. To this aim, we assess the 
classification performance of SDI values in task and 
subject identification, evaluating therefore the decoding 
and fingerprinting value of such measure. In fact, 
functional brain activity is known already for the ability 
to well distinguish between both tasks [3] and 
individuals [4], offering a brain signature able to 
recognize whether a subject is at rest or performing a 
given task (decoding), as well as to identify an 
individual within a large group (fingerprinting).  In a 
seminal paper from Finn and colleagues [5], functional 
connectivity profiles were used to successfully classify 
subjects across resting-state test-retest sessions, and 
even between task and rest conditions. The fronto-
parietal network emerged as the main contributor to 
subject discrimination and was shown to predict 
individual cognitive behavior (level of fluid 
intelligence). In parallel, brain structural features were 
also used in the past for brain fingerprinting [6]. 
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However, these features analyze either structure or 
function alone, and the characterization of the structure-
function dependency profiles has remained so far 
unexplored.  

II. METHODS 

A. Image Preprocessing  
100 unrelated healthy subjects from the Human 
Connectome Project (HCP) were included in the study 
(ethical approval was obtained within the HCP). 
Functional MRI with resting-state (RS) and 7 tasks 
(Emotion, Gambling, Language, Motor, Relation, 
Social, Working Memory), as well as diffusion-
weighted MRI sequences, were pre-processed with 
state-of-the-art pipelines, in order to obtain regional 
functional timecourses and their structural connections, 
based on a parcellation with 360 cortical [7] and 19 
subcortical [8] areas ( 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 = 179 ). Structural 
connectomes were obtained as the number of 
reconstructed fibers between two regions normalized by 
the sum of the region volumes. RS data were filtered in 
the range [0.01-0.15] Hz. To remove the effect of the 
paradigm on task data, paradigms were regressed out 
trial by trial. Functional connectivity (FC) between 
region pairs was obtained as the Pearson’s correlation 
between nodal timecourses. The nodal FC strength was 
defined as the sum of the functional connectivity values 
of one region with all the other brain regions. 
 

B. GSP framework for SDI computation 
The GSP framework detailed in [2] was used to obtain 
the SDI, for each subject and acquisition. In particular, 
the average structural connectome across the population 
is considered as adjacency matrix 𝐴𝐴 and symmetrically 
normalized with respect to the degree matrix to obtain 
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
Structural harmonics 𝑢𝑢𝑘𝑘  are then obtained by 
eigendecomposition of the structural Laplacian 𝐿𝐿 =
 𝐼𝐼 − 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : 

 𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑈𝑈,  (1)  

where each eigenvalue [𝑈𝑈]𝑘𝑘,𝑘𝑘 = 𝜆𝜆𝑘𝑘  can be interpreted 
as spatial frequency of the corresponding structural 
harmonic (eigenvector) 𝑢𝑢𝑘𝑘 . Functional data 𝑠𝑠𝑡𝑡   at each 
timepoint 𝑡𝑡 is then projected onto the structural 
harmonics by assessing the spectral coefficients 

 

𝑠𝑠𝑡𝑡� = 𝐿𝐿𝑇𝑇𝑠𝑠𝑡𝑡,         (2) 
 

and filtered into two components with ideal low- and 
high-pass filters; i.e., a coupled one obtained as 𝑠𝑠𝑡𝑡 𝐶𝐶 =
𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙)𝑠𝑠𝑡𝑡�  and a decoupled one as 𝑠𝑠𝑡𝑡 𝐷𝐷 = 𝐿𝐿(ℎ𝑖𝑖𝑖𝑖ℎ)𝑠𝑠𝑡𝑡� , 

respectively (𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙)  being  a matrix with the 𝑐𝑐  first 
eigenvectors complemented by zeros, and 𝐿𝐿(ℎ𝑖𝑖𝑖𝑖ℎ) being 
a matrix with 𝑐𝑐 first columns of zeros followed by the 
remaining last eigenvectors). To avoid task-bias, the cut-
off to filter functional activity based on structural 
harmonics was set to c=50 spectral components for all 
acquisitions. Finally, coupling and decoupling were 
quantified for each brain region as the l2-norm across 
time of the coupled and decoupled signal portions 
𝑠𝑠𝑡𝑡 𝐶𝐶and 𝑠𝑠𝑡𝑡 𝐷𝐷, and the SDI was computed as their ratio. 

 

C. Brain patterns of task decoding and fingerprinting  
A two-factor (subject and task) ANOVA on regional 
SDI values was performed to identify brain patterns of 
task and subject main effects (decoding and 
fingerprinting patterns, respectively; significant F-
values with 𝑝𝑝 < .05 , accounting for Bonferroni 
correction across regions). 
 

D. Brain decoding: task classification 
A linear discriminant analysis (LDA) with 𝑁𝑁𝐵𝐵𝐵𝐵 = 8 
classes was performed to classify a brain state 𝑏𝑏𝑠𝑠 (𝑏𝑏𝑠𝑠 =
1, . . . ,𝑁𝑁𝐵𝐵𝐵𝐵, i.e. resting-state or one of the 7 tasks) based 
on the feature matrix 𝑋𝑋 of SDI patterns for all subjects 
and acquisitions. LDA identifies 𝑁𝑁𝐵𝐵𝐵𝐵 − 1  meaningful 
discriminative directions, each associated to a 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 - 
dimensional vector of weights which identifies brain 
regions mostly contributing to the classification in that 
LDA direction. The projection of original data 𝑋𝑋 onto 
the 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁𝐵𝐵𝐵𝐵 − 1 matrix 𝑊𝑊 of weights leads to the 
LDA scores 𝐿𝐿𝐿𝐿: 

 
𝐿𝐿𝐿𝐿 =  𝑋𝑋 ⋅ 𝑊𝑊,       (3) 

 
which maximize the inter-class variability while 
minimizing the intra-class one, and are used for the 
classification. A leave-one-subject-out (100-fold) 
cross-validation was implemented, where the 
acquisitions from one subject were excluded for each 
fold. For comparison, the same classification was 
performed on a nodal measure of FC, namely FC node 
strength. 

 

E. Fingerprinting: subject classification  
A second LDA with 𝑁𝑁𝐵𝐵  =  100 classes was performed 
to classify individuals, based on SDI values of all 
acquisitions. Different classification settings were 
explored: (1) classification of a subject 𝑠𝑠  doing a 
specific task 𝑏𝑏𝑠𝑠, based on all other tasks/individuals. 
This was implemented with a leave-one-subject’s-task-
out (800-fold) cross-validation, where the 𝑁𝑁𝐸𝐸  entries 
(two different encoding directions) of subject 𝑠𝑠 doing 
task 𝑏𝑏𝑠𝑠 were excluded for each fold; (2) classification 
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of a subject 𝑠𝑠 doing a specific task 𝑏𝑏𝑠𝑠, based on the 
entries related to all subjects during the remaining 
𝑁𝑁𝐵𝐵𝐵𝐵 − 1 tasks; i.e., a leave-one-task-out (8-fold) cross-
validation where all entries from task 𝑏𝑏𝑠𝑠 are excluded 
at every fold. For comparison with purely functional 
data, the same classifications were performed on FC 
node strength. 
 

III. RESULTS 

A. Brain decoding and fingerprinting networks 
The two-factor ANOVA yielded two very distinct and 
spatially specific brain patterns (Fig. 1), characterized 
by a significant effect for either decoding (task-effect) 
or fingerprinting (subject-effect), respectively (F-test, 
only nodes with significant F-values are visualized as 
non-zeros in Fig. 1, with p<.05, Bonferroni-corrected 
for the number of brain regions). The brain decoding 
pattern (Fig. 1a) clearly involves more prominently 
regions of task-related networks, in particular visual and 
somatomotor networks. On the contrary, the brain 
fingerprinting pattern (Fig. 1b) was spatially more 
spread, but concerned mainly the posterior parietal 
cortex, including fronto-parietal regions, consistently 
with what was found previously 8, but also visual, 
somatomotor and dorsal attention networks. 
 

 
Fig. 1. Brain networks of task (brain decoding) and subject 
(brain fingerprinting) main effects on structure-function 
dependency. Two-Factors ANOVA, significant F-values, p<.05 
Bonferroni corrected. 

 

B. Brain decoding 
An accuracy of 0.75 (against a chance-level accuracy of 
0.125) was obtained with a leave-one-subject-out cross-
validation setting. The same classification performed on 
FC nodal strength values led to a lower accuracy of 
0.52, showing that structure-function dependencies 
alone are able to well characterize both resting-state and 
the different task conditions and outperform a nodal 
measure based on functional data only.  
The LDA outputs seven meaningful discriminant 
directions, ordered by their discriminative power, and 
Fig. 2a shows the projection of the data onto the first 
four (i.e., the LDA scores). Notably, SDI values allow 
to separate very well not only resting-state from task, 
but also among different tasks, while this separation is 
less obvious when LDA is performed on FC nodal 
strength values (Fig. 2b).  
 

 
Fig. 2. Brain decoding. Projection of the data onto the first 4 LDA 
discriminant directions, for (a) Structural-Decoupling Index and (b) 
functional connectivity node strength values. The higher 
performance of brain decoding based on structure-function interplay 
(accuracy=0.75) vs. functional connectivity (accuracy=0.52) is 
visually remarkable by the data projection in the LDA reduced 
space: different tasks are much better separated in (a) with respect 
to (b), which discriminates more successfully only resting-state from 
all other tasks. RS=resting-state; Working Mem=Working Memory. 

 

C. Individual fingerprinting 
In addition to characterizing different task-related 
states, structure-function dependencies revealed to be 
highly specific to different individuals, allowing for the 
identification of subjects with a perfect accuracy of 1 
(both in a leave-one-subject’s-task-out and in an 8-fold 
cross-validation setting), slightly higher than the 
performance of FC nodal strength values for the same 
classifications (0.98, for both settings). 
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IV. DISCUSSION  
Brain structure-function dependencies showed to be 
specific both to the functional state (decoding) and to 
the individual (fingerprinting). Concerning decoding, 
SDI proved the capability of discriminating very well 
not only rest from task, but also among different 
functional tasks, outperforming a purely functional 
nodal measure (FC node strength). In fact, even if we 
can assume brain structure will not change across 
different task-related states in the same individual, the 
way brain function couples to the underlying structure 
is likely to adapt to the demands of the task. Further, 
having regressed out task paradigms, we can remark 
that the classification captures differences in functional 
states driven by the specific cognitive task, but not 
“artificially” induced by the paradigm. 
Further, the structural decoupling index revealed also 
able to identify individual subjects in a group with near-
perfect accuracy, indicating that, despite it changes 
depending on the task demands, the pattern of structure-
function coupling remains an intrinsic feature (or 
fingerprint) of an individual’s brain organization, 
similarly as it happens for brain function [4, 5, 9]. 
Contributions of brain regions to subject and task 
identification were found not uniformly distributed 
across the cortex: two clearly distinct networks were 
highlighted, one for brain fingerprinting and one for 
task decoding (see Fig. 1). The decoding pattern mainly 
involved lower-level primary sensory regions, such as 
somatomotor and visual networks, where structure-
function coupling appears stronger both in rest and task. 
The fingerprinting pattern, instead, shows that 
individual uniqueness of structure-function 
dependencies is mainly expressed in parietal, 
dorsolateral prefrontal and association cortices 
including the visual association and supplementary 
motor areas. This involves transmodal association 
cortices including the fronto-parietal network, which 
have been reported to contribute to subject 
identification from functional connectivity [5]. 
However, this pattern is broader and includes both 
regions that are coupled and regions that are decoupled 
with structure.       
Future research addressing the correlation of structure-
function dependencies with cognitive measures will 

help elucidating the behavioral relevance of these 
findings.  
 

V. CONCLUSION 
We expanded here previous research by identifying the 
fingerprinting and decoding potential of structure-
function dependencies. Specifically, we showed that the 
structural decoupling index characterizes both different 
tasks and individuals, ameliorating the performance of 
a purely functional measure ignoring the underlying 
brain architecture. 
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