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Abstract. The fetal cortical plate undergoes drastic morphological
changes throughout early in utero development that can be observed
using magnetic resonance (MR) imaging. An accurate MR image seg-
mentation, and more importantly a topologically correct delineation of
the cortical gray matter, is a key baseline to perform further quanti-
tative analysis of brain development. In this paper, we propose for the
first time the integration of a topological constraint, as an additional loss
function, to enhance the morphological consistency of a deep learning-
based segmentation of the fetal cortical plate. We quantitatively evaluate
our method on 18 fetal brain atlases ranging from 21 to 38 weeks of ges-
tation, showing the significant benefits of our method through all gesta-
tional ages as compared to a baseline method. Furthermore, qualitative
evaluation by three different experts on 26 clinical MRIs evidences the
out-performance of our method independently of the MR reconstruction
quality. Finally, as a proof of concept, 3 fetal brains with abnormal cor-
tical development were assessed. The proposed topologically-constrained
framework outperforms the baseline, thus, suggesting its additional value
to also depict pathology.
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1 Introduction

The early in utero brain development involves complex intertwined processes,
reflected in both physiological and structural changes [23]. The developing corti-
cal plate specifically undergoes drastic morphological transformations through-
out gestation. Nearly all gyri are in place at birth, even though the complexifi-
cation of their patterns carries on after birth [18]. T2-weighted (T2w) magnetic
resonance imaging (MRI) offers a good contrast between brain tissues, hence
allowing to assess the brain growth and detect abnormalities in utero. In the
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clinical context, fetal MRI is performed with fast, 2D orthogonal series in order
to minimize the effect of unpredictable fetal motion but results in low out-of-
plane spatial resolution and significant partial volume effect. In order to combine
these multiple series, advanced imaging techniques based on super-resolution
(SR) algorithms [10,24] allow the reconstruction of 3D high-resolution motion-
free isotropic volumes. Together with improved visualization, these SR volumes
open up to more accurate quantitative analysis of the growing brain anatomy.
Consequently, based on 3D reconstructed volumes, multiple studies explored
semi-automated fetal brain tissue segmentation [19] and cortical folding pat-
terns in-utero [6,25]. Cortical plate is crucial in early brain development as
pathological conditions, e.g. ventriculomegaly, are proved to manifest along with
altered foldings [2]. However, cortical plate segmentation remains challenging as
it undergoes significant changes due to the brain growth and maturation, respec-
tively modifying the morphology and the image contrast [19]. Furthermore, being
a thin layer easily altered by partial volume effect in MRI, anatomical topology
is prone to be incorrectly represented by automatic segmentation methods.

In this respect, we present a fully automated and topologically correct age-
invariant segmentation method of the cortical plate. In [4,5], the first topological-
based segmentation of the fetal cortex was introduced, based on geometrical
constraints that integrated anatomical and topological priors. Regrettably, their
topological correctness was not further evaluated and qualitative results on only
6 fetuses were presented. More recently, deep learning (DL) methods have also
focused on fetal brain MRI cortical gray matter segmentation. Using a neonatal
segmentation framework as initialization, [12] proposes a multi-scale approach for
the segmentation of the developing cortex, while [9] implements a two-stage seg-
mentation framework with an attention refinement module. Nevertheless, while
the segmentation accuracy of these recent DL methods is promising, none of
these works assess the topological correctness of their results. In fact, these
works report high overlap metrics but illustrated results show lack of topological
consistency with notably discontinuous/broken cortical ribbons.

To our knowledge, only two works explore topological fidelity of the seg-
mentation in different applications. In [15], they proposed a topological loss for
neuronal membrane segmentation. More recently, topological constraints for MR
cardiac image segmentation have been presented [3], although prior topological
knowledge is required. In this paper we integrate for the first time a topologi-
cal constraint, from [15], in a deep image segmentation framework to overcome
the limitation of disjoint cortical plate segmentation in fetal MRI and further
improve DL architectures (Fig. 1).

2 Methodology

2.1 Topological Loss

Our approach, is based on the topological loss function proposed in [15]. The
topology-preserving loss compares the predicted likelihood to the ground truth
segmentation using the concept of persistent homology [11]. In a nutshell, homol-
ogy structures are obtained by filtration to all possible threshold values of the
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Fig. 1. Figure adapted from [15]. TopoCP, integrates a topological loss based on per-
sistent homology to a 2D U-Net segmentation of cortical plate fetal MRI.

predicted likelihood and reported in a persistence diagram (Fig. 1). Both 0-
dimensional and 1-dimensional Betti numbers [13], corresponding respectively
to the number of connected components and the number of holes, are tracked.
The persistence diagrams of the likelihood and the ground truth are matched,
finding the best one-to-one structure correspondence, and the topological loss is
computed as the distance between the matched pairs. We refer the reader to the
original paper for advanced technical details [15].

2.2 Network Architecture

The topological loss introduced above is indeed compatible with any deep neu-
ral network providing a pixel-wise prediction. We chose as baseline the well-
established U-Net [22] image segmentation method, as it recently proved its
ability to deal with 2D fetal brain MRI tissue segmentation [17]. The baseline
2D U-Net uses a binary cross-entropy loss function Lbce. The proposed frame-
work TopoCP is based on a 2D U-Net trained using

L = Lbce + λtopoLtopo, (1)

where Ltopo is the topological term in [15] and λtopo the weight of the contribution
of Ltopo in the final loss.

The 2D U-Net architecture is composed of encoding and decoding paths. The
encoding path in our study is composed of 5 repetitions of the followings: two
3 × 3 convolutional layers, followed by a rectified linear unit (ReLu) activation
function and a 2 × 2 max-pooling downsampling layer. Feature maps are hence
doubled from 32 to 512. In the expanding path, 2 × 2 upsampled encoded fea-
tures concatenated with the corresponding encoding path are 3×3 convolved and
passed through ReLu. The network prediction is computed with final 1×1 convo-
lution. Both Baseline and TopoCP are implemented in Tensorflow. In TopoCP,
the topological loss is implemented in C++ and built as a Python library.
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2.3 Training Strategy

The publicly available dataset Fetal Tissue Annotation and Segmentation
Dataset (FeTA) is used in the training phase [20,21]. Discarding pathological
and non-annotated brains, our training dataset results in 15 healthy fetal brains
(see details summarized in Table 1). Both networks are fed with 64 × 64 patches
of axial orientation (see Fig. 1), containing cortical gray matter. Intensities of
all image patches are standardized and data augmentation is performed by ran-
domly flipping and rotating patches (by n × 90◦, n ∈ �0; 3�). As in [15], to
overcome the high computational cost of persistent homology, we adopted the
following optimization strategy: 1) our baseline model was trained over 23 epochs
with a learning rate decay scheduled at epochs 11, 16, 17, 22 and a decay factor
of 0.5, initialized at 0.0001; 2) from the pretrained model in the first step, both
networks were fine-tuned over 35 epochs, with a learning rate decay scheduled
at epochs 14, 23 for Baseline U-Net and none for TopoCP. TopoCP was trained
with λtopo = 1. A 7-fold cross-validation approach was used to determine the
epochs for learning rate decay.

3 Evaluation

3.1 Quantitative Evaluation

Data. In the training dataset (FeTA), label maps were sparse (annotations
were performed on every 2nd to 3rd slice) and their interpolation resulted in noisy
labels with topological inconsistencies. Therefore, we rather evaluate our method
on an independent pure testing dataset, presenting a topologically accurate seg-
mentation. The normative spatiotemporal MRI atlas of the fetal brain [14] pro-
vides 3D high-quality isotropic smooth volumes along with tissue label maps,
including more than fifty anatomical regions, for all gestational age between 21
and 38 weeks (see Table 1 for details). Atlas labels were merged to match the
tissue classes represented in our training dataset.

Analysis. Though inferred segmentation rely on 2D patches, performance of
the methods is evaluated on the whole 3D segmentation. Three complementary
types of evaluation metrics are used: 1) the overlap between the ground truth
and the predicted segmentation is quantified with the Dice similarity coefficient
(DSC) [8]; 2) a boundary-distance-based metric is measured to evaluate the
contours: the 95th percentile of the Hausdorff distance (HD95) [16]; 3) finally,
the topological correctness is quantified with the error of a topological invari-
ant: the Euler characteristic (EC), defined as a function of the k -dimensional
(k -dim) Betti numbers (Bk), topologically invariant themselves. The 3D Euler
characteristic is defined as:

EC = B0 − B1 + B2, (2)

where B0 counts the number of connected components, B1 the number of holes
(tunnels) and B2 counts number of void/cavities encapsulated in the binary
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objects. Topology errors are defined as the absolute difference of the ground
truth and the prediction measures. For completeness, k -dim Betti errors (BE)
are also reported. To assess the significance of the observed differences between
the two methods, we perform a Wilcoxon rank sum test for each metrics. p-
values were adjusted for multiple comparisons using Bonferroni correction and
statistical significance level was set to 0.05.

3.2 Qualitative Evaluation

Data. In order to better represent the diversity of the cortical variability and
to prove the generalization of our approach to SR reconstructions of clinical
acquisitions, we introduce a second pure testing set of T2w SR images of 26
healthy fetuses. Two subsets were created, from a consensus of three experts
evaluation, based on the quality of the reconstructed 3D volumes: 1) excellent
(N = 16) and 2) acceptable (N = 10) - with remaining motion artifacts or partial
volume effects. Additionally, as a proof of concept, three subjects with corti-
cal plate pathologies were segmented (schizencephaly (1); polymicrogyria (1);
corpus callosum agenesis (CCA) and schizencephaly (1)). MR image patches
were preprocessed for intensity standardization with no further intensity-based
domain adaptation performed. Nevertheless, prior to the segmentation inference,
clinical images were resampled to match the resolution of the training data using
ANTs [1] in order to present a similar field of view (see Table 1).

Analysis. Three experienced raters (two radiologists and one engineer) per-
formed independently a qualitative analysis of the baseline and TopoCP seg-
mentations. For healthy subjects, randomly-ordered segmentation of axial slices
from healthy subjects were presented. The experts were asked to indicate if they
preferred either the segmentation A or B or if they were of equivalent quality. The
inter-rater reliability was assessed with their percentage agreement before con-
sidering a consensus evaluation resulting from the majority voting of the experts’
evaluations. For the pathological cases, three radiologists, blindly assessed the
whole 3D volume to ensure that the pathological area was included.

Table 1. Summary of the data used for training and quantitative and qualitative
evaluation.

Dataset Field strength Vendor Num. of subjects Gestational age (weeks) Reconstruction method Resolution (mm3)

Training 1.5T; 3T General electric 15 [22.6–33.4] (28.7 ± 3.5) mialSRTK [7,24] 0.5 × 0.5 × 0.5

Evaluation quantitative 1.5T; 3T Siemens; Philips 18 21–38 Gholipour et al., 2017 [14] 0.8 × 0.8 × 0.8

Evaluation qualitative 1.5T Siemens 29 [18–25] (27.8 ± 4.1) mialSRTK [7,24] 1.12 × 1.12 × 1.12
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Fig. 2. Segmentation results on 35 weeks of gestation atlas. (a) T2w (left) and ground
truth segmentation overlaid (right). (b) Baseline U-Net and (c) TopoCP: predicted
likelihood (left) and estimated segmentation (right). Likelihood probabilities: 0
1. Case 1 illustrates a net improvement in the segmentation of the midsagittal area and
frontal cortical foldings. Case 2 shows a more accurate detection of the deep sulci with
TopoCP.

4 Results

Figure 2 shows the ground truth of two representative patches with their pre-
dicted likelihood and segmentation overlaid on the T2w SR image. These results
illustrate the benefits of TopoCP on the estimated probability maps, detecting
more subtle variation of the cortex. The improved likelihood echoes with a better
segmentation. A summary of the 3D performance (Sect. 3.1) metrics on the fetal
brain atlas is presented in Table 2. TopoCP outperformed the Baseline U-Net
in both similarity- and distance-based evaluation metrics. Corrected p-values
between both methods (shown in italics) indicate that our method significantly
improves the baseline segmentation. Regarding the topological correctness, the
holistic EC error shows significant improvement with TopoCP. The 1-dim BE
is the most improved Betti Error and with the highest impact on the global
topological assessment. We recall that it represents the error of bored cortical
ribbon compared to the ground truth, which is the initial problem addressed.
Besides, it should be noted that the 0-dim BE is deteriorated with TopoCP.
Visual inspection shows the presence of small isolated false positives in the deep
gray matter area. Although, these false positives do not echo with impaired sim-
ilarity and distance-based metrics. We hypothesise that this behaviour would be
due to the fact that training was done on positive (cortex-aware) patches only.
We believe these false positive can be reduced with the integration of negative
patches in the training phase. Nonetheless, the 3D topology of the cortical plate
with TopoCP is much closer to the reality than with Baseline U-Net (see Fig. 3a).
Moreover, we observe large standard deviations in the topology-based metrics,
although they are slightly reduced with TopoCP (Table 2). Figure 3b shows that
the performance metrics varies over the gestational age. For both methods, we
observe better performances in the middle of the gestational age range, which
we explain as this corresponds to the age range present in the training set (see
Table 1). Furthermore, third trimester fetuses benefits more from TopoCP than
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Table 2. Performances (mean ± standard deviation), best score for each metric in bold.
p-values (in italics) of paired Wilcoxon rank sum test adjusted with Bonferroni multiple
comparisons correction, between both methods for each metric.

DSC↑ HD95 (mm)↓ 0-d BE↓ 1-d BE↓ 2-d BE↓ EC Error↓
Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP

3D 0.57 ± 0.07 0.72 ± 0.05 3.5 ± 0.87 2.58 ± 0.96 10.1 ± 10.8 13.3 ± 9.6 61 ± 30.3 35.4 ± 23.7 8.5 ± 13.4 8.0 ± 12.2 60.1 ± 33.4 30.0 ± 25.3

2e-07 0.0053 0.076 0.00099 0.96 0.00075

Fig. 3. (a) 3D rendering of 28 weeks-old atlas cortical plate segmentation from both
automatic methods compared to the ground truth. (b) Performance metrics at the
subject-level computed on the whole 3D volume for all atlas images.

others. TopoCP is more valuable to older fetuses, as they undergo the more com-
plex cortical gyrification patterns. While the overlap metric constantly improves
throughout gestation, distance error is mainly enhanced from the third trimester.
The topological loss has a stronger positive effect on the topological errors for
old subjects, although the whole range of gestational age presented benefits from
it.

Qualitative assessment of healthy fetuses indicates a good inter-rater agree-
ment of 74%. Figure 4a shows the consensus of the experts’ blind evaluation of
the cortical plate segmentation on SR volumes based on T2w clinical acquisi-
tions. For both excellent and acceptable sets, TopoCP was selected as giving the
best segmentation (overall on 81% of the slices), showing the robustness of our
method to the SR quality. Figure 4b illustrates a representative slice segmented
with both methods. Similarly, all raters preferred TopoCP segmentation in the
three pathological cases (CCA and schizencephaly shown in Fig. 5).
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Fig. 4. (a) Experts’ qualitative evaluation results in the comparison of Baseline U-Net
and TopoCP automatic segmentations. (b) Segmentation results on 23 (top) and 32
(bottom) gestational weeks fetuses.

Fig. 5. Segmentation results of a 33 weeks old subject with corpus callosum agenesis
and schizencephaly. Yellow arrows indicate the pathological area, where TopoCP is
better performing. (Color figure online)

5 Discussion and Conclusion

This work assesses for the first time the integration of a topological constraint in
DL-based segmentation of the fetal cortical plate on MRI. Our results on a wide
range of gestational ages (21 to 38 weeks) (measured with 3D topology error) and
qualitative assessment on 29 clinical subjects (including 3 with cortical patholo-
gies) demonstrate the resulting improved topological correctness of the fetal
cortex, despite noisy training labels and 2D inference. Our approach can possi-
bly be extended to 3D, although, one should note that an increase in the input
dimension will echo to an increase of the computational cost. In this study, we
arbitrarily set to 1 the weight of the topological loss, as done in [15]. We acknowl-
edge the loss contribution has its influence in the training phase and should be
fine tuned for improved performance. By testing our method on different acquisi-
tions than those of the training phase, we observe that the segmentation quality
of our method seems robust to different scanners and reconstruction methods.
Nevertheless, the main drawback of our work is its sensitivity to the resolution
of the input image. Resampling of both the input image and result segmentation
introduces interpolation that might embed the final results. We hypothesize that
training on images of various resolutions would make our method more robust
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to this parameter. We briefly presented preliminary results showing the benefits
of TopoCP in the segmentation of pathological cortical plates. While all training
images were of neurotypical fetal brains, we assume pathological brains could be
added to training set to better represent the variability of fetal cortical plates.
Finally, we emphasize the genericity of this loss, which can be applied to any seg-
mentation network providing a pixel-wise prediction. We believe that pairing up
the topological loss with state-of-the-art methods would considerably improve
the resulting segmentation, even in a multi-class task.
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