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ABSTRACT Beside the minimization of the prediction error, two of the most desirable properties of a re-
gression scheme are stability and interpretability. Driven by these principles, we propose continuous-domain
formulations for one-dimensional regression problems. In our first approach, we use the Lipschitz constant
as a regularizer, which results in an implicit tuning of the overall robustness of the learned mapping. In
our second approach, we control the Lipschitz constant explicitly using a user-defined upper-bound and
make use of a sparsity-promoting regularizer to favor simpler (and, hence, more interpretable) solutions.
The theoretical study of the latter formulation is motivated in part by its equivalence, which we prove, with
the training of a Lipschitz-constrained two-layer univariate neural network with rectified linear unit (ReLU)
activations and weight decay. By proving representer theorems, we show that both problems admit global
minimizers that are continuous and piecewise-linear (CPWL) functions. Moreover, we propose efficient
algorithms that find the sparsest solution of each problem: the CPWL mapping with the least number of
linear regions. Finally, we illustrate numerically the outcome of our formulations.

INDEX TERMS Robust learning, sparsity, Lipschitz regularity, continuous and piecewise linear functions,
representer theorems.

I. INTRODUCTION
The goal of a regression model is to learn a mapping f : X →
Y from a collection of data points (xm, ym) ∈ X × Y, m =
1, . . . ,M, such that ym ≈ f (xm), while avoiding the problem
of overfitting [1]–[3]. Here, X denotes the input domain and
Y is the set of possible outcomes. A common way of carrying
out this task is to solve a minimization problem of the form

min
f ∈F

(
M∑

m=1

E ( f (xm), ym) + R( f )

)
, (1)

where F is the underlying search space, the convex loss
function E : Y × Y → R≥0 enforces the consistency of the
learned mapping with the given data points, and the regular-
ization functional R : F → R≥0 injects prior knowledge on
the form of the mapping f , which is designed to alleviate the
problem of overfitting.

A. NONPARAMETRIC REGRESSION
In some cases, the optimization can be performed over an
infinite-dimensional function space—see, for example, [4]–
[6] for applications in signal and image processing. A promi-
nent example is the family of reproducing-kernel Hilbert
spaces (RKHS) F = H(Rd ), X = Rd , Y = R [7], [8], in
which the regression problem is formulated as

min
f ∈H(Rd )

(
M∑

m=1

E ( f (xm), ym) + λ‖ f ‖2
H

)
. (2)

The fundamental result in RKHS theory is the kernel repre-
senter theorem [9], [10], which states that the unique solution
of (2) admits the kernel expansion

f (·) =
M∑

m=1

amk(·, xm), (3)
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where k : Rd × Rd → R is the unique reproducing kernel
of H(Rd ) and am ∈ R,m = 1, . . . ,M, are learnable param-
eters. The expansion (3) allows one to recast the infinite-
dimensional problem (2) into a finite-dimensional one and to
use standard computational tools of convex analysis to solve
it. Many classical kernel-based schemes are based on this
approach, including support-vector machines and radial-basis
functions [11]–[13].

B. PARAMETRIC REGRESSION
In cases when (1) cannot be recast as a finite-dimensional
optimization problem, another common approach is to restrict
the search space F to a subspace that admits a parametric
representation. This approach is used in deep neural networks
(DNNs), which have become a prominent tool in machine
learning and data science in recent years [14], [15]. They
outperform classical kernel-based methods for various image-
processing tasks. In particular, they have become state-of-the-
art for image classification [16], inverse problems [17], and
image segmentation [18]. However, most published works are
empirical, and the outstanding performance of DNNs is yet
to be fully understood. To this end, many recent works are
directed towards studying DNNs from a theoretical perspec-
tive. Unsurprisingly, stability and interpretability, which are
key principles in machine learning, play a central role in these
works. For example, the stability of state-of-the-art deep-
learning-based methods has been dramatically challenged in
image classification [19], [20] and image reconstruction [21].
Attempts have also been made to understand and interpret
DNNs from different perspectives, such as rate-distortion the-
ory [22], [23]). However, the community is still far from
reaching a global understanding and these questions are still
active areas of research.

C. OUR CONTRIBUTIONS
In this paper, we introduce two variational formulations for
regressing one-dimensional data that favor “stable” and “sim-
ple” regression models. Similar to RKHS theory, the latter are
nonparametric continuous-domain problems in the sense that
F in (1) is an infinite-dimensional function space. Inspired
by the stability principle, we focus on the development of
regression schemes with controlled Lipschitz regularity. This
is motivated by the observation that many analyses in deep
learning require assumptions on the Lipschitz constant of the
learned mapping [24]–[26]. Likewise, in the context of so-
called “plug-and-play” methods—i.e., when a trainable mod-
ule is inserted into an iterative-reconstruction framework—,
the rate of convergence of the overall scheme often depends
on the Lipschitz constant of this module [27]–[32].

In our first formulation, we use the Lipschitz constant of
the learned mapping as a regularization term. Specifically, we
consider the minimization problem

min
f ∈Lip(R)

(
M∑

m=1

E ( f (xm), ym) + λL( f )

)
, (4)

where Lip(R) is the space of Lipschitz-continuous real func-
tions and L( f ) denotes the Lipschitz constant of f ∈ Lip(R).
In this formulation, one can implicitly control the Lipschitz
regularity of the learned function by varying the regularization
parameter λ. We prove a representer theorem that character-
izes the solution set of (4). In particular, we prove that the
global minimum is achieved by a continuous and piecewise-
linear (CPWL) mapping. Next, motivated by the simplicity
principle, we find the mapping with the minimal number of
linear regions. Note that many previous works study problems
similar to (4) in more general settings, typically using the
Lipschitz constant of the nth derivative R( f ) = L( f (n) ) with
n ≥ 0 as the regularization term [33]–[38]. More recently, [39]
has studied the classification problem over metric spaces and
derived a parametric form for a solution of this problem. Our
work complements this interesting line of research by provid-
ing an in-depth analysis of the n = 0 case which is related
to second-order total-variation minimization, and by focusing
more on computational aspects of (4). More precisely, we
propose a two-step algorithm to reach the sparsest CPWL
solution of (4). The first step consists in solving a discrete
problem with �∞ regularization, and the second is a sparsifi-
cation step proposed in [40] that reaches the sparsest solution.

In the second scenario, we explictly control the Lipschitz
constant of the learned mapping by imposing a hard con-
straint. Inspired by the theoretical insights of the first prob-
lem, we add a second-order total-variation (TV) regularization
term that is known to promote sparse CPWL functions [40],
[41]. This leads to the minimization problem

min
f ∈BV(2)(R)

(
M∑

m=1

E ( f (xm), ym) + λTV(2)( f )

)
,

s.t. L( f ) ≤ L, (5)

where BV(2)(R) is the space of functions with bounded
second-order TV and L is the user-defined upper-bound for
the desired Lipschitz regularity of the learned mapping. The
interesting aspect of (5) is that the simplicity and stability of
the learned mapping can be adjusted by tuning the parameters
λ > 0 and L > 0, respectively. In this case as well, we prove a
representer theorem which guarantees the existence of CPWL
solutions. We propose a two-step algorithm to find the sparsest
CPWL solution which is similar to that of the first scenario.
The main difference is the first step, where the discrete prob-
lem has a �1 regularization term and a �∞ constraint.

D. CONNECTION TO NEURAL NETWORKS
Another major motivation for this work is to further elucidate
the tight connection between CPWL functions and neural
networks. It is well known that the input-output mapping of
any feed-forward DNN with linear spline (e.g., the rectified
linear unit, also known as ReLU) activations is a CPWL func-
tion [42], [43]. This is due to the fact that these mappings
are compositions of affine transformations and pointwise ac-
tivations. Hence, since the ReLU activation is itself a CPWL

VOLUME 3, 2022 141



AZIZNEJAD ET AL.: SPARSEST UNIVARIATE LEARNING MODELS UNDER LIPSCHITZ CONSTRAINT

function and the CPWL property of functions is preserved by
composition, the full input-output mapping is CPWL. Con-
versely, any CPWL function can be represented exactly by
a DNN with linear-spline activations [44]. This establishes a
direct link with spline theory, as first highlighted by Poggio
et al. [45] and then further explored in various works [41],
[46]–[49].

When it comes to shallow networks, the connection with
our framework becomes even more explicit. It is well known
in the literature that the standard training (i.e., with weight
decay) of a two-layer univariate ReLU network is equivalent
to solving a TV-based variational problem such as (5) without
the Lipschitz constraint [47], [50]. Specifically, the weight-
decay penalty can be shown to be equal to the second-order
TV of the input-output mapping of the full network at the
optimum [47, Proposition 18]. As we demonstrate, these re-
sults can be readily extended to prove the equivalence between
the training of a Lipschitz-constrained two-layer univariate
ReLU network and our formulation (5). Our description of
the solution set of Problem (5) thus provides insights into the
training of Lipschitz-aware neural networks.

E. OUTLINE
The paper is organized as follows: we review the required
mathematical background in Section II. In Section III, we
introduce our supervised-learning formulations and we state
their corresponding representer theorems. We then propose
our algorithms for finding the corresponding sparsest CPWL
solution in Section IV. Finally, we provide numerical illustra-
tions and discussions in Section V.

II. MATHEMATICAL PRELIMINARIES
A. WEAK DERIVATIVES
Schwartz’ space of smooth and compactly supported test
functions is denoted by D(R). It is known that the nth-order
derivative is a continuous mapping over D(R), which we
denote as Dn : D(R) → D(R) [51]. By duality, this allows
one to extend the derivative operator to the whole class D′(R)
of distributions. The extended operator is called the nth-
order weak derivative and will be denoted by Dn : D′(R) →
D′(R). For any w ∈ D′(R), the distribution Dn{w} ∈ D′(R)
is defined via its action on a generic test function ϕ ∈ D(R)
as 〈Dnw, ϕ〉 = (−1)n〈w,Dnϕ〉. The fundamental property is
that the weak derivative of any Schwartz test function ϕ ∈
D(R) ⊆ D′(R) is well-defined and coincides with the clas-
sical notion of derivative (see [52, Section 3.3.2.] for more
details on the extension by duality).

B. BANACH SPACES
A Banach space is a normed topological vector space that
is complete in its norm topology. The prototypical examples
of Banach spaces are Lp(R) for p ∈ [1,+∞] which are the
spaces of Lebesgue measurable functions with finite Lp norm.
For p 
= +∞, this reads as

Lp(R) = {
f : R → R measurable: ‖ f ‖Lp < +∞}

, (6)

where ‖ f ‖Lp = (
∫

R | f (x)|pdx)
1
p . Alternatively, one can de-

fine Lp(R) = (D(R), ‖ · ‖Lp ) as the completion of D(R) with
respect to the Lp norm for p ∈ [1,+∞). The case p = +∞
is particular. Indeed, the L∞ norm is defined as ‖ f ‖L∞ =
ess supx∈R | f (x)|, where the essential supremum extracts an
upper-bound that is valid almost everywhere. Contrarily to the
other Lp spaces, the space D(R) is not dense in L∞(R); in
fact, the completion of D(R) with respect to the L∞ norm
is the space C0(R) of continuous functions that vanish at
infinity [53].

Finally, we denote the space of bounded Radon measures
by M(R). Following the Riesz-Markov theorem, we view
M(R) as the continuous dual of C0(R). This allows us to
define the total-variation norm over this space as [54]

‖w‖M = sup
ϕ∈C0(R)
‖ϕ‖L∞=1

|〈w, ϕ〉| = sup
ϕ∈D(R)

‖ϕ‖L∞=1

|〈w, ϕ〉|, (7)

where the last equality follows from the denseness of D(R)
in C0(R). Interestingly, the total-variation norm is a general-
ization of the L1 norm. In fact, the space L1(R) is included
in M(R) and, for any function f ∈ L1(R), we have that
‖ f ‖L1 = ‖ f ‖M. Moreover, the space M(R) contains shifted
Dirac impulses with ‖δ(· − x0)‖M = 1. Finally, for any ab-
solutely summable sequence a = (an) ∈ �1(Z) and distinct
locations xn, n ∈ Z, we have that

wa =
∑
n∈Z

anδ(· − xn) ∈ M(R) and ‖wa‖M = ‖a‖�1 .

(8)
This property establishes a tight link between the total-
variation norm and the discrete �1 norm which is known
to promote sparsity and is the key element in the field of
compressed sensing [55]–[57]. This enabled researchers to in-
terpret the total-variation norm as a sparsity-promoting norm
in the continuous domain. Since then, additional connections
have been drawn between optimization problems that involve
the total-variation norm and many areas of research such as
super resolution [58]–[60], kernel methods, [61], [62], and
splines [48], [63]–[66]. The computational aspects of this
framework have also been investigated, leading to the devel-
opment of practical algorithms in various settings [67]–[69].

C. LIPSCHITZ CONSTANT
We denote by Lip(R), the space of Lipschitz-continuous func-
tions f : R → R with a finite Lipschitz constant, satisfying

L( f ) = sup
x1 
=x2

| f (x1) − f (x2)|
|x1 − x2| < +∞. (9)

Following Rademacher’s theorem, any Lipschitz-continuous
function f ∈ Lip(R) is differentiable almost everywhere with
a measurable and essentially bounded derivative. The Lips-
chitz constant of the function then corresponds to the essential
supremum of its derivative, so that

L( f ) = ‖D{ f }‖L∞ = ess sup
x∈R

| f ′(x)|. (10)
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Conversely, any distribution f ∈ D′(R) whose weak deriva-
tive lies in L∞(R) is indeed a Lipschitz-continuous func-
tion [70, Theorem 1.36]. In other words, we have that

Lip(R) = { f ∈ D′(R) : D{ f } ∈ L∞(R)}, (11)

which allows us to view Lip(R) as the native Banach space
associated to the pair (L∞(R),D) in the sense of [71].

D. SECOND-ORDER TOTAL-VARIATION
To conclude this section, we introduce the space BV(2)(R) of
functions with finite second-order total-variation, defined as

TV(2)( f ) = ‖D2{ f }‖M = sup
ϕ∈D(R)

‖ϕ‖L∞=1

〈D2 f , ϕ〉 (12)

= sup
ϕ∈D(R)

‖ϕ‖L∞=1

∫
R

f (x)ϕ′′(x)dx. (13)

Analogous to the famous total-variation regularization
of Rudin-Osher-Fatemi [72], which promotes piecewise-
constant functions and causes the notorious staircase effect,
the second-order total variation favors CPWL functions. In
dimension d = 1, this coincides with the known class of
nonuniform linear splines which has been extensively studied
from an approximation-theoretical point of view [73], [74].
Motivated by this, the TV(2) regularization has been exploited
to learn activation functions of deep neural networks [41],
[75]. In a similar vein, the identification of the sparsest CPWL
solutions of TV(2)-regularized problems has been thoroughly
studied in [40].

III. LIPSCHITZ-AWARE FORMULATIONS FOR
SUPERVISED LEARNING
We now introduce our formulations for supervised learning
that are based on controlling the Lipschitz constant of the
learned mapping. Let us first mention that the Lipschitz con-
stant can be indirectly controlled using a TV(2)-type regu-
larizer. Indeed, the two seminorms are connected, as demon-
strated in Theorem 1.

Theorem 1: Any function with second-order bounded-
variation is Lipschitz continuous. Moreover, for any f ∈
BV(2)(R), we have the upper-bound

L( f ) ≤ TV2( f ) + �( f ) (14)

for the Lipschitz constant of f , where

�( f ) = inf
x1 
=x2

| f (x1) − f (x2)|
|x1 − x2| ≥ 0. (15)

Finally, (14) is saturated if and only if f is monotone and
convex/concave.

The proof of Theorem 1 is given in Appendix A. A weaker
version of this theorem is proven in [76], where �( f ) is re-
placed with | f (1) − f (0)|, which is clearly an upper-bound.
The importance of the updated bound is that it is sharp in the
sense that it is an equality for monotone and convex/concave
functions.

A weaker version of (14) motivated the authors of [76] to
provide a global bound for the Lipschitz constant of deep
neural networks and to regularize it during training. Although
this is an interesting approach to control the Lipschitz con-
stant of the learned mapping, the obtained guarantee is too
conservative. This is due to the fact that, as soon as f has
some oscillations, the difference between the two sides of (14)
dramatically increases and the bound becomes loose. Here,
by contrast, we shall ensure the global stability of the learned
mapping by directly controlling the Lipschitz constant itself.

A. LIPSCHITZ REGULARIZATION
We first consider the Lipschitz constant as a regularizer and
study the minimization problem

VLip = arg min
f ∈Lip(R)

(
M∑

m=1

E ( f (xm), ym) + λL( f )

)
, (16)

where E : R × R → R is a strictly convex and coercive func-
tion and where λ > 0 is the regularization parameter. We also
assume, without loss of generality, that the data points xm are
sorted in the increasing order x1 < x2 < · · · < xM . In Theo-
rem 2, we state our main theoretical contributions regarding
the minimization problem (16).

Theorem 2: Regarding the minimization problem (16), the
following statements hold.

1) The solution set VLip is a nonempty, convex and weak*-
compact subset of Lip(R).

2) There exists a unique vector z = (zm) ∈ RM such that

VLip = arg min
f ∈Lip(R)

L( f ), s.t. f (xm )= zm, ∀m.

(17)
3) The optimal Lipschitz constant has the closed-form ex-

pression

Lmin = max
2≤m≤M

∣∣∣∣ zm − zm−1

xm − xm−1

∣∣∣∣ . (18)

Consequently, any Lmin-Lipschitz function f that satis-
fies f (xm) = zm,m = 1, . . . ,M is a solution of (16).

4) Let E ⊆ R2 be the union of the graphs of all solutions
of (16), defined as

E = {
(x, y) ∈ R2 : ∃ f ∈ VLip, y = f (x)

}
. (19)

Let us also define the right and left planar cones R,L ⊆
R2 as

R = {α1(1,Lmin) + α2(1,−Lmin) : α1, α2 ≥ 0} , (20)

and L = −R. With the convention that R0 = LM+1 =
R2, we have that

E =
M+1⋃
m=1

(Rm−1 ∩ Lm) , (21)

where the Rm and Lm are shifted versions of R and L,
with

Rm = (xm, zm) + R, Lm = (xm, zm) + L,∀m. (22)
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FIGURE 1. The union of the graphs of all solutions in a simple example
with four data points. Note that all solutions must directly connect (x2, z2)
to (x3, z3), since the slope of this segment is Lmin whose formula is given
in (18).

5) Any solution of the constrained minimization problem

min
f ∈BV(2)(R)

TV(2)( f ), s.t. f (xm) = zm, 1 ≤ m ≤ M

(23)
is included in VLip. In particular, the solution set of
(16) always includes a continuous and piecewise-linear
function.

The proof of Theorem 2 is given in Appendix B.. Items
1 and 2 are classical results that hold for a general class of
variational problems (see [77] for a generic result). Their prac-
tical implication is Item 3, which provides a way to identify
solutions of (16). The solution set VLip is further explored
in Item 4, where a geometrical insight is given (see Fig. 1).
Finally, the result that has the greatest practical relevance is
stated in Item 5 which creates an interesting link with TV(2)

minimization problems and hence guarantees the existence of
CPWL solutions.

B. LIPSCHITZ CONSTRAINT
While the first formulation is interesting on its own right and
results in learning CPWL mappings with tunable Lipschitz
constants, it does not necessarily yield a sparse (and, hence,
interpretable) solution. In fact, the learned mapping can have
undesirable oscillations as illustrated in Fig. 3. This observa-
tion motivates us to propose a second formulation that com-
bines TV(2) regularization with a constraint over the Lipschitz
constant, as expressed by

Vhyb = arg minf∈BV(2)(R)

(
M∑

m=1

E( f (xm), ym) + λTV(2)( f )

)
,

s.t. L( f ) ≤ L̄. (24)

The quantity L̄ is the maximal value allowed for the Lips-
chitz constant of the learned mapping. In this way, the stability
is directly controlled by the user, while the regularization
term removes undesired oscillations (tunable with λ > 0). The
solution set Vhyb is characterized in Theorem 3, from which
we also deduce the existence of CPWL solutions.

FIGURE 2. Example of our first formulation (16) for M = 50 data points.

Theorem 3: The solution set Vhyb of Problem (24) is a
nonempty, convex, and weak*-compact subset of BV(2)(R)
whose extreme points are linear splines with at most (M − 1)
linear regions. Moreover, there exists a unique vector z = (zm)
such that

Vhyb = arg min
f ∈BV(2)(R)

TV(2)( f ),

s.t. f (xm) = zm, 1 ≤ m ≤ M. (25)

Finally, the optimal TV(2) cost has the closed-form expression

TVmin =
M−1∑
m=2

∣∣∣∣ zm − zm−1

xm − xm−1
− zm − zm+1

xm − xm+1

∣∣∣∣ . (26)

The proof is given in Appendix D.. The proof involves the
weak*-closedness of the constraint box L( f ) ≤ L which is es-
sential to prove existence. Once the existence of a minimizer is
guaranteed, we can invoke the results of Debarre et al. in [40]
for TV(2) minimization to deduce the remaining parts. We also
remark that the Lipschitz constraint only affects the vector z
in (25), which forces its entries to satisfy the inequalities

∣∣∣∣ zm − zm−1

xm − xm−1

∣∣∣∣ ≤ L, m = 2, . . . ,M. (27)
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FIGURE 3. Reconstructions with a ReLU ground truth and M = 30 data points.

C. CONNECTION TO NEURAL NETWORKS
In this part, we show that our second formulation (24) is
equivalent to training a two-layer neural network with weight
decay and a Lipschitz constraint. Let us recall that a univariate
ReLU network with two layers and skip connections is a
mapping fθ : R → R of the form

fθ (x) = c0 + c1x +
K∑

k=1

vkReLU(wkx − bk ), (28)

where c1 ∈ R is the weight of the skip connection, K ∈ N
is the width of the network, vk,wk ∈ R, k = 1, . . . ,K are
the linear weights and bk ∈ R, k = 1, . . . ,K and c0 ∈ R are
the bias terms of the first and second layers, respectively.
These parameters are concatenated in a single vector θ =
(K, v,w,b, c), and we denote by � the set of all possible
parameter vectors θ. Thus, the training problem with Lipschitz
constraint and weight decay is formulated as

VNN = arg min
θ∈�

(
M∑

m=1

E( fθ (xm), ym) + λR(θ)

)
,

s.t. L( fθ ) ≤ L̄, (29)

where R(θ) = ∑K
k=1( |vk |2+|wk |2

2 ) is the regularization term
corresponding to weight decay. In Proposition 1, we show the
equivalence between this training problem and our Lipschitz-
constrained formulation (24).

Proposition 1: For any solution θ∗ of (29), fθ∗ is a CPWL
solution of (24). Moreover, any CPWL solution of (24) can
be expressed as a two-layer ReLU network fθ∗ with skip
connections whose parameter vector is optimal in the sense
of (29), i.e., θ∗ ∈ VNN .

Proposition 1, whose proof is given in Appendix E., is an
extension of the results of [47], [50], where this equivalence is
proved in the absence of a Lipschitz constraint. These works
rely on a result (e.g., [50, Corollary C.2]) that describes the
energy propagation in the training of feed-forward neural net-
works with weight decay, which can easily be extended to the
Lipschitz-constrained case (Lemma 2). Proposition 1 provides

a functional framework to study the training of Lipschitz-
aware neural networks, which is a nontrivial task. To this
end, Proposition 1 allows us to deploy our proposed algorithm
(introduced in Section IV).

IV. FINDING THE SPARSEST CPWL SOLUTION
Using the theoretical results of Section III, we propose an
algorithm to find the sparsest CPWL solution of Problems
(16) and (24). To that end, we first compute the vector z of
the value of the optimal function at the data points x1, . . . , xm.
Using this vector, we then deploy the sparsification algorithm
of [40], whose use in the present method is motivated by the
following theorem.

Theorem 4: Let (xm, zm) ∈ R2,m = 1, . . . ,M be a collec-
tion of ordered data points with x1 < · · · < xM . Then, the
output fsparse of the sparsification algorithm of Debarre et al.
in [40] is the sparsest linear-spline interpolator of the data
points. In other words, fsparse is the CPWL interpolator with
the fewest number of linear regions.

The proof is given in Appendix C.. Theorem 4 is a strong
enhancement of [40, Theorem 4] where it is merely estab-
lished that fsparse is the sparsest CPWL solution of (23). In
Theorem 4, we prove that fsparse is in fact the sparsest of
all CPWL interpolants of the data points (xm, zm), without
restricting the search to the solutions of (23). This is a re-
markable result in its own right, as it gives a nontrivial answer
to the seemingly simple question: how to interpolate data
points with the minimum number of lines? Here, we invoke
Theorem 4 to deduce that, with the vector z defined in Item 2
of Theorem 2, fsparse is the sparsest CPWL solution of (17).
Similarly, with the vector z defined in Theorem 3, fsparse is the
sparsest CPWL solution of (24).

In the remaining part of this section, we detail our compu-
tation of the vectors z defined in Theorems 2 and 3. Let us
define the empirical loss function F : RM → R≥0 as

F (z) =
M∑

m=1

E (zm, ym). (30)

VOLUME 3, 2022 145



AZIZNEJAD ET AL.: SPARSEST UNIVARIATE LEARNING MODELS UNDER LIPSCHITZ CONSTRAINT

For simplicity, we assume that F is differentiable; the pro-
totypical example is the quadratic loss F (z) = 1

2

∑M
m=1(zm −

ym)2. Following this notation and using (18), the vector z in
Problem (17) is solution to the minimization problem

minz ∈ RM (F (z) + λ‖Linf z‖∞) , (31)

where the matrix Linf ∈ R(M−1)×M is given by

[Linf ]m,n =

⎧⎪⎨
⎪⎩

−vm+1, n = m

vm+1, n = m + 1

0, otherwise

(32)

where vm = (xm − xm−1)−1,m = 2, . . . ,M. To solve (31), we
use the well-known alternating-direction method of multipli-
ers (ADMM) [78] by defining the augmented Lagrangian as

J (z,u,w) =

F (z) + λ‖u‖∞ + ρ

2
‖Linf z − u‖2

2 + wT (Linf z − u), (33)

where ρ > 0 is a tunable parameter. The principle of ADMM
is to sequentially update the unknown variables z ∈ RM and
u,w ∈ RM−1. Precisely, its kth iteration is given explicitly by

z(k+1) = arg min
z∈RM

J
(

z,u(k),w(k)
)
, (34)

u(k+1) = arg min
u∈RM−1

J
(

z(k+1),u,w(k)
)
, (35)

w(k+1) = w(k) + ρ
(

Linf z(k+1) − u(k+1)
)
. (36)

The benefit of these sequential updates is that Problem (34)
has a differentiable cost and hence, can be efficiently solved
using gradient-based methods. (In the case of the quadratic
loss E (z, y) = 1

2 (z − y)2, one can even obtain a closed-form
solution.) Unfortunately, the cost in (35) is not differentiable.
However, one can rewrite the augmented Lagrangian as

J (zk,u,wk ) = ρ

2

∥∥∥∥u − Linf zk − 1

ρ
wk

∥∥∥∥
2

2
+ λ‖u‖∞ + Cnst.,

(37)
where the constant term accounts for all terms that do not de-
pend on u. Then, by defining the vector vk = (Linf zk + 1

ρ
wk ),

we rewrite (35) as

u(k+1) = arg min
u∈RM−1

(
1

2
‖u − vk‖2

2 + λ

ρ
‖u‖∞

)

= prox λ
ρ ‖·‖∞ (vk ), (38)

by definition of the proximal operator. The proximal operator
of the �∞-norm has computationally cheap implementations
(see, for example, [79, Section 6.5.2]), which can be used to
update u via (38).

Similarly and using (26), we formulate the search for the
vector z associated to the Problem (24) as

min
z∈RM

(
F (z) + λ‖L1z‖1 + i‖Linf z‖∞≤L

)
, (39)

where iE denotes the indicator function of the set E and L1 ∈
R(M−2)×M with

[L1]m,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−vm+1, n = m

(vm+1 + vm+2), n = m + 1

−vm+2, n = m + 2,

0, otherwise

(40)

for all m = 1, . . . ,M − 2 and n = 1, . . . ,M. In this case, the
augmented Lagrangian takes the form

J (z,u1,uinf ,w1,winf ) = F (z)

+ ρ1

2
‖L1z − u1‖2

2 + wT
1 (L1z − u1) + ‖u1‖1

+ ρinf

2
‖Linf z − uinf‖2

2 + wT
inf (Linf z − uinf ) + i‖uinf‖∞≤L.

(41)

At the kth iteration, we then solve sequentially the following
optimization problems

z(k+1) = arg min
z∈RM

J (z,u(k)
1 ,u(k)

inf ,w(k)
1 ,w(k)

inf ), (42)

u(k+1)
1 = arg min

u1∈RM−2
J (z(k+1),u1,u(k)

inf ,w(k)
1 ,w(k)

inf ), (43)

u(k+1)
inf = arg min

uinf∈RM−1
J
(

z(k+1),u(k+1)
1 ,uinf ,w(k)

1 ,w(k)
inf

)
, (44)

w(k+1)
1 = w(k)

1 + ρ1

(
L1z(k+1) − u(k+1)

1

)
, (45)

w(k+1)
inf = w(k)

inf + ρinf

(
Linf z(k+1) − u(k+1)

inf

)
. (46)

The cost function of Problem (42) is differentiable and so, we
can solve it using gradient-based methods. For Problem (43),
we invoke the proximal operator of the �1-norm that is known
to be soft-thresholding [79, Section 6.5.2.]. Finally and for
(44), the proximal operator of the indicator function i‖·‖∞≤L is
the projection over the �∞ ball which has the simple separable
expression

[
proxi‖·‖∞≤L

(v)
]

n
=

⎧⎪⎨
⎪⎩

L, vn > L

vn, |vn| ≤ L

−L, vn < −L.

(47)

V. NUMERICAL EXAMPLES AND DISCUSSIONS
A. EXPERIMENTAL SETUP
In all our experiments, we consider the standard quadratic
loss E (y, z) = 1

2 (y − z)2. We draw the data-point locations
xm randomly in the interval [0, 1]. The values ym are then
generated as ym = f0(xm) + nm, where f0 is some known
CPWL function (gold standard) and nm is drawn i.i.d. from
a zero-mean normal distribution with variance σ 2.

B. EXAMPLE OF LIPSCHITZ REGULARIZATION
In this first experiment, we illustrate our first formulation (16).
We take M = 50 data points, a CPWL ground-truth f0 with 6
linear regions, and a noise level σ = 0.02.
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The results are shown in Fig. 2. In Fig. 2(a), we show the
reconstructions for extreme values of λ. On one hand, λ →
0 corresponds to the exact interpolation Problem (17). On
the other hand, λ = +∞ corresponds to constant regression.
Obviously, neither is very satisfactory: interpolation leads to
overfitting (the reconstruction has 37 linear regions), and the
constant regression to underfitting. We show an example of
a more satisfactory reconstruction for λ = 0.029 (10 linear
regions), which is visually acceptable. In Fig. 2(b), we show
the evolution of the quadratic loss 1

2

∑M
m=1( f ∗(xm) − ym)2

and the Lipschitz constant L( f ∗), for various values of λ. With
the aid of such curves, the user can choose what is considered
acceptable for either of these costs and select a suitable value
of λ.

C. LIMITATIONS OF LIPSCHITZ-ONLY REGULARIZATION
Despite its interesting theoretical properties, Problem (16)
does not always yield satisfactory reconstructions. This is
because it does not enforce a sparse reconstruction in the
problem formulation, despite the fact that our algorithm re-
constructs (one of) the sparsest elements of Vlip. This leads
to learned mappings with too many linear regions and, conse-
quently, poor interpretability.

One such example is shown in Fig. 3, where we consider the
shifted ReLU function f0(·) = (· − 1

2 )+ as the ground-truth
mapping. We also fix the standard deviation of the noise
to σ = 0.02. Fig. 3(a) shows a reconstruction that solves
Problem (16) with the regularization parameter λ = 0.02. Al-
though the reconstruction is satisfactory in the active section
(x > 1/2), it has many linear regions in the flat section (x <
1/2) that are not present in f0. This is due to the fact that the
active section forces the Lipschitz constant of the reconstruc-
tion to be around 1, while oscillations with a slope smaller
than 1 in the flat section are not penalized by the regulariza-
tion. This problem clearly cannot be fixed by a simple increase
in the regularization parameter: with λ = 0.2 (Fig. 3(b)), not
only there are still too many linear regions in the flat section
(the reconstruction has 9 linear regions in total), but also the
active section is poorly reconstructed because the Lipschitz
constant is penalized too heavily by the regularization.

Hence, to reconstruct such a ground truth accurately, it
is necessary to enforce the sparsity of the reconstruction,
which is exactly the purpose of the TV(2) regularization. The
reconstruction result of the TV(2)-regularized problem (i.e.,
Problem (24) with a relatively large Lipschitz bound) with
λ = 0.01 is also shown in Fig. 3(c); it is clearly much more
satisfactory than any of the Lipschitz-penalized reconstruc-
tions since it is very close to the ground truth and has the same
sparsity (two linear regions).

D. ROBUSTNESS TO OUTLIERS OF THE
LIPSCHITZ-CONSTRAINED FORMULATION
In this final experiment, we demonstrate the pertinence of
our second formulation (Problem (24)). More precisely, we
examine the increased robustness to outliers of our second
formulation (24) with respect to TV(2) regularization. To that

FIGURE 4. Reconstruction of M = 50 data points for λ = 10−4. Our second
formulation with L̄ = 0.66 produces 9 linear regions. We compare it to that
of TV(2) which produces 12 linear regions.

end, we generate the CPWL ground truth f0 with 6 linear
regions and M = 50 data points. We then consider an additive
Gaussian-noise model with low standard deviation σ = 10−3

for 90% of the data, and a much stronger σ ′ = 3.5 ∗ 10−2 for
the remaining 10%, which can be considered outliers.

We show in Fig. 4 the reconstruction results using our
second formulation with λ = 10−4 and L̄ = 0.66. The latter
is quite satisfactory despite the presence of a strong outlier
around xm = 0.22. This is due to the fact that the Lipschitz
constant is constrained. When using TV(2)-regularization
alone, at same regularization parameter, the reconstruction is
very similar in most regions but is much more sensitive to this
outlier which leads to an unwanted sharp peak and to the high
Lipschitz constant L( f ∗) = 2.21. Moreover, our reconstruc-
tion is more satisfactory in terms of sparsity (9 linear regions
compared to 12, which is closer to the 6 linear regions of the
target function f0).

VI. CONCLUSION
We have proposed two schemes for the learning of one-
dimensional continuous and piecewise-linear (CPWL) map-
pings with tunable Lipschitz constant. In the first scheme, we
directly use the Lipschitz constant as a regularization term. We
establish a representer theorem that allows us to deduce the
existence of a CPWL solution for this continuous-domain op-
timization problem. In the second scheme, we use the second-
order total-variation seminorm as the regularization term to
which we add a Lipschitz constraint. Again, we proved the
existence of a CPWL solution for this problem. Finally, we
proposed an efficient algorithm to find the sparsest CPWL
solution of each problem. We illustrated the outcome of each
scheme via numerical examples. A potential application of
the proposed algorithm is to design stable CPWL activation
functions with a minimum number of linear regions in deep
neural networks. This can, for example, be useful to train a
denoising module in the context of plug-and-play methods
for image reconstruction, whose convergence rates typically
depend on the Lipschitz constant of the trainable denoising
module [32].
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APPENDIX A
A. PROOF OF THEOREM 1
Proof: For any h > 0 and p = (p1, p2) ∈ R2 with p1 < p2,
let us first define the test function ϕh(·; p) ∈ C0(R) as

ϕh(x; p) = h−1 (ReLU (x − (p1 − h)) − ReLU(x − p1)

+ReLU (x − (p2 + h)) − ReLU(x − p2)) .

This function will be used on several occasions throughout
the proof. In particular, we use the explicit form of its second-
order derivative given by

D2ϕh(·; p) = h−1 (δ (· − (p1 − h)) − δ(· − p1)

+δ (· − (p2 + h)) − δ(· − p2)) . (48)

Upper-Bound: Similar to (10), we have that �( f ) =
ess infx∈R | f ′(x)|. For a fixed ε > 0, by definition of the es-
sential supremum and infimum, there exist x̄, x ∈ R at which
f is differentiable with | f ′(x̄)| ≥ (L( f ) − ε) and | f ′(x)| ≤
(�( f ) + ε). Without loss of generality, we assume that x̄ < x.
Following the limit definition of the derivative, we then con-
sider a small radius h > 0 such that∣∣∣∣ f (x̄ + h) − f (x̄)

h

∣∣∣∣ ≥ | f ′(x̄)| − ε ≥ L( f ) − 2ε,

∣∣∣∣ f (x + h) − f (x)

h

∣∣∣∣ ≤ | f ′(x)| + ε ≤ �( f ) + 2ε.

Now, let us consider the test function ϕ = ϕh(·; (x̄ +
h, x)). Following the definition of the total-variation norm
(7) together with ‖ϕ‖∞ = 1, we deduce that TV(2)( f ) ≥
|〈D2 f , ϕ〉| = |〈 f ,D2ϕ〉|, where the last equality follows from
the self-adjointness of the second-order derivative. Using (48),
we thus have that

TV(2)( f ) ≥ h−1| f (x̄) − f (x̄ + h) + f (x + h) − f (x)|

≥ | f (x̄ + h) − f (x̄)|
h

− | f (x + h) − f (x)|
h

≥ L( f ) − 2ε − �( f ) − 2ε = L( f ) − �( f ) − 4ε.

Finally, by letting ε → 0, we deduce the desired upper-bound.
Saturation—Sufficient Conditions: Assume that

f ∈ BV(2)(R) is convex and increasing; we denote its
second-order weak derivative by w = D2 f . Note that, in this
case, the functions (− f (·)), f (−·), and (− f (−·)) are con-
cave/decreasing, convex/decreasing, and concave/increasing,
respectively. Hence, we only need to prove the saturation for
f and the other cases immediately follow.

For a fixed ε > 0, from (13) there exists a test function
ψ ∈ D(R) with compact support K = supp(ψ ) such that
‖ψ‖L∞ = 1 and 〈w, ψ〉 ≥ (TV(2)( f ) − ε). For any T > 0, we
consider the test function ψT = ϕ1(·; (−T,T )). From (48),
we obtain that

〈w, ψT 〉 = 〈 f ,D2ψT 〉
= ( f (T + 1) − f (T )) − ( f (−T ) − f (−T − 1))

≤ L( f ) − �( f ),

where we have used the increasing assumption to deduce that
f (T + 1) ≥ f (T ) and f (−T ) ≥ f (−T − 1). By choosing T
large enough so that K ⊆ [−T,T ], we ensure that (ψT − ψ )
is a nonnegative function, since for all x ∈ K , we will have
that ψT (x) = 1 = ‖ψ‖L∞ ≥ ψ (x). Next, the convexity of f
implies that w = D2 f is a positive measure. Hence,

0 ≤ 〈w, ψT − ψ〉 ≤ L( f ) − �( f ) − TV(2)( f ) + ε. (49)

By letting ε → 0, we deduce that TV(2)( f ) ≤ (L( f ) − �( f )),
which implies the saturation of (14).

Saturation—Necessary Conditions: Let f ∈ BV(2)(R) be a
function for which (14) is saturated.

Monotonicity: Assume by contradiction that f is not mono-
tone. Hence, there exists xn ∈ R such that f ′(xn) < 0. Indeed,
if f ′ were a positive distribution, then for any a, b ∈ R with
a < b, we would have that ( f (b) − f (a)) = 〈 f ,′ 1[a,b]〉 ≥ 0,
which contradicts the assumption of non-monotonicity. Simi-
larly, there exists xp ∈ R such that f ′(xp) > 0.

Next, consider a point xL ∈ R, distinct from xn and
xp, such that | f ′(xL )| > (L( f ) − ε) > 0, where 0 < ε <
min(− f ′(xn ), f ′(xp))

3 is a small constant. Without loss of general-
ity, let us assume that f ′(xL ) > 0. There exists a small radius
h ∈ (0, |xL−xn|

2 ) such that

f (xn + h) − f (xn)

h
≤ f ′(xn) + ε < 0,

f (xL + h) − f (xL )

h
≥ f ′(xL ) − ε > 0.

By considering the test function

ϕ =
{
ϕh(·; (xn + h, xL )) if xn < xL

ϕh(·; (xL, xn + h)) if xn > xL

and using (13) once again, we deduce that

TV(2)( f ) ≥ h−1 | f (xn) − f (xn + h) + f (xL + h) − f (xL )|

= f (xL + h) − f (xL )

h
− f (xn + h) − f (xn)

h

≥ f ′(xL ) − ε − f ′(xn) − ε ≥ L( f ) − f ′(xn) − 3ε

> L( f ),

which contradicts the original assumption that (14) is satu-
rated. For the case f ′(xL ) < 0, the same arguments can be
applied to xp instead of xn. This proves that f is monotone. In
the following, we consider the case where f is an increasing
function; the decreasing case can be deduced by symmetry.

Convexity/Concavity: We first consider the canonical de-
composition f = D−2

φ
w + p, where w = D2 f , D−2

φ
is a right

inverse of the second-order derivative, and p(x) = ax + b is
an affine term [41, Proposition 9]. We then use the Jor-
dan decomposition of w = D2 f as w = (w+ − w−), where
w+,w− ∈ M(R) are positive measures such that ‖w‖M =
‖w+‖M + ‖w−‖M. This allows us to form the decomposi-
tion f = ( f+ − f−), where fs = D−2

φ
ws + ps, s ∈ {+,−},

p+(x) = (A + a)x + b, and p−(x) = Ax with A > 0 being a
sufficiently large constant such that the functions f+ and f−

148 VOLUME 3, 2022



are both convex and strictly increasing. Hence, they both sat-
isfy the sufficient conditions for saturation, which implies that
TV(2)( fs) = (L( fs) − �( fs)) for s ∈ {+,−}.

Assume by contradiction that ws 
= 0 for s ∈ {+,−} and

let ε < min(TV(2)( f+ ),TV(2)( f− ))
2 be a small positive constant. Let

x̄, x ∈ R such that f ′(x̄) ≥ (L( f ) − ε) and f ′(x) ≤ (�( f ) +
ε). Using these inequalities, we deduce that

TV(2)( f ) = L( f ) − �( f )

≤ f ′(x̄) − f ′(x) + 2ε

= (
f ′
+(x̄) − f ′

−(x̄)
)− (

f ′
+(x) − f ′

−(x)
)+ 2ε

= A+ − A− + 2ε, (50)

where As = ( f ′
s (x̄) − f ′

s (x)) for s ∈ {+,−}. We now consider
two cases:

Case I: x̄ > x: The convexity of f− implies that A− ≥ 0.
Moreover, we have that A+ = ( f ′+(x̄) − f ′+(x)) ≤ (L( f+) −
�( f+)) = TV(2)( f+). Using (50), this yields that TV(2)( f ) ≤
TV(2)( f+) + 2ε, which can be rewritten as 2ε ≥ TV(2)( f−).
However, our original choice of ε implies that ε <

TV(2)( f−)/2, which leads to a contradiction.
Case II: x̄ ≤ x: Similarly to the first case, we de-

duce that A+ ≤ 0 and −A− ≤ TV(2)( f−). Hence, we get
that 2ε ≥ TV(2)( f+) which contradicts the assumption ε <
TV(2)( f+)/2. Since both cases lead to a contradiction, we
have w− = 0 or w+ = 0, which implies that f is either convex
or concave. �

B. PROOF OF THEOREM 2
Proof: Items 1 and 2: The first step is to show that the sam-
pling functional δ(· − x0) : f �→ f (x0) is weak*-continuous
in Lip(R). To that end, we identify the predual Banach
space X such that Lip(R) = X′ and then show that shifted
Dirac impulses are included in X, which is equivalent to
weak*-continuity. We recall that following (11), we can view
Lip(R) as the native Banach space associated to the pair
(L∞(R),D). This allows us to deploy the machinery of [71]
to identify its predual space. In short, it follows from [71]
that the predual space has the direct-sum structure X =
D(L1(R)) ⊕ span(e−(·)2

). In other words, any function f ∈ X

can be decomposed as f = D{g} + ce−(·)2
, where g ∈ L1(R)

and c ∈ R. One can formally verify that δ = D{sgn − erf} +
2√
π

e−(·)2
, where sgn is the sign function and erf is the Gauss

error function. Due to the rapid decay of the erf function at
t = −∞ and the symmetry of (sgn − erf ), we deduce that
sgn − erf ∈ L1(R) and, hence, that δ ∈ X. Finally, due to the
shift-invariant structure of X, we deduce the weak*-continuity
of the sampling functional δ(· − x0) for any x0 ∈ R.

Next, we invoke the general representer theorem for Ba-
nach semi-norms [80, Theorem 3] to deduce that the solution
set VLip of (16) is a nonempty, convex, weak*-compact set
whose elements all pass through a fixed set of points. Put
differently, the vector z = (zm) with zm = f (xm) is invariant to
the choice of f ∈ VLip. This means that adding the constraints

zm = f (xm),m = 1, . . . ,M does not change the solution set,
i.e.,

VLip = arg min
f ∈Lip(R)

(
M∑

m=1

E ( f (xm), ym) + λL( f )

)
,

s.t. f (xm) = zm, m = 1, . . . ,M

= arg min
f ∈Lip(R)

L( f ), s.t. f (xm) = zm,

where the last equality is obtained by observing that∑M
m=1 E ( f (xm), ym) is constant within the solution set VLip.

Consequently, we can represent VLip as a solution set of a
constrained problem of the form (17).

Item 3: Let us first define the canonical CPWL interpolant
of a collection of 1D data points.

Definition 1: For a series of data points (xm, zm),m =
1, . . . ,M, the canonical interpolant fcano : R → R is the
unique CPWL function that passes through these points and
is differentiable over R\{x2, . . . , xM−1}.

We first prove that fcano is a solution of (17). Clearly, the
Lipschitz constant of fcano is equal to L( fcano) = Lmin, where
Lmin is given in (18). Moreover, any function f that passes
through the data points (xm, zm) necessarily has a Lipschitz
constant greater than or equal to Lmin. This implies that fcano

is a solution of (17) and Lmin is the minimal value of the
Lipschitz constant. Consequently, any function that satisfies
the interpolation constraints and is Lmin-Lipschitz is a solution
of (17).

Item 4: Consider a generic point (x, y) ∈ E, and let m be
such that x ∈ (xm−1, xm). By definition of E, there exists a
function f ∈ VLip such that y = f (x). From Item 3, we deduce
that L( f ) = Lmin. Hence, we have the inequalities∣∣∣∣ y − zm−1

x − xm−1

∣∣∣∣ ,
∣∣∣∣ y − zm

x − xm

∣∣∣∣ ≤ Lmin. (51)

These inequalities can readily be translated into the inclusion
(x, y) ∈ Rm−1 ∩ Lm, which implies that E ⊆ ⋃M

m=1(Rm−1 ∩
Lm). To show the reverse inclusion, consider a point in
(x, y) ∈ Rm−1 ∩ Lm for some m ∈ {1, . . . ,M + 1} and denote
by f̃cano the canonical interpolant of {(xm, zm)}M

m=1 ∪ {(x, y)}.
Following Item 3, the Lipschitz constant of f̃cano is given by

L( f̃cano) = max

(
Lmin,

∣∣∣∣ y − zm−1

x − xm−1

∣∣∣∣ ,
∣∣∣∣ y − zm

x − xm

∣∣∣∣
)

= Lmin,

(52)
where we establish the last equality by translating the inclu-
sion (x, y) ∈ Rm−1 ∩ Lm into the inequalities in (51). This
implies that f̃cano is a solution of (17) and so, by definition,
we have that (x, y) ∈ E.

Item 5: By [40, Proposition 5], fcano is also a solution of
(23). We therefore need to prove that any solution fopt of (23)
has the same Lipschitz constant L( fopt ) = L( fcano) = Lmin.
Due to the interpolation constraints, we necessarily have that
L( fopt ) ≥ L( fcano); we must now prove the reverse inequal-
ity L( fopt ) ≤ L( fcano). By [40, Theorem 2], fopt must follow
fcano in R\[x2, xM−1]. Moreover, in each interval [xm, xm+1]
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for m ∈ {2, . . . ,M − 2}, fopt either follows fcano or is con-
cave or convex over the interval [xm−1, xm+2]. Hence, it suf-
fices to prove that, for any m ∈ {2, . . . ,M − 2}, we have that
Lm( fopt ) ≤ L( fcano), where Lm( f ) denotes the Lipschitz con-
stant of f restricted to the interval [xm, xm+1].

Let m be an index for which fopt need not follow fopt

in [xm, xm+1]. (If no such index exists, then the result is
trivially true.) Assume that fopt is convex in the interval
[xm−1, xm+2]; the concave scenario is derived in a similar fash-
ion. This implies that, in this interval, the function (x̃1, x̃2) �→
fopt (x̃2 )− fopt (x̃1)

x̃2−x̃1
is increasing in both its variables.

Hence, for any x̃1, x̃2 ∈ [xm, xm+1] with x̃1 
= x̃2, we have
that zm−zm−1

xm−xm−1
≤ fopt (x̃2)− fopt (x̃1)

x̃2−x̃1
≤ zm+2−zm+1

xm+2−xm+1
. This directly im-

plies the desired result Lm( fopt ) ≤ L( fcano). �

C. PROOF OF THEOREM 4
Proof:

Let f ∗ be the output of [40, Algorithm 1]. It is thus a
CPWL solution of Problem (17) with the minimum number of
linear regions. We prove that any CPWL interpolant f of the
data points Pm = (xm, zm),m = 1, . . . ,M—not necessarily a
minimizer of TV(2)( f )—has at least as many linear regions as
f ∗. Our proof is based on induction over the number M of data
points. The initialization M = 2 trivially holds, since f ∗ then
has a single linear region—it is simply the line connecting the
two data points. Next, let M > 2 and assume that Theorem 4
holds for (M − 1) or less data points (the induction hypothe-
sis). The canonical interpolatant fcano introduced in Definition
1 can be expressed as

fcano(x) = α1x + α2 +
M−1∑
m=2

am(x − xm)+ (53)

for some coefficients α1, α2, am ∈ R. There are three possible
scenarios:

1) all am’s are positive (or negative);
2) at least one of them is zero;
3) there are two consecutive coefficients with opposite

signs, so that amam+1 < 0 for some m.
We analyze each case separately and use the induction hy-

pothesis to deduce the desired result. In this proof, we refer
to singularities of CPWL functions (i.e., the boundary points
between linear regions) as knots.

Case 1: In this case, it is known that f ∗ has K = (�M
2 � − 1)

knots [40, Theorem 4]. Assume by contradiction that there
exists a CPWL interpolant f with fewer knots and consider the
K disjoint intervals (x2k−1, x2k+1) for 1 ≤ k ≤ (�M

2 � − 1) =
K . We deduce that there exists an interval (x2k−1, x2k+1) in
which f has no knots. This in turn implies that the data points
P2k−1, P2˜k , and P2k+1 are aligned, and so that a2˜k = 0, which
yields a contradiction.

Case 2: Let m ∈ {2,M − 1} be such that am = 0. Consider
the collection of m < M data points (Pm′ )1≤m′≤m; by the in-
duction hypothesis, f ∗ interpolates them with the minimal
number K1 of knots. The same applies to the collection of

(M − m + 1) < M points (Pm′ )m≤m′≤M with K2 knots. Let
f be a CPWL interpolant of all the M data points with the
minimal number of knots. By definition of the Ki, f must have
at least K1 knots in the interval (x1, xm) and K2 knots in the in-
terval (xm, xM ). Since these intervals are disjoint, f must have
at least K1 + K2 knots in total. Yet, f ∗ has exactly (K1 + K2)
knots: indeed, f ∗ follows fcano in the interval [xm−1, xm+1],
which has no knot at xm since am = 0 (the points Pm−1, Pm,
and Pm+1 are aligned). This concludes that f ∗ has the mini-
mum number of knots.

Case 3: Let m ∈ {2,M − 2} be such that amam+1 <

0. Consider the collection of (m + 1) < M data points
(Pm′ )1≤m′≤m+1; by the induction hypothesis, f ∗ interpolates
them with the minimal number K1 of knots. Similarly, f ∗
interpolates the (M − m + 1) < M points (Pm′ )m≤m′≤M with
the minimal number K2 of knots. Let f be a CPWL interpolant
of all the M data points with the minimal number of knots. We
now state a useful lemma whose proof is given below.

Lemma 1: Let m ∈ {2, . . . ,M − 2} be such that amam+1 <

0. Then, any CPWL interpolant f of the data points
(Pm′ )1≤m′≤M can be modified to become another CPWL in-
terpolant f̃ with as many (or fewer) knots such that f̃ has no
knot in the interval (xm, xm+1).

By Lemma 1, it can be modified to become another in-
terpolant f̃ with the same total number of knots and none
in the interval (xm, xm+1). By definition of the Ki, f̃ must
have at least K1 knots in the interval (x1, xm+1) and K2 knots
in the interval (xm, xM ). Yet, f̃ has no knots in the interval
(xm, xm+1), so it must have at least K1 knots in (x1, xm] and
K2 knots in [xm+1, xM ). Since these intervals are disjoint, f̃
must have at least (K1 + K2) knots in total. Yet, f ∗ follows
fcano in the interval [xm−1, xm+2] and thus also has no knot in
the interval (x1, xm+1). Therefore, by the induction hypothe-
sis, f ∗ has K1 knots in (x1, xm] and K2 knots in [xm+1, xM ),
for a total of (K1 + K2) knots. Since this is no more than
f̃ , f ∗ has the minimal number of knots, which proves
the induction. �

Proof of Lemma 1: Let f be a CPWL interpolant of the
data points (Pm′ )1≤m′≤M with P knots. In what follows, we
consider a CPWL function f̃ that follows f outside this inter-
val and (xm−1, xm+2), and we modify it inside this interval in
order to remove all knots in (xm, xm+1) without increasing the
total number of knots.

We consider the case am > 0 and am+1 < 0 without loss
of generality. Let s− = f ′(x−

m−1) and s+ = f ′(x+
m+2) be

the slopes of f before and after the interval of interest
(xm−1, xm+2), respectively, and we let s−

cano = f ′
cano(x−

m−1) and
s+

cano = f ′
cano(x+

m+2) be those of fcano. We also introduce the
linear functions f −(x) = zm−1 + s−(x − xm−1) and f +(x) =
zm+2 + s+(x − xm+2). They prolong f in a straight line after
Pm−1 and before Pm+2, respectively. We now distinguish cases
based on s− and s+.

Case I: s− ≤ s−
cano and s+ ≤ s+

cano Graphically, this corre-
sponds to f lying in none of the gray regions in Fig. 5. In this
case, the line (PmPm+1) intersects the linear function f − at
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FIGURE 5. Illustration of Lemma 1 in the case am > 0 and am+1 < 0. The
interpolant f (solid line) satisfies s+ > s+

cano and s− ≤ s−
cano. The modified

interpolant f̃ (dashed line) also has three knots P−, Pm+1, and Pm+2, but
none in (xm, xm+1).

some point P− = (x−, z−) where x− ∈ (xm−1, xm), and with
f + at some point P+ = (x+, z+) with x+ ∈ (xm+1, xm+2).
This is obvious graphically (see Fig. 5 as an illustration
for P−), and is due to the fact that am > 0 and am+1 < 0.
Hence, by taking an f̃ that connects the points Pm−1, P−,
P+, and Pm+2, then f̃ has two knots in [xm−1, xm+2] and
its knots satisfy x−, x+ 
∈ (xm, xm+1). Since f clearly cannot
have fewer than two knots in this interval, this proves the
desired result.

Case II: s+ > s+
cano and s− > s−

cano: In this case, f lies
in both gray regions in Fig. 5. To pass through Pm, f must
have at least one knot in [xm−1, xm); let P− = (x−, z−) be the
first of those knots (with x− < xm). Similarly, to pass through
Pm+1, f must have a knot in (xm+1, xm+2]; let P+ = (x+, z+)
be the last of those knots (with x+ > xm+1). Then, f must
pass through the points P−, Pm, Pm+1, P+. Yet, the lines
(P−Pm) and (Pm+1P+) clearly cannot intersect in the interval
[xm, xm+1], which implies that at least two knots are needed
in the interval (x−, x+). We conclude that f must have at
least four knots in the interval [xm−1, xm+2]. Hence, we take
an f̃ that simply connects the points Pm−1, Pm, Pm+1, and
Pm+2 and follows f elsewhere; the latter has four knots in
[xm−1, xm+2], which is no more than f and thus fulfills the
requirements of the proof.

Case III: s+ > s+
cano and s− ≤ s−

cano: This case is illustrated
in Fig. 5: f is outside the gray region on the left, and inside
the one on the right. With a similar argument as in Case II, f
must have a least three knots in the interval [xm−1, xm+2]. The
fact that am > 0 implies that the line (PmPm+1) intersects the
linear function f − at some point P− = (x−, z−) where x− ∈
(xm−1, xm). We then take an f̃ that connects the points Pm−1,
P−, Pm+1, and Pm+2 and follows f elsewhere. The interpolant
f̃ has three knots at x−, xm+1, and xm+2 in [xm−1, xm+2] and
thus satisfies the requirements of the proof.

Case IV: s+ ≤ s+
cano and s− > s−

cano: This is similar to Case
III, and can be readily deduced by symmetry, thus completing
the proof of Lemma 1. �

D. PROOF OF THEOREM 3
Proof: Existence: We rewrite the problem in (24) as an un-
constrained minimization problem

Vhyb = arg min
f ∈MD2 (R)

M∑
m=1

E( f (xm), ym) + λTV(2)( f ) + iL( f )≤L̄,

(54)

where iE denotes the characteristic function of the set E and
is defined as

iE ( f ) =
{

0, f ∈ E

+∞, otherwise.
(55)

To prove the existence of a minimizer, we use a standard
technique in convex analysis which involves the generalized
Weierstrass theorem [81] to show that the cost functional of
(54) is coercive and lower semicontinuous (in the weak*-
topology), which is a sufficient condition for the existence of
a solution.

The cost functional in (24) consists of three terms:
(i) an empirical loss term H ( f ) = ∑M

m=1 E( f (xm), ym); (ii)
a second-order total-variation regularization term R( f ) =
λTV(2)( f ); and (iii) a Lipschitz constraint iE , where E =
{L( f ) ≤ L̄}. It is known (see [82] for a more general state-
ment) that the functional H ( f ) + R( f ) is coercive and weak*-
lower semincontinuous. This, together with the non-negativity
of iE , yields the coercivity of the total cost. The only missing
item is the weak*-lower semicontinuity of iE , for which it
is sufficient to prove that E is a closed set for the weak*-
topology.

Let fn ∈ BV(2)(R) be a sequence of functions with L( fn) ≤
L̄ converging in the weak*-topology to flim ∈ BV(2)(R).
To prove the weak*-closedness of E , we need to show
that L( flim) ≤ L̄, which is equivalent to | flim(a) − flim(b)| ≤
L̄|a − b| for any a, b ∈ R.

For any n ∈ N, we have that

| flim(a) − flim(b)| ≤ | flim(a) − fn(a)| + | fn(a) − fn(b)|
+ | fn(b) − flim(b)|. (56)

Using the weak*-continuity of the sampling functionals δ(· −
a) and δ(· − b) in BV(2)(R) (see, for example, [41]), we de-
duce that fn(a) → flim(a) and fn(b) → flim(b). Moreover, we
have the estimate | fn(a) − fn(b)| ≤ L̄|a − b| for any n ∈ N.
Using these and letting the limit n → +∞ in (56), we get the
desired bound.

Form of the Solution Set: Now that we have proved the
existence of a solution f ∗

0 ∈ Vhyb, we can apply a standard
argument based on the strict convexity of E (·, ·) (see, for
example, [83, Lemma 1]) to deduce that for any f ∗ ∈ Vhyb,
we have that f ∗(xm) = f ∗

0 (xm) for m = 1, . . . ,M. Hence, the
original Problem (24) is equivalent to

Vhyb = arg min
f ∈BV(2)(R)

TV(2)( f ),
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s.t.

{
L( f ) ≤ L̄,

f (xm) = f ∗
0 (xm),m = 1, . . . ,M.

(57)

Since f ∗
0 ∈ Vhyb, we deduce that

L0
�= max

2≤m≤M

∣∣∣∣ f ∗
0 (xm) − f ∗

0 (xm−1)

xm − xm−1

∣∣∣∣ ≤ L( f ∗
0 ) ≤ L̄.

Yet, Item 5 in Theorem 2 implies that any solution f ∗ of the
problem

arg min
f ∈BV(2)(R)

TV(2)( f ),

s.t. f (xm) = f ∗
0 (xm), m = 1, . . . ,M, (58)

is a solution of (17) with zm = f ∗
0 (xm). Hence, by Item 3 of

Theorem 2, we have that L( f ∗) = L0 ≤ L̄. This means that
adding the Lipschitz constraint L( f ) ≤ L̄ does not change the
solution set of Problem (58). Hence, we have that

Vhyb = arg min
f ∈BV(2)(R)

TV(2)( f ),

s.t. f (xm) = f ∗
0 (xm), m = 1, . . . ,M. (59)

The solution set of (59) has been fully described in [40], which
yields the announced characterization. �

E PROOF OF PROPOSITION 1
We start by proving a useful lemma.

Lemma 2: For any θ∗ = (K∗, v∗,w∗,b∗, c∗) ∈ VNN, we
have that |v∗

k | = |w∗
k | for any k = 1, . . . ,K .

Proof: Let θ∗ = (K∗, v∗,w∗,b∗, c∗) ∈ VNN and 1 ≤ k ≤
K . For any ε ∈ (−1, 1), we define a perturbed parameter vec-
tor θε = (K∗, vε,wε,bε, c∗), where for any k′ = 1, . . . ,K we
have that

vε,k′ =
{

v∗
k′ , k′ 
= k

(1 + ε)
1
2 v∗

k , k′ = k
, (60)

wε,k′ =
{

w∗
k′, k′ 
= k

(1 + ε)−
1
2 w∗

k , k′ = k
, (61)

bε,k′ =
{

b∗
k′ , k′ 
= k

(1 + ε)−
1
2 b∗

k, k′ = k.
(62)

Due to the positive homogeneity of the ReLU, one readily
deduces from (28) that fθ∗ = fθε for any ε ∈ (−1, 1). This
together with the optimality of θ∗ in Problem (29) implies that

v∗
k

2 + w∗
k

2 ≤ (1 + ε)v∗
k

2 + (1 + ε)−1w∗
k

2
, ∀ε ∈ (−1, 1).

Multiplying both sides of the above inequality by (1 + ε) > 0
yields

εw∗
k

2 ≤ ε(1 + ε)v∗
k

2
, ∀ε ∈ (−1, 1).

Letting ε → 0+ yields w∗
k

2 ≤ v∗
k

2 and ε → 0− yields w∗
k

2 ≥
v∗

k
2, which proves that |w∗

k | = |v∗
k |. �

Proof of Proposition 1: Using Lemma 2, we observe that
for any θ∗ ∈ VNN, we have that

R(θ∗) = 1

2

K∑
k=1

(v∗
k

2 + w∗
k

2) =
K∑

k=1

|v∗
k ||w∗

k | = TV(2)( fθ∗ ),

where the last inequality comes from the simple observa-
tion that TV(2)(vReLU(w · −b)) = |v||w| for any v,w, b ∈
R. Hence, one can rewrite the solution set VNN as

VNN = arg min
θ∈�red

(
M∑

m=1

E( fθ (xm), ym) + λTV(2)( fθ )

)
,

s.t. L( fθ ) ≤ L̄,

where �red = {θ ∈ � : R(θ) = TV(2)( fθ )} is the reduced pa-
rameter space. To prove the announced equivalence, it remains
to show that the mapping �red → BV(2)(R) : θ �→ fθ is a
bijection onto the CPWL members of BV(2)(R) with finitely
many linear regions.

For any θ ∈ �red, the function fθ is a CPWL member of
BV(2)(R) with finitely many linear regions. To prove the
converse, let f ∈ BV(2)(R) be a CPWL function with finitely
many linear regions. Using the canonical representation of f ,
there exist c0, c1 ∈ R, K ∈ N and ak, τk ∈ R with ak 
= 0 for
k = 1, . . . ,K such that

f (x) = c0 + c1x +
K∑

k=1

akReLU(x − τk ).

Now by defining vk = ak√|ak | , wk = √|ak| and, bk = √|ak|τk

for k = 1, . . . ,K , the homogeneity of the ReLU yields f = fθ
with θ = (K, c, v,w,b) ∈ �red, where the latter inclusion is
due to the equalities |vk| = |wk| for k = 1, . . . ,K . �
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