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A B S T R A C T   

The ultrafast spatiotemporal dynamics of large-scale neural networks can be examined using resting-state 
electroencephalography (EEG) microstates, representing transient periods of synchronized neural activity that 
evolve dynamically over time. In adults, four canonical microstates have been shown to explain most topo
graphic variance in resting-state EEG. Their temporal structures are age-, sex- and state-dependent, and are 
susceptible to pathological brain states. However, no studies have assessed the spatial and temporal properties of 
EEG microstates exclusively during early childhood, a critical period of rapid brain development. Here we sought 
to investigate EEG microstates recorded with high-density EEG in a large sample of 103, 4–8-year-old children. 
Using data-driven k-means cluster analysis, we show that the four canonical microstates reported in adult 
populations already exist in early childhood. Using multiple linear regressions, we demonstrate that the temporal 
dynamics of two microstates are associated with age and sex. Source localization suggests that attention- and 
cognitive control-related networks govern the topographies of the age- and sex-dependent microstates. These 
novel findings provide unique insights into functional brain development in children captured with EEG 
microstates.   

1. Introduction 

Early childhood is a period of rapid brain development and behav
ioral change. Characterizing the developmental properties of network- 
based brain connectivity during early childhood is likely to critically 
inform our understanding of normative and atypical patterns of neuro
cognitive development. One electroencephalography (EEG) method that 
has emerged as highly useful for characterizing the spatiotemporal dy
namics of large-scale brain networks is microstate analysis (for reviews, 
see Khanna et al., 2015; Michel and Koenig, 2018). EEG microstates 
(Lehmann et al., 1987) are patterns of scalp potential topographies that 
transition between each other every approximately 60–120 milliseconds 
(ms) and reflect transient periods of synchronized neural activity that 
evolve dynamically over time (Michel and Koenig, 2018). Importantly, 
recent research suggests that reliable estimates of microstates and their 
properties can be derived from just two minutes of EEG data (Liu et al., 
2020); a critical advance when working with sensitive research groups 

that may find remaining still for prolonged periods of time very chal
lenging, including young children and individuals with psychiatric 
conditions. Nevertheless, few studies to date have used this approach in 
children, and none have focused exclusively on children under the age of 
eight years. As a result, the potential to provide unique insights into 
brain development during the earliest years of life by combining the 
practical nature of EEG data collection with the analytical approach of 
microstate analysis remains largely unexplored. 

Previous studies in older age groups using clustering methods have 
reported that four microstates – canonically labeled A–D – explain the 
majority of variance in the scalp potential topography of resting-state 
EEG (Michel and Koenig, 2018). Simultaneous EEG-functional mag
netic resonance imaging (fMRI) studies as well as EEG source imaging 
have shown that the spatial patterns of these microstates resemble 
well-known resting-state networks (RSNs; e.g., microstate A represent
ing auditory, B representing visual, C representing salience, and D rep
resenting attention networks) (Bréchet et al., 2019; Britz et al., 2010; 
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Custo et al., 2017). Existing research indicates that rapid transitions 
between microstates reflect the dynamic reorganization of large-scale 
functional networks (Michel and Koenig, 2018; Ville et al., 2010). 
Importantly, the millisecond temporal resolution of EEG allows unique 
information about the temporal properties of each microstate to be 
quantified, including its global explained variance (GEV; i.e., percentage 
of total variance in the data explained by a given microstate), average 
duration, percentage of time for which it is present (i.e., coverage), and 
frequency of occurrence per second. As a result, prior studies support 
EEG microstate analysis as a novel method for measuring the spatio
temporal properties of network-based connectivity (Lehmann, 2010). 

To date, only two studies have examined microstates in children 
(Koenig et al., 2002; Tomescu et al., 2018), neither of which included 
typically developing children under the age of six. In a cross-sectional 
study including participants 6–80 years old, Koenig et al. (2002) 
found no differences in the temporal parameters between the four ca
nonical microstates in 6–12-year-olds, but comparatively shorter 
microstate A, B, and D and longer C durations in 12–16-year-olds. Mi
crostates C and D occurred more frequently and had longer durations 
than microstates A and B in 12–16-year-olds (Koenig et al., 2002). In 
16–21-year-olds, microstate C was the longest and occurred most 
frequently – an observation that remained in 21–80-year-olds – while D 
dropped in duration and occurrence (Koenig et al., 2002). Microstates A 
and B remained the shortest and least frequent in 21–80-year-olds but 
occurred more frequently than in 16–21-year-olds (Koenig et al., 2002). 
Tomescu et al. (2018) extended these findings by reporting sex effects in 
a cross-sectional sample of 6–87-year-olds. Males compared to females 
had shorter durations of microstate C. The duration of this microstate 
decreased from the 14–19-year-old period to the 20–30-year-old period 
in males only, during which males had shorter microstate C durations 
than females (Tomescu et al., 2018). Males compared to females had a 
higher occurrence of Microstate D, and this pattern was present in all age 
groups except during the 14–19-year-old period (Tomescu et al., 2018). 
However, Microstate D increased in frequency from the 14–19-year-old 
period to the 20–30-year-old period for both sexes (Tomescu et al., 
2018). Together, these studies suggest age- and sex-related effects in the 
spatiotemporal dynamics of resting-state EEG across the lifespan, 
particularly in the duration and occurrence of microstates C and D. 
While supporting the developmental nature of microstates, neither study 
utilized source localization to determine the brain regions underlying 
each microstate. As a result, the significance of their findings on func
tional brain network organization and potential links with behavior in 
children remain unclear. Furthermore, both studies identified 
group-level microstates using all participants regardless of age. Thus, 
some important developmental variations in EEG microstate topogra
phies and temporal dynamics that are specific to children may have been 
overlooked. Since the brain undergoes developmental changes in its 
functional organization, especially during early childhood (Brown and 
Jernigan, 2012; Johnson, 2011; Long et al., 2017), these variations may 
be particularly important. 

The current study examined the spatiotemporal characteristics of 
EEG microstates and age and sex effects in a large group of 103, 4–8- 
year-old children using high-density EEG collected during eyes-closed 
rest. Given our use of a data-driven method for identifying microstates 
(Bréchet et al., 2019; Custo et al., 2017) and the absence of microstate 
research in young children, we did not make group-level predictions 
about the number of microstates that would be present, their topogra
phies, or whether the temporal parameters would differ between mi
crostates. However, we expected that the temporal parameters would 
change with increasing age and show sex differences (Tomescu et al., 
2018), although we did not make specific hypotheses regarding the 
directionality of effects. We also localized the sources of the microstates 
and expected them to resemble well-established RSNs captured with 
fMRI or EEG given previous findings in older groups (Bréchet et al., 
2019; Britz et al., 2010; Custo et al., 2017). Since the development of 
cognitive functions is prolonged in children, we expected larger age and 

sex effects for microstates resembling networks involved in higher-order 
cognitive functions and network integration compared to microstates 
resembling motor and sensory networks (Bie et al., 2012). 

2. Methods 

2.1. Participants 

Participants were children 4–8 years of age recruited from a database 
maintained by the Department of Psychology and Neuroscience at Duke 
University and community events. Recruitment details, including in
clusion/exclusion criteria, are provided in the Supplementary materials. 
After screening 323 children, 249 were eligible. Of these, 171 children 
completed their first study visit. Resting-state EEG was added to the 
study approximately halfway through data collection. The number of 
eligible children who participated at a time when EEG was part of the 
study protocol was 140. Thirty-two children did not complete EEG 
because they were noncompliant (e.g., refused to wear the EEG net). In 
sum, 108 participants completed an EEG session at either their first or 
second study visit and 103 of them provided adequate data for analyses 
(see below). Data collection for the final sample of 103 participants 
occurred between April 2019 and June 2021. All research was approved 
by Duke University’s Institutional Review Board and carried out in 
accordance with the Declaration of Helsinki. Caregivers provided 
informed consent and children provided verbal assent. Compensation 
was provided for study participation. Participant demographics are 
described in Table 1. 

2.2. EEG data acquisition and preprocessing 

EEG was recorded using a 128-channel HydroCel Geodesic Sensor 
Net (Electrical Geodesics, Eugene, OR) at 1000 Hertz (Hz), referenced 
online to the vertex. Impedances were maintained below 50 kilohms 
throughout the paradigm, which consisted of eight one-minute blocks of 
alternating eyes-open and eyes-closed resting-state (i.e., four minutes of 
each condition). Verbal cues given by the experimenter and text dis
played through E-Prime software (Psychological Software Tools, Pitts
burgh, PA) instructed participants to relax with their eyes open or 

Table 1 
Participant demographics.   

Mean (SD) Range 
Age (years) 6.37 (1.07) 4.51–8.65 
Income-to-Needs Ratio 3.04 (1.03) 0.15–4.69     

n Percent (%) 
Biological Sex   

Females 58 56.31 
Males 45 43.69 

Race   
White 77 74.76 
Mixed 15 14.56 
Black or African American 7 6.80 
Asian 2 1.94 
Other 2 1.94 
Native Hawaiian or Other Pacific Islander 0 0 

Ethnicity   
Not Hispanic or Latino 91 88.35 
Hispanic or Latino 12 11.65 

Maternal Education   
High School Diploma or GED 1 0.97 
Some College 15 14.56 
Graduated 2-Year College 10 9.71 
Graduated 4-Year College 33 32.04 
Part Graduate or Professional School 4 3.88 
Graduated from Graduate or Professional School 40 38.83 

Note. The Income-to-Needs Ratio was calculated by dividing total family income 
by a poverty threshold determined by the United States Census Bureau, which 
considered the year assessed and household family size. 
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closed. Following previous research (e.g., Tomescu et al., 2018), only 
the eyes-closed condition was analyzed for the current study. 

Offline preprocessing was performed with MATLAB (The MathWorks 
Inc, Natick, MA) and EEGLAB (Delorme and Makeig, 2004) using custom 
scripts available on https://github.com/DEEDLabEEG. Detailed steps 
are provided in the Supplementary materials. Briefly, channels located 
on the outer ring of the EEG net were removed. Data were downsampled 
to 250 Hz, low-pass filtered at 40 Hz, and high-pass filtered at 1 Hz. 
Remaining electrical line noise at 60 Hz was attenuated using the 
CleanLine plugin (Mullen, 2012). Bad channels were removed if they 1) 
were flat for more than five seconds, 2) contained more than four 
standard deviations of line noise relative to their signal, or 3) correlated 
at less than .8 to an estimate based on nearby channels. Artifact Sub
space Reconstruction (ASR) removed portions of data containing arti
facts (Mullen et al., 2015). Additional data periods were removed if 
more than 25% of channels’ power exceeded seven standard deviations. 
Independent component analysis (ICA; Lee et al., 1999) with principal 
component analysis (30 components) was performed, and the ICA ma
trix was copied over to the full-length data (i.e., before ASR removed 
artifacted portions). The ICLabel plugin (Pion-Tonachini et al., 2019) 
removed components with a probability greater than .7 of being eye or 
muscle artifacts. Data were segmented into nonoverlapping one-second 
epochs and removed using the TBT plugin (Ben-Shachar, 2018) if at least 
10 channels had 1) amplitudes greater than 100 microvolts (μV) or less 
than − 100 μV, or 2) joint probabilities above three standard deviations 
for local/global thresholds. If less than 10 channels met rejection 
criteria, the epoch was not removed, but the channels were interpolated 
for that epoch only. Lastly, channels removed previously were interpo
lated using spherical splines, and all channels were re-referenced to the 
average. 

After preprocessing and removing five participants whose data did 
not pass quality control (see Supplementary Table 1), the minimum 
amount of data across 103 participants was 145 seconds (s). To reduce 
potential effects of varying data lengths across participants on further 
analyses, data for all participants were trimmed to their first 145 s, 
exceeding the previously published two-minute mark for the reliability 
of microstate analysis (Liu et al., 2020). 

2.3. Microstate analysis 

Microstate analysis was performed with Cartool (Brunet et al., 2011), 
first at the individual-level and then at the group-level. At the 
individual-level, a spatial filter (Michel and Brunet, 2019) was applied 
to each participant’s EEG data to remove topographic outliers and 
smooth topographies. For each participant’s EEG data, topographies at 
global field power (GFP) peaks representing timepoints of the highest 
signal-to-noise ratio (Brunet et al., 2011) were extracted. Fifty epochs of 
833 random subsamples of each participant’s previously extracted GFP 
peaks (covering 99.9% of each participant’s data) were submitted to a 
polarity-invariant modified k-means cluster analysis (Pascual-Marqui 
et al., 1995), which was set to repeat 50 times and identify 1–12 clusters 
of topographies for each epoch. A meta-criterion, an aggregate measure 
of seven independent criteria (Bréchet et al., 2019; Custo et al., 2017), 
then determined the optimal number of clusters for each epoch, result
ing in 50 epochs each composed of k optimal clusters. 

At the group-level, the 50 sets of optimal clusters from each partic
ipant identified in the individual-level analysis were combined resulting 
in 5150 sets (103 participants × 50 sets). Next, 100 epochs each 
composed of 1500 randomly sampled sets (covering 99.7% of the sets) 
were submitted to a polarity-invariant modified k-means cluster anal
ysis, which was set to repeat 100 times and identify 1–15 clusters of 
topographies for each epoch. The meta-criterion determined the optimal 
number of clusters for each epoch, resulting in 100 epochs each 
composed of k optimal clusters. Lastly, these 100 sets were combined 
and submitted to a final polarity-invariant modified k-means cluster 
analysis, which was set to repeat 100 times and identify 1–15 clusters of 

topographies. The meta-criterion determined the optimal number of 
clusters, now referred to as the group-level microstates. The resampling 
approach is thought to improve the reliability of k-means clustering and 
has been used in recent work (Férat et al., 2022). 

These microstates were backfitted to each participant’s original 
spatially filtered data, including all data points (not just at GFP peaks). 
The data was normalized by the median of GFP to account for individual 
differences in scalp potential due to varying skull conductivity. Back
fitting involved calculating the spatial correlation between each 
microstate at the group-level and each individual data point for each 
participant, such that the microstate with the highest correlation was 
assigned to that data point. The polarity of maps was ignored when 
calculating the correlation. The minimum correlation for data points 
assigned to a microstate was 50%. After backfitting, temporal smoothing 
(window half-size of 32 ms, Besag factor of 10; Pascual-Marqui et al., 
1995) was applied, and the removal of improbably small segments, such 
that segments smaller than 32 ms were divided in half with the first half 
added to the preceding segment and the second half added to the 
following segment. The backfitting procedure produced values of each 
microstate’s GEV, duration, coverage, and occurrence. 

2.3.1. Source localization of microstates 
Six thousand solution points were distributed equally in a grey 

matter-constrained head model of a child MRI brain volume template. 
The EEG net template was co-registered to the MRI head model. The 
Local Spherical Model with Anatomical Constraints (LSMAC; Brunet 
et al., 2011) calculated an adaptive local spherical model at each elec
trode by estimating the thicknesses of the scalp, skull, cerebrospinal 
fluid, and brain under each electrode. These thicknesses were then used 
in a 4-shell spherical model with local radiuses, allowing the real ge
ometry between solution points and electrodes to be accounted for. A 
distributed linear inverse solution, LORETA (Low Resolution Brain 
Electromagnetic Tomography; Pascual-Marqui et al., 1994), was calcu
lated. The results were optimized with regularization, which accounted 
for background EEG noise and enforced smoothness of the results, and 
were standardized to correct for the variability of EEG power across time 
(these procedures are automatically implemented in Cartool and 
described in Michel and Brunet, 2019). The amplitude of dipoles was 
saved as scalar, positive values at each solution point and averaged 
across timepoints for each microstate. 

Each microstate’s source map was thresholded to the solution points 
above the 95th percentile of activations across participants (Bréchet 
et al., 2020, 2021). Source maps were converted to volumes and im
ported to the Analysis of Functional NeuroImages (AFNI; Cox, 1996) 
program. In AFNI, they were demeaned by subtracting the mean of all 
source maps from each source map to highlight microstate-specific 
sources (Custo et al., 2017). Additional information is provided in the 
Supplementary Materials. 

2.4. Statistical analyses 

Statistical analyses were conducted in R (R Core Team, 2021) and 
conceptualized as exploratory. Four one-way, repeated-measures, 
equal-n, Type II sum of squares, analysis of variance (ANOVA) models 
were computed to compare the mean of each temporal parameter (GEV, 
duration, coverage, occurrence) between microstates. Extreme outliers 
were determined using boxplots; values above Quartile 3 + 3 *IQR or 
below Quartile 1–3 *IQR (IQR = Interquartile Range) were identified 
and removed for each ANOVA. If the assumption of sphericity was 
violated according to Mauchly’s test, the Greenhouse-Geisser correction 
was applied. For each statistically significant ANOVA, post-hoc paired 
t-tests were performed between microstates, and p values were 
Benjamini-Hochberg-corrected for 24 comparisons (Benjamini and 
Hochberg, 1995). We also calculated estimation statistics-based effect 
sizes and confidence intervals (CIs) using the DABEST package (Bernard, 
2019; Claridge-Chang and Assam, 2016; Ho et al., 2019). Effect sizes 
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were calculated as the paired mean difference between comparisons. 
Bias-corrected, accelerated 95% CIs of the paired mean differences were 
calculated by performing nonparametric bootstrap resampling (5000 
resamples). 

Next, separate multiple linear regressions with each microstate’s 
temporal parameter as the dependent variable and mean-centered age, 
dummy coded sex (males = − 1, females = 1), and an age by sex 
interaction term as the independent variables were computed (Kraemer 
and Blasey, 2004). Multivariate outliers were determined by the Mini
mum Covariance Determinant for each regression separately and 
removed (Rousseeuw and Driessen, 1999). To minimize the rate of type I 
errors, p values for the omnibus F test of the overall significance of the 
complete set of predictors were Benjamini-Hochberg-corrected for 16 
comparisons. Statistically significant interactions were explored by 
testing whether the slope of age predicting the microstate’s temporal 
parameter was significant for each sex, and the Johnson-Neyman pro
cedure was used to determine at which age(s) the simple slope of sex 
significantly differed from zero at p < .05 (Johnson and Neyman, 1936). 

3. Results 

The meta-criterion for determining the optimal number of micro
states revealed four microstates labeled 1–4 (Fig. 1). In previous litera
ture, microstates 1–3 correspond to the canonical A–C, respectively 
(Michel and Koenig, 2018). The topography of microstate 4 is less 
consistent in the previous literature; some studies show a fronto-central 
maximum while others show a posterior-central maximum (Michel and 
Koenig, 2018). Three-dimensional views of each microstate and spatial 
correlations between their topographies are presented in Supplementary 
Fig. 1 and 2, respectively. A mean of 3.40 s of data (SD = 1.76 s) across 
participants did not meet the minimum spatial correlation threshold of 
50% during backfitting to be assigned a microstate. Descriptive statistics 
of the temporal parameters of the microstates are provided in Table 2. 

3.1. Between-microstate differences in the means of their temporal 
parameters 

Differences in the means of GEV, duration, coverage, and occurrence 
between the four microstates were examined using one-way repeated- 
measures ANOVAs with post-hoc contrasts Benjamini-Hochberg- 
corrected for 24 comparisons. The results of all models with outliers 
excluded are presented in Fig. 2 and reported below. Estimation 
statistics-based effects sizes and 95% CIs were also calculated and are 
provided in Fig. 2. Models with outliers included are shown in the 
Supplementary Materials. 

3.1.1. GEV 
There was a significant difference in the mean GEV between micro

states, F(1.78, 182.03) = 295.16, p < .0001, η2
g = 0.74. Planned post- 

hoc contrasts revealed that microstate 1 GEV was lower than micro
state 2 GEV, t(102) = − 11.24, p < .0001, and microstate 3 GEV, t 
(102) = − 21.13, p < .0001, but higher than microstate 4 GEV, t 
(102) = 7.34, p < .0001. Microstate 2 GEV was lower than microstate 3 
GEV, t(102) = − 11.05, p < .0001, but higher than microstate 4 GEV, t 
(102) = 16.03, p < .0001. Microstate 3 GEV was higher than microstate 
4 GEV, t(102) = 22.72, p < .0001. 

3.1.2. Duration 
There was a significant difference in the mean duration between 

microstates, F(1.99, 199.48) = 219.72, p < .0001, η2
g = 0.66. Planned 

post-hoc contrasts revealed that microstate 1 duration was lower than 
microstate 2 duration, t(100) = − 8.09, p < .0001, and microstate 3 
duration, t(100) = − 17.71, p < .0001, but higher than microstate 4 
duration, t(100) = 6.91, p < .0001. Microstate 2 duration was lower 
than microstate 3 duration, t(100) = − 10.56, p < .0001, but higher 
than microstate 4 duration, t(100) = 12.65, p < .0001. Microstate 3 
duration was higher than microstate 4 duration, t(100) = 19.95, 
p < .0001. 

3.1.3. Coverage 
There was a significant difference in the mean coverage between 

microstates, F(2.26, 230.88) = 241.56, p < .0001, η2
g = 0.70. Planned 

post-hoc contrasts revealed that microstate 1 coverage was lower than 
microstate 2 coverage, t(102) = − 9.62, p < .0001, and microstate 3 
coverage, t(102) = − 18.85, p < .0001, but higher than microstate 4 
coverage, t(102) = 7.98, p < .0001. Microstate 2 coverage was lower 
than microstate 3 coverage, t(102) = − 9.86, p < .0001, but higher than 
microstate 4 coverage, t(102) = 14.72, p < .0001. Microstate 3 coverage 
was higher than microstate 4 coverage, t(102) = 21.21, p < .0001. 

3.1.4. Occurrence 
There was a significant difference in the mean occurrence between 

microstates, F(2.48, 253.13) = 234.49, p < .0001, η2
g = 0.67. Planned 

post-hoc contrasts revealed that microstate 1 occurrence was lower than 
microstate 2 occurrence, t(102) = − 10.28, p < .0001, and microstate 3 
occurrence, t(102) = − 20.99, p < .0001, but higher than microstate 4 
occurrence, t(102) = 8.13, p < .0001. Microstate 2 occurrence was 
lower than microstate 3 occurrence, t(102) = − 9.12, p < .0001, but 
higher than microstate 4 occurrence, t(102) = 14.49, p < .0001. 
Microstate 3 occurrence was higher than microstate 4 occurrence, t 
(102) = 21.01, p < .0001. 

3.2. Age and sex effects of each microstate’s temporal parameters 

The extent to which each microstate’s four temporal parameters 
could be predicted by age, sex, and age by sex interaction was examined 
using multiple linear regression models, Benjamini-Hochberg-adjusted 
for 16 comparisons at the level of the overall model. For interpret
ability, age values for Johnson-Neyman intervals are reported in years 
and only within the range of observed values in the sample. The results 
of models with outliers excluded are summarized in Table 3 and 
described below. Models with outliers included are presented in Sup
plementary Table 2. 

3.2.1. Microstates 1 and 2 
The complete set of predictors did not explain a significant 

Fig. 1. The four microstates. Note. Microstates were derived from a polarity- 
invariant clustering algorithm. 

Table 2 
Descriptive statistics of the temporal parameters of the four microstates.   

Microstate 1 Microstate 2 Microstate 3 Microstate 4 

GEV     
Mean (SD) .09 (.03) .16 (.05) .28 (.08) .06 (.03) 
Range .02–.16 .06–.36 .11–.50 .004–.16 

Duration (ms)     
Mean (SD) 78.82 (4.59) 85.52 (6.97) 100.52 

(10.95) 
74.16 (5.91) 

Range 67.82–94.81 74.23–111.86 77.83–136.40 58.22–87.46 
Coverage (%)     

Mean (SD) 19.78 (4.13) 27.00 (5.94) 38.97 (7.95) 14.26 (5.49) 
Range 9.63–30.72 13.63–48.86 19.20–58.41 2.15–29.19 

Occurrence 
(per s)     
Mean (SD) 2.18 (0.33) 2.68 (0.36) 3.16 (0.31) 1.68 (0.53) 
Range 1.14–2.82 1.63–3.45 2.14–3.71 0.35–2.99  
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Fig. 2. Violin- and box-plots (left) and paired mean difference estimates plots (right) show differences in the means of the temporal parameters between microstates. 
Note. All post-hoc combinations of ANOVA comparisons were significant at p < .0001, Benjamini-Hochberg-corrected for 24 multiple comparisons. Vertical bars in 
the paired mean difference estimates plots represent the 95 % confidence interval of the paired mean difference estimates; numerical values are presented as the 
paired mean difference value [95 % confidence interval]. M1 = Microstate 1; M2 = Microstate 2; M3 = Microstate 3; M4 = Microstate 4. 
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proportion of the observed variation in either microstate 1 or 2 GEV, 
duration, coverage, or occurrence. 

3.2.2. Microstate 3 
The complete set of predictors explained a significant proportion of 

the observed variation in microstate 3 duration, with an effect size of 
Cohen’s f2 = .10. The main effect of sex was significant, with males 
having a higher microstate 3 duration than females, t(97) = − 3.32, 
p = .001, 95 % CI [− 5.12, − 1.29]. Neither age, t(97) = 1.53, p = .13, 
95 % CI [− 0.41, 3.21], nor the age by sex interaction, t(97) = − 0.21, 
p = .83, 95 % CI [− 2.01, 1.62], was significant. The complete set of 
predictors did not explain a significant proportion of the observed 
variation in microstate 3 GEV, coverage, or occurrence. 

3.2.3. Microstate 4 
The complete set of predictors explained a significant proportion of 

the observed variation in all temporal parameters of microstate 4: 
For GEV, the effect size was Cohen’s f2 = .09 (Fig. 3a). The main 

effect of sex was significant, t(97) = 2.13, p = .04, 95 % CI [0.0004, 
0.01], but the main effect of age was not, t(97) = − 1.50, p = .14, 95 % 
CI [− 0.01, 0.001]. These main effects were qualified by the presence of 
a significant age by sex interaction, t(97) = 2.37, p = .02, 95 % CI 
[0.001, 0.01]. Post-hoc analyses revealed the slope of age predicting 
microstate 4 GEV was significant and negative for males, t(97) = −

2.52, p = .01, 95 % CI[− 0.02, − 0.002], but nonsignificant for females, 
t(97) = 0.68, p = .50, 95 % CI [− 0.004, 0.01]. The Johnson-Neyman 
procedure revealed that the simple slope of sex for the prediction of 
microstate 4 GEV was significantly different from zero at p < .05 when 
age was 6.32–8.65 years. 

For duration, the effect size was Cohen’s f2 = .08 (Fig. 3b). Neither 
main effects of age, t(99) = − 0.35, p = .72, 95 % CI [− 1.25, 0.87], or 
sex, t(99) = 1.19, p = .24, 95 % CI [− 0.45, 1.79], were significant. 
These main effects were qualified by the presence of a significant age by 
sex interaction, t(99) = 3.11, p = .002, 95 % CI [0.60, 2.72]. Post-hoc 
analyses revealed the slope of age predicting microstate 4 duration 
was significant and negative for males, t(99) = − 2.24, p = .03, 95 % CI 
[− 3.48, − 0.21], but significant and positive for females, t(99) = 2.16, 
p = .03, 95 % CI [0.12, 2.82]. The Johnson-Neyman procedure revealed 
that the simple slope of sex for the prediction of microstate 4 duration 
was significantly different from zero at p < .05 when age was either 
4.51–4.70 years or 6.68–8.65 years. 

For coverage, the effect size was Cohen’s f2 = .09 (Fig. 3c). The main 
effect of sex was significant, t(99) = 1.99, p = .049, 95 % CI [0.003, 
2.08], but the main effect of age was not, t(99) = − 1.40, p = .17, 95 % 
CI [− 1.67, 0.29]. These main effects were qualified by the presence of a 
significant age by sex interaction, t(99) = 2.66, p = .009, 95 % CI [0.33, 
2.29]. Post-hoc analyses revealed the slope of age predicting microstate 
4 coverage was significant and negative for males, t(99) = − 2.63, 
p = .01, 95 % CI[− 3.51, − 0.49], but nonsignificant for females, t 
(99) = 0.99, p = .33, 95 % CI [− 0.63, 1.87]. The Johnson-Neyman 
procedure revealed that the simple slope of sex for the prediction of 
microstate 4 coverage was significantly different from zero at p < .05 
when age was 6.38–8.65 years. 

For occurrence, the effect size was Cohen’s f2 = .09 (Fig. 3d). The 
main effect of sex was significant, t(99) = 2.14, p = .03, 95 % CI [0.01, 
0.21], but the main effect of age was not, t(99) = − 1.54, p = .13, 95 % 
CI [− 0.17, 0.02]. These main effects were qualified by the presence of a 
significant age by sex interaction, t(99) = 2.39, p = .02, 95 % CI [0.02, 
0.21]. Post-hoc analyses revealed the slope of age predicting microstate 
4 occurrence was significant and negative for males, t(99) = − 2.55, 
p = .01, 95 % CI[− 0.33, − 0.04], but nonsignificant for females, t 
(99) = 0.67, p = .51, 95 % CI [− 0.08, 0.16]. The Johnson-Neyman 
procedure revealed that the simple slope of sex for the prediction of 
microstate 4 occurrence was significantly different from zero at p < .05 
when age was 6.31–8.65 years. 
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3.3. Sources of microstates 

The sources of each of the four microstates were estimated and 
thresholded to the solution points above the 95th percentile of activa
tions across participants. The mean of the four thresholded source maps 
(Supplementary Fig. 4) was subtracted from each of the source maps. 
The resulting cortical regions distinctly associated with each microstate 
are presented in Table 4. Given the observed relationships between age 
and sex on the temporal parameters of microstates 3 and 4, their sources 
are overlayed on an MRI in Fig. 4 (see Supplementary Figs. 5–8 for the 
sources of all the microstates). 

4. Discussion 

The current study conducted a novel investigation of EEG micro
states in a large sample of 4–8-year-old children using a data-driven 
method. As reported previously, four canonical microstates were repli
cated. Microstate 3 (canonical C) had the largest temporal parameters 
while microstate 4 (canonical D) had the smallest values relative to the 
other microstates (Koenig et al., 2002; Tomescu et al., 2018). In line 
with Tomescu et al. (2018), the temporal parameters of microstates 3 
and 4 showed relationships with age and sex while those of microstates 1 
(canonical A) and 2 (canonical B) did not. Microstate 3 duration was 

more prominent for males compared to females, and microstate 4 
showed age by sex interactions for all its temporal parameters. The 
values of microstate 4 GEV, coverage, and occurrence decreased with 
increasing age for males but did not change with age for females. The 
values of microstate 4 duration decreased with age for males but 
increased with age for females. Post-hoc analyses revealed that the 
differences in the slopes of age between sexes changed from 
non-significant to significant at approximately 6.5 years across all 
microstate 4 models. Further, EEG source localization suggested 
observed effects potentially relate to attention- and cognitive 
control-related networks. 

4.1. Four microstate topographies are present in young children 

A four-microstate solution was the best fit for the EEG data in our 
sample of children, mirroring previous reports of four microstates in 
adults. These microstates each had a similar scalp potential topography 
as those previously reported in adults (see Fig. 3 in Michel and Koenig, 
2018), suggesting that despite ongoing brain development in children, a 
similar global organization of scalp topographies exists between chil
dren and adults. This also suggests that, rather than large topographic 
changes in patterns of scalp potentials, it is their temporal parameters 
that change in children with development. This pattern of results 

Fig. 3. Statistically significant interactions between age and sex on the temporal parameters of microstate 4. Note. The shaded areas represent Johnson-Neyman 
regions of significance (i.e., the interval of ages for which the simple slope of sex significantly differed from zero at p < .05). Johnson-Neyman plots are pro
vided in the Supplementary Materials. 
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parallels fMRI studies showing globally similar RSNs between children 
and adults, with differences largely seen in within- and 
between-network patterns of connectivity rather than network structure 
(Bie et al., 2012; Muetzel et al., 2016; Supekar et al., 2009). 

4.2. Source localization of microstates suggests relationships with fMRI 
RSNs and provides insight into age and sex relationships with temporal 
parameters 

Source localization indicated that the neural generators for micro
state 3 partially overlap with regions of the dorsal frontoparietal 
network (D-FPN; Uddin et al., 2019). Commonly referred to as the 
“dorsal attention network,” the D-FPN is broadly involved in 

visuospatial attention and is thought to be responsible for goal-directed, 
top-down processing (Farrant and Uddin, 2015; Uddin et al., 2019; Yeo 
et al., 2011). Microstate 3 also revealed sources that partially overlap 
with regions of the lateral frontoparietal network (L-FPN), broadly 
involved in goal-directed control processes such as executive functions 
(Uddin et al., 2019). One subsystem within the L-FPN has been shown to 
preferentially connect to regions of the D-FPN and may be involved in 
the regulation of visuospatial attention and working memory perfor
mance (Dixon et al., 2018; Murphy et al., 2020). Portions of the D-FPN 
and L-FPN may underly the same microstate and support attentional 
orienting and control processes, which undergo a critical period of 
development during early childhood (Anderson, 2002; Rueda et al., 
2005). As such, the observation that males had larger microstate 3 du
rations than females may signal a maturational difference in the 
development of attention and/or control systems between sexes. For 
example, at rest, males may spend more time in microstate 3 than fe
males. However, the meaning of lower versus higher values of a 
particular microstate’s duration is not well understood; spending more 
or less time in certain states may be advantageous or disadvantageous. 
Taken together, more research is needed to better understand the un
derlying sources of microstate 3, whether these sources are different in 
children compared to adults, and the relationships between its temporal 
parameters and age and sex. 

Source localization indicated that the neural generators for micro
state 4 partially overlap with regions of the midcingulo-insular network 
(M-CIN), another control network broadly responsible for identifying 
salient information in line with current goals as well as for switching 
between the medial frontoparietal network (i.e., the default mode 
network or M-FPN) and the L-FPN (Goulden et al., 2014; Uddin et al., 
2019). The M-CIN also includes the previously characterized “ventral 
attention” and “cingulo-opercular” networks, which are involved in 
directing attention to the spatial locations of salient stimuli and in 
set-maintenance activities, respectively (Corbetta and Shulman, 2002; 
Dosenbach et al., 2008; Uddin et al., 2019). The observation that the 
values of microstate 4 GEV, duration, coverage, and occurrence 
decreased with age for males but not females, except for duration, which 
increased with age for females, may indicate unique developmental 
trajectories in the activity of the M-CIN between 4–8-year-old males and 
females. In line with this hypothesis, the 4–8-year-old period is char
acterized by the rapid development of executive function and 
moderate-to-strong correlations between age and performance on ex
ecutive function measures (Zelazo et al., 2008; Zelazo and Carlson, 
2012). Sex differences in some executive functions may also exist during 
the same developmental period, but findings are mixed, with females 
outperforming males in some studies (Berlin and Bohlin, 2002; Carlson 
and Moses, 2001) and males outperforming females in others (Brocki 
and Bohlin, 2004). As such, the M-CIN may be undergoing sex-specific 
reorganization, particularly in the approximately 6.5–8-year-old 
period when the difference in the temporal parameters between sexes is 
most pronounced, paralleled by changes in executive function. While 
the plotted slopes of males and females diverged with increasing age in 
the current sample, it is also possible that a nonlinear pattern of devel
opment may be present over a longer period as network connections 
continue to be refined and shaped by experience. Further longitudinal 
research is necessary to address this question. 

Lastly, as suggested by Tomescu et al. (2018), it is possible that 
microstates 1 and 2 did not show relationships with age and sex because 
they may represent RSNs involved in basic sensory functions that have 
robust functional organizations early in life. Britz et al. (2010) and Custo 
et al. (2017) both found that microstates 1 and 2 were related to net
works responsible for auditory (i.e., pericentral network) and visual 
processing (i.e., occipital network), respectively. However, clear 
network-specific relationships were not evident in our source localiza
tion results. Since previous studies have only been performed with 
adults, it is plausible that the sources underlying microstates 1 and 2 
found in the current study reflect ongoing patterns of neurobiological 

Table 4 
Neural sources of the four microstates.  

Microstate Neural sources 

Microstate 1 Left inferior temporal gyrus 
Bilateral middle temporal gyri 
Right superior temporal gyrus 
Right anterior & posterior cingulate cortex 
Right inferior & middle frontal gyri 
Bilateral superior & medial frontal gyri 
Bilateral inferior & middle occipital gyri 
Left superior occipital gyrus 
Bilateral fusiform gyri 
Bilateral rectal gyri 
Right orbital gyrus 
Right lingual gyrus 
Bilateral cuneus 
Right precuneus 
Right superior parietal lobule 
Bilateral precentral & postcentral gyri 
Bilateral paracentral lobules 

Microstate 2 Bilateral superior & middle temporal gyri 
Right inferior temporal gyrus 
Left inferior frontal gyrus 
Bilateral middle frontal gyri 
Bilateral medial & superior frontal gyri 
Right superior & inferior occipital gyri 
Bilateral middle occipital gyri 
Bilateral inferior parietal lobules 
Left superior parietal lobule 
Bilateral fusiform gyri 
Left lingual gyrus 
Bilateral cuneus & precuneus 
Right anterior cingulate cortex 
Left supramarginal gyrus 
Right postcentral gyrus 

Microstate 3 Bilateral inferior & middle temporal gyri 
Right superior temporal gyrus 
Bilateral parahippocampal gyri 
Bilateral fusiform gyri 
Bilateral lingual gyri 
Bilateral inferior & middle occipital gyri 
Bilateral supramarginal gyri 
Right inferior frontal gyrus 
Bilateral middle, medial, & superior frontal gyri 
Bilateral cuneus & precuneus 
Bilateral inferior and superior parietal lobules 

Microstate 4 Bilateral superior temporal gyri 
Bilateral insula 
Bilateral inferior, middle, medial, & superior frontal gyri 
Bilateral cuneus & precuneus 
Bilateral posterior cingulate cortex 
Bilateral inferior & superior parietal lobules 
Bilateral supramarginal gyri 
Bilateral precentral & postcentral gyri 
Bilateral paracentral lobules 

Note. Neural sources were determined visually with the assistance of the 
whereami? function and Talairach-Tournoux Atlas in AFNI (Cox, 1996). Sources 
in the cerebellum and deep brain (i.e., subcortical) structures were ignored due 
to the lack of established validity in measuring these sources with EEG. 
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development and/or developmentally specific patterns of network re
lationships in young children reflecting current task demands (i.e., sit 
still with eyes closed). However, the present study cannot make this 
functional distinction, and future longitudinal work will be necessary. 

4.3. Overlap of sources may reflect network flexibility and hub-like 
transition states 

In addition to a developmental explanation, the overlap of sources 
and hypothesized underlying networks between microstates in the 

current study may reflect global brain dynamics. For example, using 
fMRI in adults, the M-CIN has been shown to have a stable yet highly 
flexible organization; functional interactions of this network are among 
the most spatially varied in the brain (Chen et al., 2016). Furthermore, 
this network may be a hub for facilitating flexible interactions across 
networks and has been shown to predict individual differences in 
cognitive flexibility (Chen et al., 2016). Another example of network 
flexibility comes from studies of the M-FPN, which have demonstrated 
its regions to dynamically switch community memberships, adapt a 
global configuration, and have a critical role in higher-order cognitive 

Fig. 4. Neural sources of Microstates 3 and 4. Note. Sagittal slices (x plane) are presented as left (positive coordinates) to right (negative coordinates) parts of the 
brain. Coronal slices (y plane) are presented as anterior (negative coordinates) to posterior (positive coordinates) parts of the brain. Axial slices (z plane) are 
presented as inferior to superior parts of the brain. 
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processing (Vatansever et al., 2015). As a result, the current source 
localization findings suggest that microstate analyses may similarly 
reflect dynamic patterns of changing connectivity between brain regions 
but at a finer temporal resolution. Additional studies should further 
investigate this possibility to determine if microstates could be used to 
study developmental changes in dynamic network connectivity. 

Our findings also show that some sources (e.g., precuneus) are pre
sent in all microstates and may be hubs that support multiple brain 
networks. Although our microstate analysis backfitting procedure 
accounted for all the data, the first clustering stage was performed only 
on GFP peaks, failing to capture topographies during periods of micro
state transitions. While these periods have lower GFP and signal-to- 
noise, they have been shown to have complex dynamics missed by 
routine microstate analysis (Shaw et al., 2019). It is possible that these 
periods reflect hub-like transition states whose sources leak into all 
microstates. Supporting this hypothesis, precision dynamical mapping 
of fMRI data at the single participant-level has revealed hub-like tran
sition states represented by all RSNs equally (Saggar et al., 2021). 
Investigation of transition periods may provide a fuller understanding of 
the spatiotemporal dynamics captured by microstate analysis. 

4.4. Strengths, limitations, and future directions 

Our study, while cross-sectional, is the first to include typical chil
dren under the age of six years in a data-driven microstate analysis of 
resting-state EEG. With our large sample of 4–8-year-old children, we 
had enough variation in age to assess continuous relationships between 
microstate parameters and age and their interactions with sex, rather 
than group-level statistics between individuals grouped by specific ages. 
Furthermore, this is the first study to assess the underlying neural 
sources of microstates in children, offering promise for the utility of EEG 
microstates in studying functional brain development. 

The lack of microstate research in typical children led this study to be 
exploratory rather than hypothesis-driven, and the results of this study 
should be interpreted with caution until replicated. The meaning of low 
versus high values of microstate temporal parameters is relatively un
known. Future longitudinal studies investigating the relationships be
tween microstates and behavioral, cognitive, and clinical measures are 
needed to further understand the significance of the current findings for 
normative and atypical development. 

Although source localization provides insight into the network of 
brain regions generating each microstate, the spatial resolution of EEG is 
markedly lower than fMRI. Still, the temporal resolution with which we 
can capture the spatiotemporal dynamics of brain activity provides 
unique and advantageous information that can further our develop
mental understanding of rapidly changing functional brain networks in 
children. Nevertheless, future use of individual MRI scans and EEG co
ordinate locations and multimodal EEG-fMRI studies may better assess 
the spatial overlap between EEG and fMRI RSNs. 

The current study also has implications for understanding brain 
network development in children with psychopathology. The spatio
temporal dynamics of microstates are sensitive to psychopathology that 
emerges during early childhood, most notably autism spectrum disorder 
(ASD) and attention-deficit/hyperactivity disorder (ADHD). Interest
ingly, for example, prior research has identified differences in the tem
poral parameters of microstates C (resembling microstate 3) and D 
(resembling microstate 4) between children and adults with ASD or 
ADHD and typical controls (Das et al., 2021; D’Croz-Baron et al., 2019; 
Férat et al., 2021; Jia and Yu, 2019; Nagabhushan Kalburgi et al., 2020; 
Takarae et al., 2022). Our findings of age- and sex-related effects in the 
temporal parameters of these two microstates may be critical for un
derstanding these observed differences in children with ASD and/or 
ADHD – which also have known sex differences in diagnosis – as well as 
in other forms of childhood psychopathology. 

4.5. Conclusion 

The current study reports novel age- and sex-related effects in the 
spatiotemporal dynamics of EEG microstates using a large sample of 4- 
to 8-year-old children. Matching previous reports in older samples, data- 
driven analyses indicated that a four-microstate solution best charac
terized resting-state EEG data at this young age. Further, using source 
localization techniques, we found support for attention- and control- 
related systems governing the topographies of age- and sex-dependent 
microstates. As a result, the current study provides unique insights 
into children’s functional brain development using the EEG microstates 
approach. 
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