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Abstract
In the last decade, the use of high-density electrode arrays for EEG recordings combined with the improvements of source 
reconstruction algorithms has allowed the investigation of brain networks dynamics at a sub-second scale. One powerful 
tool for investigating large-scale functional brain networks with EEG is time-varying effective connectivity applied to source 
signals obtained from electric source imaging. Due to computational and interpretation limitations, the brain is usually par-
celled into a limited number of regions of interests (ROIs) before computing EEG connectivity. One specific need and still 
open problem is how to represent the time- and frequency-content carried by hundreds of dipoles with diverging orientation 
in each ROI with one unique representative time-series. The main aim of this paper is to provide a method to compute a 
signal that explains most of the variability of the data contained in each ROI before computing, for instance, time-varying 
connectivity. As the representative time-series for a ROI, we propose to use the first singular vector computed by a singular-
value decomposition of all dipoles belonging to the same ROI. We applied this method to two real datasets (visual evoked 
potentials and epileptic spikes) and evaluated the time-course and the frequency content of the obtained signals. For each 
ROI, both the time-course and the frequency content of the proposed method reflected the expected time-course and the 
scalp-EEG frequency content, representing most of the variability of the sources (~ 80%) and improving connectivity results 
in comparison to other procedures used so far. We also confirm these results in a simulated dataset with a known ground truth.
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Introduction

Electroencephalography (EEG) records the dynamic of brain 
networks on a sub-second time scale. The high temporal res-
olution of EEG allows to study how brain activity propagates 
and interacts in large-scale networks by applying connectiv-
ity measures to the recorded signals. However, connectivity 
measures based on scalp electrode measurements (sensors 
space) are not revealing the true interactions among brain 
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sources. Neighbouring electrodes measure signals that are 
highly correlated, leading connectivity algorithms to esti-
mate sham links. Indeed, the measurements of the voltage 
potential at various locations on the scalp are the result of 
the simultaneous activity of many different configurations of 
distributed current generators in the brain (De Munck et al. 
1988; Van de Steen et al. 2016; Haufe et al. 2013; Brun-
ner et al. 2016). To obtain physiologically plausible results, 
the reconstruction of brain source activity before comput-
ing connectivity is strictly required. However, the under-
lying brain source activity cannot be estimated uniquely 
from the scalp data, without invoking priors or constraints 
on the inverse solution. Functional connectivity analysis in 
the source space has been divided into two main groups 
(Barzegaran and Knyazeva 2017). One group of methods 
employs neuronal models of interacting brain regions, i.e., 
dynamic causal models (DCM), as priors which are added to 
the spatial forward model to reconstruct the scalp EEG data. 
Thereby, reasonably realistic assumptions of source dynam-
ics are required (Kiebel et al. 2006; Daunizeau and Friston 
2007). Provided that the model assumptions are physiologi-
cally meaningful, the DCM approach allows to infer not 
only the source dynamics but also the coupling parameters 
shaping interactions among sources (Daunizeau and Friston 
2007). The other group of methods does not use assump-
tions on the network structure and is characterized by a two-
step procedure. First, the scalp data is inverted to the source 
space using distributed source models and then functional 
connectivity measures are applied to the estimated sources. 
A priori assumptions have to be introduced to solve the ill-
posed inverse problem. For instance, Local AUtoRegressive 
Average (LAURA), the distributed linear inverse solution 
used here, incorporates biophysical laws into the minimum 
norm solution (De Peralta Menendez et al. 2004). By incor-
porating such priors, the distribution of the simultaneously 
active sources at each moment in time can be estimated 
from the high-density EEG scalp potentials informed by the 
individual anatomy derived from magnetic resonance imag-
ing (MRI) and realistic volume conduction physics (Michel 
and He 2018, 2012; Michel et al. 2004; Michel and Murray 
2012; Grech et al. 2008). The estimated activity at each solu-
tion point in the brain is described by a three dimensional 
dipole (x, y, z). After the estimation of the dipole activity at 
each solution point, the brain is usually parceled into regions 
before connectivity estimation, because the full spatial size 
of the data (more than 5000 solution points) is unreason-
able in terms of computations and statistical power. The 
choice of the parcellation scheme and resolution is crucial 
as it has effects on network topological characteristics. It 
depends on the type, quality and resolution of data and on 
the study purpose and can be based either on anatomical or 
functional assumptions (Reus and Van den Heuvel 2013). 
The most commonly used anatomical-based parcellation 

atlases are, among others, the automated anatomical labe-
ling (AAL) atlas (Tzourio-Mazoyer 2002; Evans et al. 2012) 
and FreeSurfer’s Desikan Killiany atlas (Desikan et al. 2006; 
Fischl et al. 2004). After parcellation, it is possible to build 
a graph representation of the brain (Rubinov and Sporns 
2010) where nodes are associated to the brain regions of 
interest (ROIs), and edge weights are given by functional 
(Nolte et al. 2004; Stam et al. 2007; Ioannides et al. 2000) 
or effective (Baccalà and Koichi 2014; Wibral et al. 2014) 
connectivity measures that are robust to volume conduction 
effects. To estimate either directed or undirected connec-
tivity, all the solution points estimated in each ROI need 
to be summed up in a unique time-series. The approaches 
proposed in the literature usually consist of two steps. In 
the first step, for each dipole, either the norm is computed 
or the direction of the dipoles is fixed using different tech-
niques. One approach is the computation of the norm (i.e. 
computing absolute dipole amplitude while discarding the 
orientation of the dipoles) or the power modulation using 
the Hilbert transform (Baker et al. 2014; Brookes et al. 
2011). This, however, may be problematic for connectiv-
ity estimation because the phase information contained in 
the original signal is lost (Vidaurre et al. 2016). Other cur-
rent methods to fix the dipole orientation within a ROI are 
either the projection to the refined average direction across 
time and epochs (Coito et al. 2016); the selection of the 
dipole orientation orthogonal to the segmented grey matter 
based on the assumption that the orientation of the dipoles 
should resemble the orientation of the apical dendrites of 
the pyramidal neurons (Phillips et al. 2002) or the selection 
of the orientation maximizing the projected power (Barnes 
et al. 2004). The second step consists in either averaging all 
dipole time-series within the ROI once the dipole orientation 
is fixed (Hassan et al. 2017) or applying principal compo-
nent analysis (PCA) to obtain the representative time-series 
(Supp et al. 2007; Gruber et al. 2008).

Other popular one-step solutions are either to compute 
the average cortical activity in each ROI by means of the 
instantaneous average of the signed magnitude of all the 
dipoles within the ROI (Astolfi et al. 2007) or to consider 
only the source activity of the solution point closest to the 
geometric center of each ROI, i.e., the centroid, as the repre-
sentative source waveform (Coito et al. 2015; Sperdin et al. 
2018; Canuet et al. 2011; Adebimpe et al. 2016). However, 
the selection of only one dipole out of hundreds does not 
necessarily properly represent the activity in a given ROI. 
Concerning the averaging approach, a common observation 
is a drastic amplitude reduction. Indeed, due to the exten-
sive folding of the human cerebral cortex, some sources in 
the ROI may be almost perfectly parallel to each other, but 
inverted in orientation, leading to cancelation when averag-
ing them. The resulting signal amplitude reduction could 
lead to decrease in accuracy of the subsequent analysis and 
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affect the final results. For instance, connectivity estimation 
involves computing the inverse of the matrix containing the 
representative source waveforms, which, if the values are 
small, may lead to a bad-conditioned matrix with a high 
condition number (Cline et al. 1979), i.e., even a small error 
in the data can produce a large deviation in the solution. 
Moreover, low-amplitude time-series may increase the rate 
of false positive connections, e.g., low-amplitude time-series 
may easily fit in large-amplitude time-series leading to mis-
leading high autoregressive coefficients (van Mierlo et al. 
2018).

In this work, we propose to extract the dominant signal 
reflecting the main pattern of variation of all the solution 
points in the same ROI by using singular-value decomposi-
tion (SVD) and considering the first singular vector. This 
method enables both to identify the main direction of all the 
dipoles of a ROI and to discard the contribution of the out-
lier dipoles. The novelty with respect to the other approaches 
proposed in the literature is that SVD provides a population 
signal that incorporates the behavior of all the dipoles within 
the ROI without choosing or selecting specific active voxels, 
as it is usually done (Barnes et al. 2004; Supp et al. 2007; 
Gruber et al. 2008; Zhou et al. 2009).

The evaluation of the performance of a functional connec-
tivity analysis method on real data sets is difficult because 
an objective ground truth is usually not available. Two type 
of data that are often used for method evaluation are: inter-
ictal spikes of patients with focal epilepsy where the focus 
localization is known from intracranial recordings or from 
successful surgery (Brodbeck et al. 2011; Megevand et al. 
2014), and evoked potentials where the generation and the 
propagation of information in the brain is well understood 
(Kiebel et al. 2006). Here, we used these two type of datasets 
to demonstrate the validity of the proposed method. We ana-
lyzed spike data of patients with focal epilepsy who had pos-
itive outcome of the surgery after 12 months. We expected 
that our method correctly identifies the epileptic focus (the 
ROI lying within the resected zone) as major driver of the 
epileptic network. For the evoked potentials, we analyzed 
a dataset of visual evoked potentials (VEP) after presenta-
tion of face stimuli. We expected that the proposed method 
would reliably identify the main components of the VEP, 
i.e. the P100 and the N170 in the source space, and that the 
major driver of the network would be localized to the lat-
eral, basal temporal and occipital cortices including the fusi-
form gyrus as shown trough EEG changes from implanted 
electrodes (Miller et al. 2017; Baroni et al. 2017; Hamamé 
et al. 2014). In addition, we evaluated the performance of 
the proposed method in realistically simulated data, where 
the ground-truth was known. We also compared the method 
to the common procedure of both, extracting the time-series 
of the centroid in each ROI and extracting the time-series 
with the highest power in each ROI.

Methods

Data Description

Dataset 1: Visual Evoked Potential of Face Perception

Many behavioral studies have investigated the process 
involved in visual stimuli such as face images (Haxby et al. 
2000, 1999; Hoffman and Haxby 2000). Traditional meas-
ures are based on the N170 face-sensitive evoked response 
component (Rossion and Caharel 2011). Human faces 
evoke a large negative potential (N170) over the occipital-
parietal scalp, more prominent over the right than the left 
hemisphere, which is reduced in evoked potentials elicited 
by other animate and inanimate non-face stimuli (Bentin 
et al. 1996). Applying effective connectivity in face per-
ception, i.e., describing the network of directional effects 
of one brain region over another, may be a powerful instru-
ment to study this visual process. In order to study these 
causal effects, it is important to precisely reconstruct the 
face-response stimulus in the source space. For this rea-
son, we investigated the ability of our method to recon-
struct the dynamics of visual evoked potential (VEP) in 
source space based on high density EEG (hdEEG) data.

Participants (N = 13, two males, age = 24.15 ± 3.41) sat in 
a dimly lit sound-attenuated and electrically shielded room 
with their head positioned on a chinrest at ~ 70 cm from 
the monitor. Each trial lasted 1.2 s and started with a blank 
screen lasting 500 ms. After the blank interval, one image 
(either a face or a scramble image) was presented for 200 ms 
and participants had the remaining 1000 ms to respond. The 
task was to report whether they saw a face or not (yes/no 
task) by pressing two buttons in a response box. Faces and 
scrambled images were randomly interleaved across trials. 
After the participant’s response, there was a random interval 
(from 600 to 900 ms) before the beginning of a new trial.

The experiment consisted of four blocks of 150 trials 
each, for a total of 600 trials, i.e., 300 with faces and 300 
with scrambled images (Ales et al. 2012). For this study, 
we used the EEG data in response of the face images (300 
trials per subject).

During the experiment, EEG data were recorded contin-
uously at 1024 Hz through a 128-channel Biosemi Active 
Two EEG system (Biosemi, Amsterdam, The Nether-
lands). Electrode impedance was kept < 20 kΩ.

Dataset 2: Interictal Epileptiform Discharges in Focal 
Epilepsy

hdEEG source imaging plays a central role in diagnosis 
and management of patients with focal epilepsy (Brodbeck 
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et al. 2011). However, recent work in the literature pro-
vided evidence that epilepsy is a disorder affecting neu-
ral networks (Sheybani et al. 2018). Thus, connectivity 
measures and graph analysis are promising tools to extract 
network information from both hdEEG and neuroimaging 
data (Van Diessen et al. 2014; Engel et al. 2013; Richard-
son 2012). We applied our method on pre-surgical inter-
ictal spikes (IEDs) recorded in patients with pharmaco-
resistant focal epilepsy, who subsequently underwent 
epilepsy surgery.

The patients (N = 7, three males, age = 23 ± 14 years) 
were selected from those admitted for pre-surgical evalu-
ation to the EEG & Epilepsy Unit, Department of Clinical 
Neurosciences, University Hospital of Geneva (HUG), Swit-
zerland. They underwent hdEEG long-term (> 4 h) record-
ing with 256 electrodes in the context of their pre-surgical 
evaluation, and subsequently underwent resection of the 
estimated epileptogenic zone causing their focal epilepsy. 
The outcomes of the surgery after 12 months along with 
the exact location of the resection zone were available from 
postoperative structural MRI and were used as validation for 
the localization of the generators of the interictal epileptic 
discharges.

The hdEEG was recorded with the Geodesic Sensor Net 
with 256 electrodes (Electrical Geodesic, Inc., Eugene, 
OR, U.S.A.). Electrode-skin impedances were main-
tained < 15 kΩ. The recordings were sampled at 1 kHz, 
referenced to Cz. Then, an epileptologist, G.T., marked 
41 ± 18 hdEEG epochs containing the interictal spikes for 
each patient. Then, the 1-s hdEEG epochs centered on the 
spike peak were used as input of the analysis.

Preprocessing

The VEP EEG signals were downsampled at fs = 200 Hz 
and detrended to remove slow fluctuations and linear trends 
(Bigdely-Shamlo et al. 2015). The line and monitor noise 
(50 and 75 Hz, plus harmonics) were attenuated with an 
adaptive multitaper filter (Cleanline plugin for EEGLAB). 
EEG epochs were then extracted from the continuous data-
set and time-locked from − 1000 to 1000 ms relative to 
the onset of each image. Noisy channels were identified by 
visual inspection and removed before preprocessing. Indi-
vidual epochs containing non-stereotyped artifacts, peri-
stimulus eye blinks and eye movements (occurring within 
± 500 ms from stimulus onset) were also identified by visual 
inspection and removed from further analysis (mean num-
ber of epochs removed across participants: 6 ± 5). Data 
were cleaned from remaining physiological artifacts (eye 
blinks, horizontal and vertical eye movements, muscle 
potentials and other artifacts) through a PCA-informed ICA 
algorithm implemented in EEGLAB. After ICA cleaning, 
the identified artifact channels were interpolated using the 

nearest-neighbor spline method and the data were re-refer-
enced to the average reference.

The EEG data containing the spikes of epileptic patients 
were filtered between [0.5 40] Hz with 5th order Butterworth 
filter avoiding phase distortion. Finally, the data were down-
sampled at fs = 250 Hz.

EEG Source Estimation

In this study, we applied the LAURA algorithm implemented 
in Cartool (58) to compute the source reconstruction in the 
individual MRI applying the local spherical model with 
anatomical constraints (LSMAC) and taking into account 
the patient’s age to calibrate the skull conductivity (De Per-
alta Menendez et al. 2004; Brunet et al. 2011; Spinelli et al. 
2000). The LSMAC method restricts the solution space to 
the gray matter of the individual brain.

Whole Brain Segmentation and Parcellation

Starting from the high-resolution T1-weighted image, using 
the Connectome Mapper open-source processing (Daducci 
et al. 2012) that calls the version 6 of the Freesurfer image 
analysis suite (62), we resampled the image to isotropic 
1 × 1 × 1 mm3 and we segmented the whole brain in white 
matter, grey matter, i.e., cortical and sub-cortical structures, 
and cerebrospinal fluid based on the anatomical Desikan-
Killiany et al. (2006) and Destrieux et al. (2010). At the end 
of the process, the cortex was parcellated into a total of 83 
regions, which accounted for all the cortical structures of the 
Desikan-Killiany anatomical atlas, as well as the deep-grey 
nuclei and the brainstem (Daducci et al. 2012).

Projection Method Based on SVD

An estimate of the x − y − z − space coordinates of the circa 
M = 5000 cortical dipoles was obtained for each time point. 
The estimation of the dipole sources x̃ is based on the solu-
tion of the following regularized equation:

where ‖⋅‖M represents the M-norm, L is the lead field matrix, 
x the dipole sources, y the EEG scalp potentials and γ is the 
regularization parameter which can be estimated by different 
criteria, e.g., by the L-curve approach (Hansen 1992).

Subsequently, first, we associated the dipoles to their 
respective ROI based on the 82 atlas labels (the brainstem 
was excluded). Second, for each ROI separately, we col-
lected all the N time samples of the x − y − z − space coor-
dinates of the n dipoles included in a given ROI and we 
organized the zero-mean data in a matrix D, [N × (n × 3)], 
as follows:

(1)x̃ = argminx
�‖Lx − y‖2

N
+ �‖x‖2

M

�
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After that we applied the SVD to this matrix:

where the apex T stands for the transpose and the columns of 
D can be seen as the linear combinations of the columns of U 
with the coefficients given by the columns of SVT. Because 
of the singular values contained in the diagonal of S appear 
in a decreasing order, we considered the first column of U u1 
[N × 1], i.e., the orthonormal vector projected along the axis 
that represents the major orientation of all the dipoles, like 
the signal that explains most the variability of the data and 
as the best representation of the ROI content. In other words, 
Eq. (3) assumes that the data matrix D comprises hidden 
components ui that are mixed together through coefficients 
S. Standard matrix factorizations in linear algebra, such as 
SVD, owe their uniqueness to hard and restrictive constraints 
such as orthogonality (Cichocki et al. 2015).

Connectivity Estimation

Among the different techniques for extracting effective con-
nectivity, information partial directed coherence (iPDC) prop-
erly accounts for size effects in gauging connection strength, 
as reported in detail in (Sameshima and Baccala 2014). In 
particular, iPDC is a multivariate spectral measure to compute 
only the directed influences between any given pair of signals 
(i,j) of a multivariate dataset. This information is condensed 
in a complex function iPDCi←j(f ) of the frequency f, which 
measures the relative interaction of the signal j with regard to 
signal i as compared to all j’s interactions to other signals in 
the multivariate dataset. While we refer the reader to (Taka-
hashi et al. 2010) for the mathematical details, the procedure 
for computing iPDC is briefly described by the following two 
steps.

In the first step, the cortical waveforms x̃ computed after 
applying the projection method described in the previous sec-
tion, are fitted against a time-variant (tv) multivariate autore-
gressive (MVAR) model to overcome the problem of non-
stationarity of the EEG data. If the EEG data are available as 
several trials of the same length, the cortical waveforms com-
puted from the EEG data generates a collection of realizations 
of a multivariate stochastic process which can be combined in 
a multivariate, multi-trial time series:

(2)

D =

⎡
⎢⎢⎣

dx1

�
t1
�

dy1

�
t1
�

dz1

�
t1
�

⋯ dxn

�
t1
�

dyn

�
t1
�

dzn

�
t1
�

⋮ ⋱ ⋮

dx1

�
tN
�
dy1

�
tN
�
dz1

�
tN
�
⋯ dxn

�
tN
�
dyn

�
tN
�
dzn

�
tN
�
⎤
⎥⎥⎦

(3)D = USVT

(4)x̃(t) =

⎡
⎢⎢⎣

x̃
(1)

1
(t) ⋯ x̃

(1)

d
(t)

⋮ ⋱ ⋮

x̃
(K)

1
(t) ⋯ x̃

(K)

d
(t)

⎤
⎥⎥⎦
t = t1,… , tN

where t refers to the time points, N the length of the time-
series, K the number of trials and d the number of ROIs.

Then the data in x̃ are fitted against a tvMVAR model in 
the general form:

where Ar(t) are the [d × d] AR matrices containing the model 
coefficients, W(t) is the stationarity zero-mean white noise 
process also called innovation process with covariance 
matrix ∑w, and p is the model order, usually estimated by 
means of the Akaike Information Criteria for MVAR pro-
cesses (Akaike 1998). The General Linear Kalman filter 
approach is applied in order to estimate the coefficients of 
the time-variant AR matrices and the innovation process ∑w 
(Milde et al. 2010).

As the MVAR model is estimated, for each time-point t, 
having defined the complex matrix B(f) as:

where Id is the identity matrix and j is the imaginary unit 
in this equation, the iPDC complex function from the time-
series j to the time-series i is obtained by:

where bj(f) and bij(f) are respectively the j-th column and the 
(j,i)-th element of matrix B(f), σw_ii is the (i,i)-th element 
of the innovation covariance matrix ∑w, and the apex H in 
bH
j

 stands for Hermitian transpose, i.e., obtained from bj by 
taking the transpose and then the complex conjugate of its 
components.

The complex function iPDCi←j(f ) of Eq. (7) is usually 
analysed in terms of its absolute value.

Simulation

To test if the SVD method is capable of detecting an effec-
tive connectivity map of the human brain, we simulated a 
simple four-node (ROI) network with different delays. We 
generated the time-course of the dipoles laying in the right 
occipital region of the brain and then a delayed version of 
3 ms with the same profile in the left occipital region. The 
same signals with a reduced amplitude (80%) and a delay 
of 5 ms were placed in the left and right inferior temporal 
regions of the brain. The time-course chosen was the average 
VEP reconstructed in the source space of the Dataset 1 in the 
right occipital cortex in the first 500 ms after the stimulus. 

(5)x̃(t) = −

p∑
r=1

Ar(t)X(t − r) +W(t)

(6)B(f ) = Id −

p∑
r=1

Are
−j2�f

(7)iPDCi←j(f ) = �
−1∕2
wii

bij(f )√
bH
j
(f )�−1

w
bj(f )
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The orientation of the dipoles was chosen perpendicular to 
the cortex. Each realization had a sample rate of 200 Hz with 
100 time points.

After having reconstructed these waveforms, white 
Gaussian noise with a SNR = 5 was added to the simulated 
waveforms and it also generated the background activity of 
the other dipoles of the model. These M = 5000 dipoles were 
then multiplied with the lead field matrix L estimated for 
each subject of the Dataset 1 obtaining the simulated EEG. 
We obtained 20 epochs for each subject by adding 20 differ-
ent profiles of noise.

Results

Application on Visual Evoked Potentials

In Fig. 1a, we report the dipoles (arrows in the figure) rep-
resenting the source waveforms in the right lateral occipital 
cortex of a representative subject (sub #1) in the 500 ms 
after the face stimulus from different perspective views. 
We chose the right lateral occipital cortex to visualize the 
results, because we clearly localized the N170 component in 
this region. In addition, this source localization is also con-
sistent with the literature (Grill-Spector et al. 2004) using 
MRI localizer scan that revealed two additional extrastriate 
regions beyond the fusiform face area that responded more 
strongly when subjects viewed faces than when they viewed 
objects. These include brain regions in the occipital gyri 
and in the superior temporal sulcus (Hoffman and Haxby 

Fig. 1  a All dipoles representing the solution points in the source 
space are reported as arrows. Each colour represents the dynamics of 
a different dipole over time in the right lateral-occipital brain region 
in a representative subject (sub #1). b Views of the x–z-plane, x–y-

plane and z–y plane are represented from top to bottom for dipoles of 
(a). c x–y–z–time-components of all the dipoles in the right lateral-
occipital region
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2000). To be able to compress four dimensions, i.e., x, y, 
z and time axes, in a 2-D figure, the x-axis is carrying both 
the information of the x dimension and the time dimension. 
In other words, we rigid translated each dipole along the 
x-dimension to represent its time evolution. In Fig. 1b, we 
report the three different projection planes of the space rep-
resented in Fig. 1a. In Fig. 1c, the time-series representing 
the time-course of the source waveforms in the right lateral 
occipital cortex projected in the x, y and z axes are depicted 
respectively from top to bottom. Interestingly, in the esti-
mated VEP source waveforms after the visual stimulus, the 
orientation over time of all the set of dipoles is not random. 
Furthermore, we qualitatively observe the existence of a 
main direction that maximizes the magnitude of the majority 
of dipoles. Having noticed that, summing the dipoles content 
in each ROI by the orthonormal vector projected along the 
axis in space that represents the major orientation of all the 
dipoles should explain most the variability of the data and 
be an accurate representation of the ROI content.

As previously stated, in several previous studies, e.g. 
(Coito et al. 2015; Sperdin et al. 2018), the dipole lying in 
the centroid is considered as representative for the entire 
ROI. For this reason, in Fig. 2, we compared the temporal 
patterns and the frequency content of the hdEEG recordings 
500 ms following the stimulus presentation Fig. 2a with the 
reconstructed time-series in the inverse space obtained from 
the proposed SVD method Fig. 2b and the source activity 
in the centroid Fig. 2c for sub#1. In Fig. 2b and c respec-
tively, we reported the first principal component computed 
from both the first eigenvector for each ROI and for the three 
x–y–z-components of the source activity in the centroid. 

After applying SVD, dealing directly with the first eigen-
vector or re-projecting the first eigenvector on the original 
data space is a user choice. It depends if the user needs to 
deal with normalized time-series or if she/he cares about 
the amplitude content of the signal. Observing both the pro-
posed reconstruction (Fig. 2b) and the centroid time-series 
(Fig. 2c), we found that they strongly differ in the amplitude 
magnitude as visible in their absolute power spectral density 
values. However, the relative power distribution among the 
canonical EEG-frequency bands does not significantly differ 
between the two different reconstructions (Mann–Whitney 
U-test, p > 0.98).

To emphasize the differences between the two methods, 
we compared the ability in detecting the P100 and N170 
peaks of the proposed representative time-series based on 
SVD computation and the centroid one. P100 is the first 
dominant component in response to visual stimuli with a 
lateral occipital positivity (Alonso Prieto et al. 2011), fol-
lowed by the N170. The N170 is a component of the evoked 
potential that reflects the neural processing of faces and its 
response should be maximal over occipital-temporal elec-
trodes (Ghuman et al. 2014; Rossion and Jacques 2008). In 
Fig. 3, we report for a representative subject and for all the 
subjects the average EEG signal in the sensor space at elec-
trode B11 (P8) located over the right parietal lobe Fig. 3a, b 
and the reconstructed time-series in the source space through 
the SVD and the centroid in the right lateral-occipital cor-
tex Fig. 3c, d. Figure 3 shows that the centroid time-series 
has lower amplitude and a flatter morphology than the SVD 
time-series in a representative subject Fig. 3c and across 
subjects Fig. 3d in the source space. The results in Fig. 3 

Fig. 2  Signal and corresponding power spectral density average 
among trials of a 128 high-density EEG time-courses representing 
the visual evoked potential in a representative subject (sub #1), b ROI 

time-series computed though SVD in sub #1, and c the first principal 
component of the time-series lying in the centroid of each ROI
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confirmed that the SVD time-series present a coherent pat-
tern compared to the signal recorded on the scalp and the 
amplitude and the latency of the peaks of interest can be 
easily estimated. In order to check for latency differences 
between the methods, we computed as reference the Global 
Field Power (GFP) (Brunet et al. 2011) from the hdEEG for 
each subject in order to determine the latency of the maxima 
of the components P100 and N170. For instance, for sub#1, 
the two detected latencies were t = 105 ms for P100 and 
t = 145 ms for N170. We then calculated the inverse solu-
tion on the average evoked potential with Cartool (Brunet 
et al. 2011) and we localized the ROI containing the maxi-
mum of the norm of the source waveforms for both peaks. 
We then compared the latencies estimated in the time-series 
obtained by the proposed projection method (Fig. 4a) with 
the time-series derived from the centroid method (Fig. 4b) 
in the selected ROI. Results in a boxplot form (Fig. 4c) show 
the latencies estimated through the GFP, in blue, the SVD 
time-series, in green, and the centroid time series, in red. 
Figure 4d shows that the absolute difference between the 
latencies estimated through the GFP and the reconstructed 
time-series in the source space is higher for the centroid 

compared to the SVD time-series. From this evaluation, the 
SVD time-series seem to more reliably estimate the peak 
latencies in the VEP.

We then computed the values of the explained variance 
(average among trials) of each of the 82 representative time-
series summing up the information content of the ROIs for 
all the subjects (Fig. 5a). The majority of the brain areas 
expected to be involved in face perception (red circles in 
Fig. 5) show higher explained variance. In Fig. 5b, c, we 
report the histogram containing all the explained variances 
for all the trials for sub#1 fitted against the generalized 
extreme value distribution (McFadden 1978). For instance, 
the average value of the location parameter was 94% for 
the left lateral occipital cortex and 70% for the right lateral 
occipital cortex in sub#1.

Finally, after computing the |iPDC| values during the first 
500 ms after the stimulus, we compared the values of the 
outflow from each ROIs at N170 among the reconstructions 
based on SVD, the selection of the centroid for each ROI 
and the selection of the time-series containing the maxi-
mum power for each ROI (Barnes et al. 2004). The connec-
tivity patterns between the different cortical regions were 

Fig. 3  a Average ± SEM among trials of the EEG signal recorded on 
B11 (P8) electrode in sub#1. b Average ± SEM among subjects of 
the average of the EEG signal on B11 (P8). c Average ± SEM among 
trials of the proposed representative time-series in the source space 
computed through SVD (green) and of the centroid (red) in sub#1 in 

the right lateral-occipital cortex. d Average ± SEM among subjects 
of the average proposed representative time-series computed through 
SVD (green) and of the average centroid (red) in the right lateral-
occipital cortex
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summarized by representing the total outflow from a cortical 
region toward the others, generated by the sum of all the 
statistically significant links obtained by application of the 
iPDC to the cortical waveforms (with their values). The total 
outflow for each ROI is represented by a sphere centered on 
the cortical region, whose radius is linearly related to the 
magnitude of all the outcoming directed links to the other 
regions. Such information is also coded through a color 
scale. The greatest amount of information outflow depicts 
the ROI as one of the main sources (drivers) of functional 
connections to the other ROIs (Babiloni et al. 2005). In 
Fig. 6, we report the average values computed across subject 
of the outflow for the SVD-time-series, the centroid time-
series and the maximum-power time-series. We can note 
that the ROIs with the maximum outflow (> 95% percentile) 
were localized in the right lateral-occipital cortex, and in the 
inferior temporal cortex Fig. 6a when using the SVD recon-
struction, in mesial temporal cortex near the hippocampus 
Fig. 6b when using the centroid time-series and in the right 
lateral-occipital cortex and in the right inferior temporal 
cortex Fig. 6c when using the maximum-power time-series. 
In the literature, the generation of N170 was proposed to be 
attributed to neural sources in lateral, basal temporal, and 
extrastriate occipital cortices (Grill-Spector et al. 2004, 75; 
Dalrymple et al. 2011; Itier and Taylor 2004; Botzel et al. 

1995; Schweinberger et al. 2002), to the fusiform gyrus of 
the inferior temporal cortex (Kropotov 2016) in recognition 
of faces, which is in accordance with our estimation through 
the SVD reconstruction. The SVD reconstruction results in 
a precise and less blurry localization of the major drivers for 
the proposed VEP.

Application on Interictal Spikes

For each epileptic patient, we applied our method to com-
pute the representative time-series for each ROI. First, we 
evaluated if the frequency distribution did not significantly 
differ passing from the scalp EEG to our inverse represen-
tation. The Mann–Whitney U-test confirmed that the rela-
tive power distributions between scalp EEG and our inverse 
representation were not different in each frequency band for 
each patient (p > 0.95). After that, in order to compare the 
power of localization among the SVD time-series, the cen-
troid time-series and the maximum-power time-series, we 
selected seven patients with anterior-mesial temporal lobe 
epilepsy with ILAE class I after surgery, i.e., completely 
seizure free, no auras (Brodie et al. 2018), in which part of 
the left temporal lobe was removed. For each patient, after 
computing the iPDC matrices, we estimated the outflow of 
information from each ROI during the advent of the spike. In 

Fig. 4  a Proposed representative time-series (green) computed 
through SVD for the right lateral-occipital region. b Norm (violet) 
and the first principal component (green) of the x–y–z-time-compo-
nents (respectively, blue, orange and yellow dotted lines) of the dipole 
lying in the centroid of the right lateral-occipital region. c Boxplot 
representing the latency in ms for each subject for P100 and N170 

estimated through the EEG GFP (blue), the representative time-series 
computed through SVD (green) and the centroid time-series (red). d 
Boxplot representing the absolute difference in latency in ms for each 
subject for P100 and N170 estimated between the EEG GFP and the 
representative time-series computed through SVD (green) and the 
centroid time-series (red)
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Fig. 5  VEP: a Boxplot representing the percentage of explained 
variability for the proposed representative time-series for each ROI 
computed though SVD for all the subjects. Red circles highlight the 
ROIs that are mainly involved in the VEP. b Histogram represent-
ing the percentage of explained variance in the representative subject 

(sub #1) for all the time-series representing the left lateral-occipital 
brain region. c Histogram representing the percentage of explained 
variance in sub #1 for all the time-series representing the right lateral-
occipital brain region

Fig. 6  VEP: mean outflow across subjects computed from iPDC matrix for a the SVD time-series, b the centroid time-series and c the maxi-
mum-power time-series. Nodes dimension and colour identify the value of the outflow
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Fig. 7 we report the mean outflow across patients computed 
with the SVD-time-series Fig. 7a, the centroid time-series 
Fig. 7b and the maximum-power time-series Fig. 7c. The 
ROIs with the value of the outflow above the 95% percen-
tile, considered to be the main drivers during the advent of 
the spikes are: left fusiform, middle-temporal brain areas 
for the SVD time-series, left temporal-pole brain areas near 
the hippocampus for the centroid time-series and left infe-
rior frontal brain areas for the maximum-power time-series. 
The first two methods correctly identified the left temporal 
lobe, but for the centroid time-series we can note that the 
range of outflow values (colorbar in b) is almost ten times 
smaller compared to the one of the SVD time-series (color-
bar in a), thus, the resolution obtained exploiting the SVD 
resulted to be higher. We used the postoperative structural 
MRI as validation for the localization of the generators of 
the interictal epileptic discharges, the area removed from the 
surgery was the left anterior temporal lobe for all the seven 
patients classified as good outcome. Moreover, considering 
all the patients, we computed the laterality index defined as 
in (Coito et al. 2015) to assess whether this group of patients 
had more summed outflow ipsilateral or contralateral to the 
epileptic source. We found that seven out of seven patients 
had a greater ipsilateral outflow exploiting the SVD time-
series, whereas four out of seven exploiting the centroid 
time-series. In addition, we computed the mean efficiency 
of the network across patients. Efficiency is a measure of 
how efficiently each node exchanges information. Using the 
SVD time-series we found that the most efficient nodes of 
the network (with values above the 95% percentile) were 
the left fusiform and the left middle-temporal brain areas, 
the same brain areas labeled as main drivers by the outflow 
measure. Brain regions having high efficiency suggest the 
existence of a high level of efficiency in communicating with 
the rest of the brain during the advent of the spike (Uehara 
et al. 2013).

Finally, we computed the values of the explained vari-
ance of each of the 82 representative time-series summing 
up the information content of the ROIs in all the trials/

epochs for each subject (Fig. 8). Each obtained histogram 
was fitted against the generalized extreme value distribu-
tion (McFadden 1978). The average value of the location 
parameter ± scale parameter was 75% ± 15%. Considering 
that we are trying to summarize the content of three different 
time-series in a unique signal, explaining more than 60% of 
the variance of all the dipoles in a ROI means being able to 
capture and describe at least the information contained in 
two out of three components. The data loss in a dimension-
ality reduction is unavoidable, but the fraction of the vari-
ance of the original data explained with our one-dimension 
representation seems to be a good achievement.

Application on Simulated Data

In Fig. 9a, the simulated 128 hdEEG time-courses averaged 
among the 20 trials for one of the 13 simulated subjects are 
shown. These hdEEG signals were the input of the LAURA 
algorithm to estimate the source waveforms. The obtained 
SVD time-series averaged among the 20 trials for the same 
simulated subject of Fig. 9a are reported in Fig. 9b. After 
computing the |iPDC| values during the first 500 ms after 
the stimulus, we compared the values of the outflow from 
each ROIs at N170 for all the simulated subjects. The ROIs 
with the maximum outflow (> 95% percentile) were consist-
ently localized in the right lateral-occipital cortex, and in the 
inferior temporal cortex as imposed by the simulation. The 
average outflow across all simulated subjects is displayed 
in Fig. 9c.

Conclusion and Discussion

With the final aim to improve connectivity estimation, 
we proposed a method able to overcome both the dipole 
orientation problem and to sum up of the information 
of different solution points in the same region of inter-
est. The proposed projection method based on singular 
value decomposition sums up the information carried by 

Fig. 7  Interictal spikes: mean outflow across good-outcome patients with left temporal lobe epilepsy computed from iPDC matrix for a the SVD 
time-series, b the centroid time-series and c the maximum-power time-series. Nodes dimension and color identify the value of the outflow
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hundreds of 3-D time-series in a unique 1-D signal rep-
resenting most of the variability of the sources in each 
region of interest. Thanks to the orthogonality constraints 
(U V are orthogonal matrices and S is a diagonal matrix), 
the solution of SVD is unique and can be considered a reli-
able way for dimensionality reduction. The amplitude of 
the representative signal computed as the first orthonormal 
vector of the unitary matrix U is by definition independ-
ent on the original signal amplitudes. Thus, this solution 
overcomes a major drawback of the common procedure of 
averaging the dipoles, namely drastically reduced ampli-
tudes after averaging all the dipoles in the same region of 
interest. Dealing with smaller amplitudes may distort the 
results of the connectivity estimation because it involves 

computing of the inverse of the matrix containing the data 
(Baccalà and Koichi 2014; Moraca 2008).

Additionally, we proposed a method able to create a pop-
ulation signal that summarizes the sources activity in each 
region of interest (ROI) giving an indication of the global 
explained variance and considering all gray matter solution 
points in the brain. In the majority of previous studies, a few 
voxels are selected for each ROI, for example the most active 
voxels, and afterwards the information carried by these most 
active voxels is summarized in a unique signal by a decom-
position method. Indeed, in (Supp et al. 2007; Gruber et al. 
2008), the authors defined the ROIs by carefully selecting 
voxels corresponding to cortical areas that showed signifi-
cant differences in the gamma-band range. For analyzing 

Fig. 8  Interictal spikes: a boxplot representing the percentage of 
explained variability for the proposed representative time-series for 
each ROI computed though SVD for all the subjects. b Histogram 
representing the percentage of explained variance in the representa-

tive subject (sub #1) for all the time-series representing the left mid-
dle temporal cortex. c Histogram representing the percentage of 
explained variance in sub #1 for all the time-series representing the 
left fusiform brain region
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the information transfer between the identified regions of 
interest in source space through partial-directed-coherence, 
a multivariate autoregressive model was fitted to the time 
series revealed by the inverse solution at each ROI. To over-
come the problem that each current source density consists 
of three directions (X, Y and Z), they computed the first 
principal component of each triplet. In our work, we aimed 
to create a population signal directly from the activity of 
all the voxels contained in the same ROI without introduc-
ing a priori condition to select specific points/areas. Also in 
(Zhou et al. 2009), an fMRI connectivity analysis approach 
combining both principal component analysis (PCA) and 
Granger causality method was proposed to study directional 
influence between functional brain regions, but before apply-
ing this combined measure, the authors selected only the 
activated brain regions/voxels with BrainVoyager QX.

Moreover, the computational cost should also be consid-
ered as it influences the usefulness of the method in practice. 
The computational cost of singular value decomposition is 
much lower than the computational cost of other approaches 
based on the canonical polyadic decomposition (Cong et al. 
2015). We also showed that the projection method based 
on SVD provides robust results for visual evoked potentials 
and epileptic spikes. The results have also been confirmed 
by simulations. Furthermore, by analysing the frequency 
content of the proposed time-series and comparing its fea-
tures with the centroid time-series, the signal based on the 
SVD seemed to both resemble the EEG scalp features and 

to prevent to deal with signals with too low amplitudes for 
the subsequent connectivity estimation. The novelty of the 
SVD method also lies in the fact that it exploits the informa-
tion of the overall population of dipoles in each ROI instead 
of considering only one time-series as representative of the 
complex activity pattern in a given brain region. Despite 
the lack of availability of an objective ground truth in both 
estimating the source activities and the causal interactions 
among them, observing the dynamics and the orientation of 
the dipoles over time in visual evoked potential and epileptic 
spikes seems to confirm the existence of a principal com-
ponent that accounts for most of the variability in the data.

While the proposed method is computationally cheap and 
easy to implement, it relies on certain ad-hoc assumptions 
and constraints that can influence the accuracy of the results. 
The first assumptions are imbedded in the source localiza-
tion method used to solve the inverse problem. Here, we 
used the linear inverse solution LAURA which assumes that 
the strength of each source falls off with the reciprocal of the 
cubic distance for vector fields and with the reciprocal of the 
squared distance for potential fields, according to Maxwell’s 
laws of electromagnetic field (De Peralta Menendez et al. 
2004). Other assumptions might lead to different results. 
The second constraint lies in the definition of the regions of 
interest in the parcellation of the brain. Here, we used ana-
tomic ROI definitions as proposed in previous studies (Coito 
et al. 2016; Milde et al. 2010; Astolfi et al. 2007) which 
might lead to wrong connectivity estimations in cases where 

Fig. 9  Simulated VEP: a 128 high-density EEG time-courses and b 
ROI time-series computed though SVD average among trials in a rep-
resentative simulated subject, and c mean outflow across all simulated 

subjects computed from iPDC matrix for the SVD time-series. Nodes 
dimension and colour identify the value of the outflow



717Brain Topography (2019) 32:704–719 

1 3

estimated sources cross anatomical boundaries or when 
distinct sources are located in the same anatomical region 
(Daunizeau and Friston 2007). Anatomical segmentation is 
appropriate in structures that are anatomically well defined, 
but are less ideal in areas such as the frontal and parietal 
cortices, where there is the risk of mixing temporal signals 
into heterogeneous ROIs (Constable et al. 2013). Analysing 
the patterns and the frequency content of the final wave-
forms computed through SVD, e.g., Fig. 2, and checking the 
explained variability of each singular vector, e.g., Figs. 5 and 
8, can lead the user to choose the most suitable parcellation.

Since the results may be influenced by the choice of the 
algorithm for estimating the source waveforms and from 
the brain parcellation, there are other approaches to define 
EEG networks that circumvent the issue of how to best seg-
ment the source maps into ROIs by explaining the EEG in 
terms of a discrete set of causally interacting clusters (Olier 
et al. 2013). While such direct approaches are theoretically 
appealing since they are based on a generative model of 
how the data are probabilistically produced, they also rely 
on several a-priori assumptions and include many param-
eters, leading to significant computational costs. The main 
assumptions in one direct approach (Olier et al. 2013) are 
that the dynamics of the sources can be modelled as ran-
dom fluctuations of a small number of mesostates interacting 
according to a full Dynamical Causal Network that can be 
estimated and the dynamics of the mesostates can switch 
between multiple approximately linear operating regimes 
stable over finite periods of time. Critically, this model 
accommodates constraints on the number of meso-sources 
(a meso-source represents the mean field approximation to 
its underlying neuronal population dynamics), while retain-
ing the flexibility of distributed source models in explaining 
the data (Daunizeau and Friston 2007). For experimental 
situations in which there is some a priori belief that there 
are multiple approximately linear dynamical regimes, this 
direct approach provides a natural modelling tool (Olier 
et al. 2013).

Whether applying a direct method based on Bayes-
ian statistics or a two-stage method, as the one proposed 
in this work, depends on the user hypothesis and the final 
application. On the one hand, Bayesian approaches provide 
a natural and principled way of combining prior informa-
tion with the data, within a solid decision theoretical frame-
work, but it comes with a high computational cost, and user 
prior assumptions have to be translated into a mathemati-
cally formulated prior. Posterior distributions can be heav-
ily influenced by these priors. On the other hand, two-stage 
approaches do not need to define priors and they are less 
computational demanding, but they may be influenced by 
the choice of the algorithm for estimating the source wave-
forms and from the anatomical segmentation used to define 
the ROIs. Our intention was to estimate source activity in 

the whole brain without any a priori assumption about the 
generative model of how the data are probabilistically pro-
duced. In our opinion, such an approach is preferred in stud-
ies that aim to compare and combine the effective connectiv-
ity among ROIs with the structural connectivity estimated 
by diffusion MRI in the same framework.
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