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Abstract
GlobalBioIm is an open-source MATLAB® library for solving inverse 
problems. The library capitalizes on the strong commonalities between 
forward models to standardize the resolution of a wide range of imaging inverse 
problems. Endowed with an operator-algebra mechanism, GlobalBioIm 
allows one to easily solve inverse problems by combining elementary 
modules in a lego-like fashion. This user-friendly toolbox gives access to 
cutting-edge reconstruction algorithms, while its high modularity makes it 
easily extensible to new modalities and novel reconstruction methods. We 
expect GlobalBioIm to respond to the needs of imaging scientists looking 
for reliable and easy-to-use computational tools for solving their inverse 
problems. In this paper, we present in detail the structure and main features of 
the library. We also illustrate its flexibility with examples from multichannel 
deconvolution microscopy.

Keywords: inverse problems, image reconstruction, software

(Some figures may appear in colour only in the online journal)

E Soubies et al

Pocket guide to solve inverse problems with GlobalBioIm

Printed in the UK

104006

INPEEY

© 2019 IOP Publishing Ltd

35

Inverse Problems

IP

1361-6420

10.1088/1361-6420/ab2ae9

Paper

10

1

20

Inverse Problems

IOP

Original content from this work may be used under the terms of the Creative 
Commons Attribution 3.0 licence. Any further distribution of this work must maintain 
attribution to the author(s) and the title of the work, journal citation and DOI.

2019

1361-6420/19/104006+20$33.00 © 2019 IOP Publishing Ltd Printed in the UK

Inverse Problems 35 (2019) 104006 (20pp) https://doi.org/10.1088/1361-6420/ab2ae9

https://orcid.org/0000-0003-0571-6983
https://orcid.org/0000-0001-5678-1182
mailto:michael.unser@epfl.ch
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ab2ae9&domain=pdf&date_stamp=2019-09-09
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1361-6420/ab2ae9


2

1. Introduction

1.1. Inverse problems in imaging

Imaging is a fundamental tool for biological research, medicine, and astrophysics. Medical 
imaging systems are essential for modern diagnosis, while the latest generation of micro-
scopes and telescopes provide images with unprecedented resolution. This imaging revolution 
is driven, in part, by the current shift towards computational imaging that sees optics and 
computing combine to bypass many limitations of conventional systems.

These computational imaging techniques rely on the deployment of sophisticated algo-
rithms to reconstruct a d-dimensional continuously defined object of interest f ∈ L2(Rd) from 
discrete measurements g ∈ RM  recorded by a given imaging system. These quantities are 
linked according to

g = H{ f}+ n, (1)

where H : L2(Rd) → RM  is an operator that models the imaging system. This operator, which 
might be linear or not, maps the continuously defined object to discrete noiseless measure-
ments. Finally, n ∈ RM  is an error term, which is often considered to be random.

To numerically solve the inverse problem and recover f , it is necessary to discretize both f  
and the operator H. This leads to the discrete imaging model g = H{f}+ n, with f ∈ RN and 
H{·} : RN → RM .

The classical approach to address this inverse problem and recover an estimated solution ̂f 
consists in solving

f̂ = arg min
f∈RN

(
D(H{f}, g) + λR(f)

)
. (2)

There, D : RM × RM → R measures the discrepancy between the forward model H{f} and 
the measurements g (i.e. the data fidelity), while R : RN → R  enforces specific regularity 
constraints on the solution (e.g. spatial smoothness, or nonnegativity). The balance between 
the data fidelity and regularization terms is controlled by the scalar parameter λ > 0.

1.2. Unifying framework for solving inverse problems

The forward models associated with most of the commonly used imaging modalities share 
important structural properties. This similarity is not surprising since many imaging systems 
are governed by the same physical principles (e.g. the wave equation). We express in table 1 
the forward models of a wide range of imaging modalities in terms of a limited number of 
elementary constituents.

By capitalizing on these strong commonalities, the open-source MATLAB® library 
GlobalBioIm simplifies, unifies, and standardizes the resolution of inverse problems 
given by (2). Hence, the GlobalBioIm toolbox gives access to state-of-the-art reconstruc-
tion algorithms usable in a wide range of imaging applications. Its design is modular, with 
three main types of entities: forward models, cost functions, and solvers. This permits the 
user to modify each component independently, which is crucial for the handling of a variety 
of imaging models and solvers within a common framework. This modularity also makes 
GlobalBioIm easily extensible to new modalities and novel reconstruction methods.
GlobalBioIm is distributed as an open-source MATLAB® software. We expect it to 

respond to the needs of imaging scientists looking for reliable and easy-to-use computational 
tools for the reconstruction of their images. We also believe that GlobalBioIm will be of 
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interest to developers of algorithms who focus on the mathematical and algorithmic details of 
the reconstruction methods.

The present paper provides a functional description of the structure and the key components 
of the GlobalBioIm library. It completes and extends our previous brief communication 
[38]. For a detailed technical documentation, we refer the reader to an online documentation 
(http://bigwww.epfl.ch/algorithms/globalbioim/).

1.3. Related work

The development of open-source libraries/toolboxes in imaging sciences has received consid-
erable attention during the past two decades. The majority of existing softwares for solving 
inverse problems are dedicated to specific modalities, with various degrees of sophistication. 
Moreover, they cover the whole panel of programming languages.

There exists a large number of toolboxes dedicated to tomographic reconstruction for x-ray 
computed tomography, positron-emission tomography, single-photon-emission computed 
tomography, or (scanning) transmission electron microscopy. These include among others 
ASTRA [39], CASToR [24], CONRAD [22], RTK [29], STIR [37], or TIGRE [6].

For fluorescence microscopy, DeconvolutionLab [31] provides a set of deconvolution 
methods that range from naive inverse filters to more sophisticated iterative approaches. The 
emergence of superresolution fluorescence microscopy techniques has also promoted the 
development of toolboxes tailored for their specific inverse problems. For instance, FairSIM 
[26] and Simtoolbox [18] are dedicated to the reconstruction of structured-illumination 
microscopy data. For single-molecule localization microscopy, one can find dedicated locali-
zation plugins such as SMAP [21] and ThunderSTORM [27].

Although dedicated to specific physical models, the aforementioned toolboxes generally 
rely on similar reconstruction methods, ranging from Wiener filtering to advanced regularized 
iterative algorithms. Conversely, libraries that are generic have recently also been designed 
to handle multiple imaging modalities. The LazyAlgebra toolbox [35] provides an operator-
algebra mechanism in Julia that can be combined with optimization packages for solving 
inverse problems. More complete libraries such as AIR Tools (MATLAB®) [17], IR Tools 

Table 1. Broad class of imaging models defined as the composition of elementary 
operators. Here, the basic constituents include weighting, windowing, or modulation 
(W ), convolution (C), Fourier transform (F ), integration (Σ), rotation (Rθ), and 
sampling (S). The Radon transform (for CT and cryo-EM) is written as the composition 
Σ ◦ Rθ of a rotation and an integration. Similarly, the Laplace transform (for TIRF) 
is expressed as the composition Σ ◦W of a weighting (decaying exponential) and an 
integration. Note that these elementary operators might differ for each modality (e.g. 
using different kernels for the convolution operators), but their construction stays 
identical.

Imaging modality Forward model H

X-ray computed tomography (CT) S ◦ Σ ◦ Rθ

Conventional fluorescent microscopy S ◦ C
Structured-illumination microscopy (SIM) S ◦ C ◦W
Total internal reflection fluorescence (TIRF) S ◦ Σ ◦W
Optical diffraction tomography (ODT, first Born) S ◦ C ◦W
Cryo-electron tomography (Cryo-EM) S ◦ C ◦ Σ ◦ Rθ

Magnetic resonance imaging (MRI) S ◦ F ◦W
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(MATLAB®) [15], or TiPi (JavaTM) [36] provide elements for the implementation of forward 
models, as well as iterative solvers to tackle the associated inverse problems. The disadvan-
tage of these toolboxes is that the optimization algorithms they provide are generally imple-
mented to minimize a specific functional, thus limiting their modularity.

In contrast, GlobalBioIm provides a fully modular environment where one can not only 
easily combine functionals and operators to define the loss to be minimized in (2), but also 
benefit from a variety of solvers. This philosophy is shared by a few other toolboxes with dif-
ferent programming languages, such as the Operator Discretization Library (in Python) [1] 
and the Rice Vector Library (in C++) [28].

2. General philosophy and organization

When tasked with the design of a reconstruction algorithm for a new imaging problem, the 
common practice follows a three steps process.

 (i)  Modelization of the acquisition system ⇒ Implementation of H.
 (ii)  Formulation of the reconstruction as an optimization problem (i.e. the cost function) ⇒ 

Choice of D and R in (2).
 (iii)  Deployment of an optimization method ⇒ Choice of a solver for (2).

This standard pipeline motivates the organization of GlobalBioIm around three dedi-
cated main abstract classes: LinOp, Cost, and Opti. Because linear operators and cost 
functions both belong to the larger mathematical class of maps, the LinOp and Cost classes 
are defined as particular instances of a generic abstract class Map. The latter also allows for 
a proper inclusion of nonlinear operators. The organization of the library is illustrated in fig-
ure 1. It is guided by five general principles.

 •  Modularity. All objects are defined as individual modules that can be combined to 
generate a particular reconstruction workflow. Each building block can thus be easily 
changed to define new reconstruction pipelines.

 •  Flexibility. The constraints to fulfill during implementation are few. New objects can 
easily be plugged into the framework of GlobalBioIm.

 •  Abstraction. The four abstract classes (LinOp, Cost, Opti, Map) define a limited set 
of attributes and methods that are shared by their derived classes (i.e. subclasses). This 
constitutes a common guideline for the implementation of subclasses. Moreover, generic 
concepts—basically, interactions between classes—are implemented at the level of the 
abstract classes and benefit directly to all subclasses.

 •  Readability. Reconstruction scripts are written in a way that mimics equations in scien-
tific papers, hence keeping a simple connection between theory and implementation.

 •  User-friendliness. The definition (or update) of a new subclass only requires one to 
create (or edit) a single file. Moreover, the usage of GlobalBioIm does not require one 
to understand advanced computing concepts.

3. Abstract classes

We now present the four abstract classes that build up the skeleton of the GlobalBioIm 
library. The methods within these abstract classes are prototypes that have to be implemented 
in derived classes. There are exceptions for some generic concepts (e.g. the chain rule) that 
are directly implemented in the abstract classes. For the sake of conciseness, we only review 
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here the key attributes and methods of those classes. An exhaustive list of those features can 
be found in the online documentation (http://bigwww.epfl.ch/algorithms/globalbioim/) within 
the sections ‘list of methods’ and ‘list of properties’.

3.1. Map class

The abstract Map class defines the basic attributes and methods of an operator H : RN → RM. 
These include, at the very minimum, the input size N, the output size M, and the method apply 
that computes g = H{f} for a given f ∈ RN.

In addition, because optimization algorithms may require the differentiation of the objec-
tive function in (2), the Map class defines the method applyJacobianT. Given v ∈ RM  
and f ∈ RN, this method computes u = [JH{f}]Tv, where JH{f} ∈ RM×N is the Jacobian 
matrix of H (assuming that the latter is differentiable). It is formed out of the first-order partial 
derivatives of the operator H, with

[JH{f}]m,n =
∂Hm

∂fn
, (3)

where Hm : RN → R is such that H = [H1, . . . , HM]
T . Similarly, for invertible maps, the 

method applyInverse allows one to compute f = H−1{g} for g ∈ RM .
In addition to the ‘apply’-type methods, the Map class provides prototype methods pre-

fixed by ‘make’. These can be implemented in derived classes to create new instances of 
Map objects that are related to H. For instance, the method makeInversion returns a Map 
object that corresponds to H−1.

The prototype methods are also used to overload the MATLAB® operators ‘∗’ (mtimes), 
‘+’ (plus), and ‘−’ (minus). Hence, the composition between two Map objects can be 
specified easily as H  =  H1 * H2. This will execute the method makeComposition of H1 
with H2 as its argument. By default, the resulting H will be a MapComposition object that 
benefits from the generic implementations (e.g. successive calls for apply, chain rule for 
applyJacobianT) provided in the MapComposition class.

Map

LinOp Cost Opti

LinOpConv

LinOpGrad

· · ·

CostL2

CostTV

· · ·

OptiFBS

OptiADMM

· · ·

OpEWSqrt

· · ·

Figure 1. Hierarchy of classes in GlobalBioIm. Abstract classes are represented in 
blue and derived classes in gray. Nonlinear operators (such as the element-wise square-
root OpEWSqrt) directly inherit from the abstract Map class.

E Soubies et alInverse Problems 35 (2019) 104006

http://bigwww.epfl.ch/algorithms/globalbioim/


6

Similarly, the operators ‘+’ and ‘−’ are associated to the MapSummation class. It is 
noteworthy to mention that this default behavior can be specialized in derived classes with a 
proper implementation of the ‘make’ methods. This results in automatic simplifications, as 
described in section 4.2.

3.2. LinOp class

A particular class of map objects contains linear operators H : RN → RM that satisfy

H{αf + g} = αH{f}+ H{g} (4)

for all scalar α and vectors f ∈ RN and g ∈ RN . Linear operators are generally represented 
as a matrix H ∈ RM×N . They are widely used in practice to model imaging systems. In addi-
tion to being good approximators, they lead to convex optimization problems for which there 
exist efficient solvers. An important subclass is formed by the convolution operators that are 
implemented very efficiently using FFTs. All this motivates the definition of the LinOp class, 
which inherits from the attributes and the methods of Map while defining novel ones.

For linear operators, the transposed Jacobian matrix [JH{f}]T  is independent of f and is 
equal to the adjoint operator HT . Thus, the LinOp class provides the method applyAd-
joint that computes u = HTv for v ∈ RM  and is directly used to implement the method 
applyJacobianT. Hence, to allow a LinOp to be differentiated only requires implemen-
tation of applyAdjoint, rather than applyJacobianT. In keeping with the aforemen-
tioned philosophy, the companion method makeAdjoint allows one to instantiate a new 
LinOp corresponding to the adjoint HT .

For least-squares minimization, the normal operators HTH and HHT are at the core of 
many optimization algorithms. Hence, the methods applyHtH and applyHHt as well as 
their ‘make’ counterparts are defined in the LinOp class. They can be implemented in derived 
classes to provide implementations that are faster than the default successive application of 
H and HT . This is particularly useful when HTH turns out to be a convolution, as is the case 
for deconvolution, cryo-electron microscopy [13, 41], and x-ray computed tomography [23].

3.3. Cost class

Cost functions are mappings for which M  =  1 (i.e. J : RN → R). Hence, the abstract Cost 
class inherits from all the attributes and methods defined by the Map class. However, the 
Cost class also defines new attributes and methods that are specific to cost functions. For 
instance, the method applyProx is dedicated to the computation of the proximity operator 
of J , which is required for a broad range of optimization algorithms. It is defined by [25] as

proxJ (z) = arg min
f∈RN

(
1
2
‖f − z‖2

2 + J (f)
)

. (5)

The method applyGrad computes the gradient ∇J  of the functional J . Similarly to the 
method applyAdjoint for LinOp, applyGrad can be seen as an alias for the method 
applyJacobianT. This ensures consistency with the standard terminology employed in 
scientific publications.

E Soubies et alInverse Problems 35 (2019) 104006
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3.4. Opti class

The last abstract class Opti is a prototype for optimization algorithms. Given a cost func-
tion J  resulting from the composition/addition of Map, LinOp, and Cost objects, the run 
method of the Opti class implements a general iterative scheme to minimize J . It includes 
calls to the methods initialize, doIteration, and updateParams, which are 
implemented in every derived class.

The method initialize performs the computations required prior to starting the main 
loop of the iterative scheme. Then, doIteration is executed at each iteration, preceded by 
a call to updateParams that modifies the parameters of the algorithm (e.g. by modifying 
the step size in a descent method).

The convergence of the algorithm is monitored during the optimization using a TestCvg 
object (set as an attribute of the Opti object). GlobalBioIm contains various TestCvg 
classes that implement different convergence criteria (e.g. TestCvgStepRelative, 
TestCvgCostRelative). They can also be combined using the class TestCvgCombine. 
Finally, the verbose output is controlled by an OutputOpti object (again, set as an attribute 
of the Opti object). Hence, one can easily tune the information displayed and saved during 
iteration by defining a custom OutputOpti class.

4. Key features of the library

In this section, we highlight some of the most remarkable features of GlobalBioIm, which 
are intended to simplify the development process.

4.1. Interface and core methods

Map, LinOp, and Cost classes contain two types of methods, which come in pairs. Interface 
methods are only implemented in abstract classes and cannot be overridden in derived classes 
(sealed methods). However, they can be executed by an instantiated object of the class. On the 
other hand, core methods are not implemented in abstract classes, but in derived classes only. 
In addition, they cannot be executed by an instantiated object (private methods).

This scheme allows for the separation of preprocessing computations, which are common 
to all derived classes, from the core computations of the method, which are class-dependent. 
When executed, an interface method checks that inputs are the correct size prior to executing 
the associated core method. Interface methods are also used to manage the memoize mech-
anism (see section 4.3).

From a user viewpoint, only core methods matter. They have to be implemented in derived 
classes without having to deal with input checking and the memoize mechanism. In the 
library, the core methods differ from the interface methods by the suffix ‘_’ (e.g. apply_ 
versus apply).

4.2. Composition of operators and automatic simplification

Up to now, the reader may wonder why it is useful to allow ‘make’-type methods to be over-
loaded in derived classes. Actually, these methods are the key ingredients for the automatic 
simplification mechanism deployed by GlobalBioIm. When compositions between maps 
occur, they allow for the instantiation of specific classes instead of the default generic classes 
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such as MapComposition, MapInversion, or MapSummation. Consequently, the 
resulting object generally enjoys faster implementations.

To illustrate this feature, let us consider a convolution operator H. Its adjoint HT  and the 
normal operator HTH turn out to be convolution operators as well, whose kernels can be 
precomputed from that of H. Hence, the LinOpConv class implements the makeAdjoint_ 
and makeHtH_ methods by instantiating a new LinOpConv with the adequate kernel.

Because makeAdjoint_ and makeHtH_ are used to overload the operators ‘′’ and ‘∗’, 
respectively, we obtain the following automatic simplification.

There are many more examples of ‘make’ methods in GlobalBioIm (see also the meth-
ods plus_ and mpower_). For instance, the LinOpConv class provides the following 
implementation for the method plus_ (which is used to overload ‘+’).

This allows the following simplification.

We conclude this section with two examples that demonstrate the relevance of this auto-
matic simplification mechanism.

Example 4.1 (Proximity operator with semiorthogonal linear transform). Let J  
be a lower semicontinuous convex functional and L be a semiorthogonal linear operator (i.e. 
LLT = νI for ν > 0). Then, as demonstrated in [11, lemma 2.4], the proximity operator of 
αJ (L·) is given by

E Soubies et alInverse Problems 35 (2019) 104006



9

proxαJ (L·)(z) = z + ν−1LT (proxναJ (Lz)− Lz
)

. (6)

Due to the automatic simplification mechanism of GlobalBioIm, one can easily verify 
whether L is semiorthogonal in the constructor of the CostComposition class (L → 
this.H2).

Then, (6) is exploited in the implementation of the applyProx_ method of the CostCom-
position class (J → this.H1).

As a result, the composition of a Cost object that has an implementation of its proximity op-
erator with a semi-orthogonal LinOp object automatically leads to a CostComposition 
object that has an implementation of the applyProx_ method.

Example 4.2 (Woodbury matrix identity). Let J (f) = 1
2‖SHf − g‖2

2, where S is a 
downsampling operator and H is a convolution operator. It follows from (5) that

proxαJ (u) =
(
αHTSTSH + I

)−1 (
αHTSTg + u

)

=
(

I − αHTST (I + αSHHTST)−1 SH
) (

αHTSTg + u
)

,
 

(7)

where the Woodbury matrix identity [16] is used to get (7). Moreover, it turns out that 
αSHHTST  is a convolution operator [33, lemma A.3] and, thus, that 

(
I + αSHHTST

)
 can eas-

ily be inverted in the Fourier domain. In order to apply (7), the specification of αSHHTST  as 
a convolution is implemented in GlobalBioIm. This is done in the makeComposition_ 
method of LinOpDownsample, which returns a LinOpConv object when appropriate.

E Soubies et alInverse Problems 35 (2019) 104006
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As a result, 
(
I + αSHHTST

)
 is identified as being an invertible operator, and (7) can be di-

rectly implemented as follows.

A complete script (TestProxL2DownSampledConv) in which this example is implemented 
can be found in the folder Cost/Tests/ of the GlobalBioIm library.

4.3. The memory versus computational cost dilemma

The computation and storage of fixed quantities can significantly accelerate iterative reconstruc-
tion methods. For instance, let us consider the least-squares functional J (f) = 1

2‖Hf − g‖2
2, 

where H is a convolution operator. Then, the minimization of J  by a gradient-descent algo-
rithm requires the evaluation of

∇J (f) = HT(Hf − g) (8)

= HTHf − HTg (9)

at each iteration. The computational burden of this operation is directly related to the imple-
mentation strategy. The formulation in (8) requires the evaluation of both H and HT , lead-
ing to the overall cost of two FFTs plus two iFFTs. Instead, since HTH turns out to be a 
convolution in this example, the formulation in (9) opens the door to a faster computation of 
∇J . The price to pay, however, is storage for the quantity HTg. Imposing one of the above 
implementations to users could lead to severe memory issues or extremely slow computa-
tions, depending on the considered problem and the available hardware resources. Therefore, 
in GlobalBioIm, the choice between speed and memory consumption is left to the user 
by means of the Boolean attribute doPrecomputation of the abstract class Map. When 
activated, the instanciated object is allowed to store relevant quantities for acceleration pur-
poses, at the expense of larger memory consumption. For instance, consider the Cost object 
corresponding to J = 1

2‖H · −g‖2
2 for which the doPrecomputation option is activated.

Then, we evaluate the gradient of J  at the two random points f1 and f2.

We observe that the second gradient computation is twice as fast as the first one. This is 
because the quantity HTg is computed and stored at the first call of the applyGrad method. 
For all subsequent calls, the computational burden is reduced to the application of HTH in (9).
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Another feature that allows for faster computations at the expense of larger memory con-
sumption is provided by the structure attribute memoizeOpts of the abstract class Map. 
When this attribute is activated, both the input and the result of the evaluation are stored when-
ever the corresponding Map object is evaluated. Hence, if the object is subsequently evaluated 
with the same input, the stored result is returned without any computation.

This option proves to be particularly useful to avoid multiple computations within iterative 
methods. For instance, at each iteration of OptiVMLMB, both the cost J  and its gradient ∇J  
need to be evaluated at the same point f. For least-squares minimization, this involves com-
puting J (f) = 1

2‖Hf − g‖2
2 and ∇J (f) = HT(Hf − g), which both call for the quantity Hf . 

Hence, activating the memoize option for the apply method of H allows for the savings of 
one evaluation of Hf  per iteration.

4.4. GPU computing

GlobalBioIm provides two functions that allow the user to easily run any reconstruction 
pipeline on the GPU for faster computation. The function useGPU, which is typically called 
at the beginning of the script, allows selection of the computation mode: CPU computation 
(default), GPU computation with the MATLAB® Parallel Computing ToolboxTM, or GPU 
computation with CudaMat (https://github.com/RainerHeintzmann/CudaMat). Next, the 
function gpuCpuConverter converts the input variable to the appropriate data type as 
specified by useGPU. A typical use of these functions is presented below.

5. An example with multichannel deconvolution

5.1. Simulation setting

We consider the sample depicted in figure 2(a). It has been extracted from the neuronal culture 
acquisition shared by Schmoranzer on the Cell Image Library website (http://cellimagelibrary.
org/images/41649). It contains three channels that we process independently. Our simulation 
pipeline is illustrated in figure 2. It encompasses several steps to account for the fact that, 
for real-world experiments, (i) the underlying sample is generally not supported within the 
field-of-view of the microscope; (ii) the sample is not periodic (contrary to what is implic-
itly assumed when using FFTs to perform the convolution). The three point-spread functions 
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(PSF) have been generated in the Fourier domain. They are related to the classical Airy disk 
model, which is a radial function with the profile

h(ρ) =





1
π

(
2 cos−1

(
ρ

ρc

)
− sin

(
2 cos−1

(
ρ

ρc

)))
, ∀ρ < ρc

0, otherwise,
 (10)

where ρc = 2NA/λexc is the cutoff frequency which depends on the numerical aperture NA 
and the excitation wavelength λexc. Here, we set NA = 1.4 and λexc to 654 nm (CY3 dye, red), 
542 nm (FITC dye, green), and 477 nm (DAPI dye, blue) for the three channels, respectively. 
Finally, the spatial sampling step (i.e. the camera pixel size) is set to 64.5 nm. Note that the 
data generated with this pipeline contain contributions from structures that lie outside the 
field-of-view.

5.2. Deconvolution

Given the blurred and noisy data {gk ∈ RM}3
k=1, we formulate the deconvolution task as the 

optimization problem

{̂fk}3
k=1 = arg min

{fk∈RN}3
k=1

(
3∑

k=1

1
2
‖SHkfk − gk‖2

2 + λR(Lfk) + i�0(fk)

)
, (11)

where Hk ∈ RN×N , k ∈ {1, 2, 3}, is the convolution operator for the kth channel, and 
S ∈ RM×N  selects the region of Hf  that corresponds to the field-of-view. Indeed, since the 
sample is not fully included in the field-of-view, we seek a wider reconstruction that is larger 
than the field-of-view (i.e. N  >  M) in order to avoid reconstruction artifacts [3, 31]. Finally, 
i�0(f) = {0 if f ∈ RN

�0;+∞ otherwise} is a nonnegativity constraint.
With GlobalBioIm, the construction of the operators Hk, k ∈ {1, . . . , 3}, and S is done 

as follows.

Figure 2. Simulation of multichannel blurred data. (a) Input image (512 × 512 × 3). 
(b) The image is zero-padded. (c) Each channel is convolved with its corresponding 
PSF and a central region of size (460 × 460 × 3) is extracted (simulated field-of-view). 
(d) Data are corrupted by additive Gaussian noise so that the resulting signal-to-noise 
ratio (SNR) is equal to 10 dB.

E Soubies et alInverse Problems 35 (2019) 104006
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Here, the three PSFs are stacked within the same LinOpConv operator which is set by the 
argument [1 2] to apply a convolution only to the first two dimensions. Hence, it performs 
independent 2D convolutions for each channel. The selector operator S then extracts a region 
that has the same size as the data.

Next, both the data fidelity term (i.e. 1
2‖ · −g‖2

2) and the nonnegativity constraint (i.e. i�0) 
can be defined with two lines of code.

For the regularization term R(L·), we propose to illustrate the modularity of GlobalBioIm 
by providing a set of examples (see figures 3 and 4) that include various regularizers.

 •  The total-variation (TV) [8, 9, 30] combines the gradient operator L = [D1 D2]
T with the 

(�2, �1)-mixed norm R = ‖ · ‖2,1. More precisely, for f ∈ RN, we have that

R(Lf) =
N∑

n=1

√
[D1f]2n + [D2f]2n, (12)

  where D1 (D2, respectively) is the finite-difference operator along the first (second, 
respectively) dimension.

 •  The Hessian–Schatten-norm (HS) [19, 20] computes the (∗, �1)-mixed norm R = ‖ · ‖∗,1 
of the Hessian operator L = [Dij]1�i,j�2 applied to f ∈ RN as

R(Lf) =
N∑

n=1

∥∥∥∥
[
[D11f]n [D12f]n
[D21f]n [D22f]n

]∥∥∥∥
∗
, (13)

  where ‖ · ‖∗ denotes the nuclear norm (i.e. the first-order Schatten norm). It is defined 
as the �1-norm of the singular values of its argument. Finally, Dij  denotes the operator of 
second-order finite difference along the dimensions i and j .

 •  The smoothed total-variation (S-TV) [4, 9] is defined, for ε > 0, by

R(Lf) =
N∑

n=1

√
[D1f]2n + [D2f]2n + ε2. (14)

 •  The Good’s roughness (GR) [40] is defined, for ε > 0, by

R(Lf) =
N∑

n=1

[D1f]2n + [D2f]2n√
|fn|2 + ε2

. (15)

Since the TV and HS regularizers are not differentiable, gradient-based methods cannot 
be used to minimize the objective function (11). However, for both these regularizers, the 
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proximity operator of R(·) can be efficiently computed (see [11] for ‖ · ‖2,1 and [10, 19] for 
‖ · ‖S1,1). Hence, the optimization problem can be tackled using proximal-splitting algorithms 
such as the alternating direction method of multipliers (ADMM) [2, 7, 14, 32] or the primal-
dual method proposed in [12]. These algorithms are designed to minimize cost functions of 

the form J =
∑P

p=1 Jp(Tp·), where {Tp}P
p=1 are linear operators and the {Jp}P

p=1 are ‘sim-

ple’ functions in the sense that their proximity operator can be evaluated efficiently.
The scripts provided in figure 3 illustrate how these two algorithms can be implemented 

within the framework of GlobalBioIm to solve problem (11) with TV or HS regularization. 
The modified lines of code between each setting have been highlighted—observe that very 
few modifications are needed. This underlines the simplicity of changing the regularizer and/
or the algorithm within the GlobalBioIm framework.

For both algorithms, the splitting strategy is specified by the two cell arrays Fn and Hn. 
Note that, since S is a semi-orthogonal linear operator, the composition L2*S results in a Cost 
object that has an implementation of the proximity operator (see example 4.1). Moreover, the 
two scripts that use the primal-dual method illustrate the relevance of the automatic simplifica-
tion features described in section 4.2. In order to ensure the convergence of the algorithm, the 

two parameters σ > 0 and τ > 0 have to be chosen so that τσ‖
∑P

p=1 TT
p Tp‖ � 1 holds true 

[12]. The norm which is involved in this inequality is easily obtained with GlobalBioIm 
by building the operator T  =  H’*H  +  L’*L  +  LinOpIdentity(szin) explicitly and 

Figure 3. GlobalBioIm scripts for minimizing (11) with non-differentiable 
regularizers R(L·). Differences with respect to the script corresponding to ADMM with 
TV are highlighted.
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computing its norm T.norm. The key is that the composition used to build T is automati-
cally simplified to a convolution operator with the proper kernel. Finally, observe that, as for 
the convolution operator, the gradient and Hessian operators are defined using the argument  
[1 2], which implies that these operators are applied independently to each channel.

As opposed to TV and HS, the S-TV and the GR regularizers are differentiable. Hence, 
the optimization problem in (11) can be addressed through gradient-based methods. In fig-
ure  4, we present scripts in which the objective function in (11) with S-TV or GR regu-
larization is minimized using either the variable-metric limited-memory-bounded (VMLMB) 
algorithm [34] or the fast iterative shrinkage-thresholding algorithm (FISTA) [5]. For these 
two minimization algorithms, each iteration requires the evaluation of the gradient of ∑3

k=1 ‖SHk · −gk‖2
2 + λR(L·) as well as a projection onto the set of nonnegative vectors. 

Once again, changing the regularizer or the optimization method only requires the modifica-
tion of very few lines, as highlighted in figure 4.

5.3. Numerical comparisons

The modularity of GlobalBioIm, which was demonstrated in the scripts presented in sec-
tion 5.2, offers a simple way to compare the effect of regularizers as well as the efficiency of 
optimization algorithms.

We first present the quality of the deconvolution obtained with the four regularizers TV, HS, 
S-TV, and GR. Here, we used ADMM to minimize (11) with non-differentiable regularizers 

Figure 4. GlobalBioIm scripts for minimizing (11) with differentiable regularizers 
R(L·). Differences with respect to the script corresponding to VMLMB with S-TV are 
highlighted.
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Figure 5. Evolution of the signal-to-noise ratio of the deconvolved image with respect 
to the regularization parameter λ.

Ground Truth Data

Total Variation Hessian-Schatten

Smoothed-TV Good’s Roughness

Figure 6. Deconvolution results obtained with different regularizers for the optimal 
λ extracted from figure 5. A zoom of the region delimited by the white square is also 
presented.
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(i.e. TV and HS), and FISTA to minimize (11) with differentiable regularizers (i.e. S-TV and 
GR). The SNR of the deconvolved image as a function of the regularization parameter λ is 
depicted in figure 5, while the deconvolved images that maximize the SNR are presented in 
figure 6. As expected, HS and GR lead to better results by avoiding the well-known staircas-
ing effect of TV and S-TV. Although GR is slightly below HS in terms of SNR, it provides 
comparable qualitative (i.e. visual) results.

We now fix the parameter λ to the value that maximizes the SNR in figure 5 for TV and 
S-TV. The convergence curves generated by ADMM and the primal-dual method for the 
minimization of (11) with TV, as well as those generated by FISTA and VMLMB when the 
regularizer is set to be S-TV, are presented in figure 7. We would like to emphasize that the 
parameters of the algorithms have not been tuned to obtain the fastest convergence. Hence, 
these results constitute more an illustration of the kind of comparisons that can be easily 
performed with GlobalBioIm rather than an empirical demonstration of the convergence 
speed of these algorithms. Moreover, both ADMM and the primal-dual method offer alterna-
tive splitting strategies that may lead to improved convergence speed. Note that the adapta-
tion of the scripts in figure 3 to these variations is straightforward with GlobalBioIm. We 
refer the reader to the online documentation of the corresponding two Opti classes for more 
details on how to establish such adaptations.

5.4. Other examples

One can find an example of three-dimensional deconvolution on real data within the sec-
tion  ‘examples’ of the online documentation. Moreover, references to papers that use 
GlobalBioIm are listed in the section ‘related papers’ of this documentation. We distin-
guish between works that provide open-source codes and those which do not. Hence, this list 
constitutes a growing source of examples of use of GlobalBioIm on concrete problems.

6. Discussion

Open-source software is an essential component of modern research. Not only does it shape 
theoretical developments, but it also turns out to be a critical tool to bridge the gap that 

100 101 102 10310−5
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Iteration index k

( J
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)
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100 101 102 103

Iteration index k
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Figure 7. Convergence curves for the minimization of (11) with TV (left) or S-TV 
(right). The solution f̂ has been computed by performing 10 000 iterations of ADMM 
(FISTA, respectively).
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separates researchers specialized in computer science/mathematics from scientists versed 
in biophysical sciences/medicine. Moreover, open-source software can act as a catalyst for 
engaging in new collaborations by promoting external contributions.

Motivated by the observation that the image-formation models of most of the commonly 
used biomedical imaging systems can be expressed as a composition of a limited number of 
elementary operators, we developed the open-source MATLAB library GlobalBioIm. This 
library provides a unified and user-friendly framework for the resolution of inverse problems. 
It is designed around three entities, namely, forward models, cost functions, and optim ization 
algorithms, which constitute the building blocks of any inverse problem. This organiza-
tion gives GlobalBioIm a modularity that greatly facilitates the comparison between 
regularizers and or solvers, as illustrated in section 5. Moreover, GlobalBioIm enjoys an 
operator-algebra mechanism able to perform automatic simplification of composed opera-
tors. Finally, new modalities, cost functions, or solvers are easily added to the framework of 
GlobalBioIm.
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