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Abstract. We present a detailed description of the structural charac-
teristics of the MICCAI 2021 Diffusion Simulated Connectivity (DiSCo)
Challenge synthetic dataset. The DiSCo dataset are one of a kind numer-
ical phantoms for the simulation of the diffusion-weighted images (DWIs)
via Monte-Carlo diffusion simulations. The microscopic and macroscopic
complexity of the synthetic substrates allows the evaluation of processing
pipelines for the estimation of the quantitative structural connectivity.
The diffusion-weighted signal in each voxel of the DWIs is obtained from
Monte-Carlo simulations of particle dynamics within a substrate of an
unprecedented size of 1 mm3, allowing for an image matrix size up to
40×40×40 voxels (isotropic voxel sizes of 25µm). In this paper, we pro-
vide a characterization of the microstructural properties of the DiSCo
dataset, which is composed of three numerical phantoms with compara-
ble microstructure. We report the ground-truth tissue volume fractions
(“intra-axonal”, “extra-axonal”, “myelin”), the fibre density, the bundle
density and the fibre orientation distributions (FODs). We believe that
this characterization will be beneficial for validating quantitative struc-
tural connectivity processing pipelines, and that could eventually find
use in microstructural modelling based on machine learning approaches.
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1 Introduction

For the last two decades, diffusion-weighted magnetic resonance imaging (DW-
MRI) has been an active area of research, with numerous contributions to the
development of structural connectivity analyses. However, it is difficult to quan-
tify the effect of a particular element of the DW-MRI data processing pipeline,
like noise reduction methods [9,29], local reconstruction methods of the angular
diffusion information [26,30], or tractography algorithms [12,27], on the struc-
tural connectivity results. Furthermore, in order to obtain a quantitative compar-
ison of these methods, the use of tracers on animal models [18], or post-mortem
dissection, or cortical electro-stimulation is required [19]. These techniques are
time-consuming and moderately to highly invasive, and they do not provide a
systematic ground truth mapping of the axonal fibre pathways.

To overcome such challenges, some physical phantoms have been developed
[16,19], providing a convenient way to evaluate DW-MRI image processing meth-
ods in a more quantitative manner. However, these phantoms’ fibre geometries
and microstructural features are typically much simpler than those found in
the brain. Moreover, the precise structural measurements of the manufactured
phantom may be not fully known, defeating the purpose of using such phan-
toms. Numerical phantoms are of particular interest in this context and have
become the standard de facto for evaluating novel DW-MRI signal processing
methods [1,4,6,7,13,14,21]. The realism of phantoms is a fundamental aspect.
Generally, it is possible to think of two levels of realism connected to numerical
phantoms for DWIs. One, macroscopic, has to do with the fidelity to the known
key features of the tissue organization, such as the complex and convoluted tra-
jectories of white matter fibres and their configuration. The other, microscopic,
is the fidelity of the numerical phantoms to the potential properties of the tis-
sue microstructure such as its composition—axons, myelin, etc.—, geometrical
features—axonal radii—, and physicochemical characteristics that are relevant
for characterizing the tissue magnetization—such as the transverse relaxation
time.

Freely available software have been developed and released [7,8,17] to cre-
ate numerical phantoms for validating structural connectivity pipelines. For
instance, Phantomas [7] and Fiberfox [17] allow the creation of complex DW-MRI
signal from user-defined fibre configurations and diffusion parameters. Addition-
ally, the Numerical Fibre Generator (NFG) [8] framework generates numerical
structures randomly, resulting in an intricate set of fibre bundles from which
DW-MRI images are generated. While these methods are capable of generating
DWIs from substrates containing a large number of bundles of axonal fibers,
they fall short on the microscopic realism that is necessary for evaluating a more
quantitative structural connectivity.

The fidelity to the microstructural properties of the white matter tissue can
be achieved with Monte-Carlo Diffusion Simulation (MCDS). In contrast with
the approaches mentioned before, MCDS does not require an explicit model of
the diffusion signal. Instead, MCDS requires a precise physical representation
of the tissue geometry in the form of a 3D mesh substrate used to generate
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the dynamics of virtual water particles diffusing within and interacting with the
substrate’s barriers. MCDS is known for being computationally expensive and
time-consuming. Moreover, it requires careful setup of the simulation parame-
ters, design of the 3D mesh substrates, and handling of the particle interactions.
In recent years a notable effort has been made to introduce state-of-the-art
methods to obtain faster and more robust simulations [21,31], as well as state-
of-the-art frameworks to create complex mesh substrates [6,13]. However, the
computational expensiveness of these methods has still limited its use to single-
voxel simulations, away from the demands of connectome validation studies.

In the context of macro- and microscopically realistic simulations, and in
an effort to provide means for jointly evaluating local reconstruction, tractogra-
phy, and connectivity methods, we developed the DiSCo dataset, a Monte-Carlo
based dataset of unprecedented complexity and volumetric size. The numerical
DiSCo phantoms are large enough (1 mm3) to test tractography and connectivity
methods, while also having rich microstructural properties suitable for testing
tissue biophysical modeling and orientation estimation methods. In this work,
we present a detailed analysis of the MICCAI 2021 DiSCo challenge numerical
phantoms, reporting ground-truth microstructural maps at various resolutions,
such as the voxel-wise fibre orientation distributions, the compartmental volume
fractions and fibre density, and the mean axon diameter distribution.

2 Methods

The three phantoms shown in Fig. 1 (coined as DiSCo1, DiSCo2 and DiSCo3),
were constructed following the procedure described on [20] using 16 randomly
generated regions of interest (ROIs). The ROIs are then used to generate a
connectome with desired properties, like sparsity, weight randomness and non-
self connections. The main differences between the phantoms arise from the
randomly generated ROIs and from the set of randomly generated non-zeros
weights defining the weighted connection between them. However, due to the
strands optimization procedure based on the NFG to pack and interdigitate the
generated strands connecting the ROIs, structural differences are introduced in
terms of the resulting number and orientations of the axons’ bundles per voxel,
effective diameter distribution, and compartmental volume fractions. Some of
these differences are known a priori from the ground truth information used
for the design of the phantoms, however, due to the complexity of the resulting
substrate, some other features need to be estimated after the phantom has been
produced.

The phantoms contain three water tissue compartments, intra-axonal, extra-
axonal and myelin. The signal was simulated separately for each compartment
using the MC/DC simulator [21] using the settings described in [20]. The myelin
compartment was simplified as a non-diffusing compartment with water fraction
proportional to the myelin volume. All the maps we report were computed using
the strands’ information generated from the final meshing procedure [20] in
which an inner and outer layer was added as follows. The strands are defined
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Fig. 1. Meshes of the three phantoms (DiSCo1, DiSCo2, DiSCo3) obtained following
the strand optimization procedure [20]. The strands have their endpoints on the surface
a sphere and trajectories propagating inside the sphere. Each strand interconnects two
of the 16 ROIs.

by its center-line and the cross-sectional area, which the are used to construct
the outer and inner mesh given the strands trajectories. The outer mesh is
defined using the strands cross-sectional diameter, from which an inner mesh is
generated using a down-scaled diameter by a 0.7 factor (considered as the g-
ratio). The bundles are then defined as the set of strands that starts and ends
in the two specific ROIs.

2.1 Volume Fraction Estimation

The compartmental volume fractions were computed via the Monte-Carlo sam-
pling procedure of the diffusion simulations. In order to do so, we tracked the
position of each individual i-th particle at time 0, pi,0, and evaluated to which
compartmental domain Ω ∈ R

3 that position belongs. In particular, we defined
the intra-axonal compartment, Ωi;Ω ⊂Ωi, as any enclosed domain with no other
substrate elements inside; the outer axonal-space (Ωo)—related to a specific sub-
space Ωi—was defined then as any enclosed domain fully containing the subspace
of the intra-axonal subspace Ωi. With this, the compartmental myelin volume
fraction can be defined as the space in between those two, Ωm = Ωo−Ωi. Finally,
we defined the extra-axonal compartment as anything else outside the outer com-
partment (Ωe = Ω − Ωo). The final volume fractions maps were computed by
uniformly sampling the substrate space Ω with a particle density of one particle
per µm2. The volume fraction maps were computed by subdividing the averages
into the voxel regions using the maximum resolution grid of 25 × 25 × 25µm2.

2.2 Fibers Information Maps

The ground truth fibre orientation distribution functions (FODs) were com-
puted using the strand trajectories and the cross-sectional areas. The FOD in
a particular voxel is estimated from a collection of directions, representing the
variability of the fibre directions within that voxel. This accounts for the different
fiber bundles potentially passing through but not wholly contained in the voxel,
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the diameters of the fibers, and for the angular dispersion of bending strands.
In order to translate this discrete representation of the FOD into a continuous
representation, we used kernel density estimation (KDE), using a symmetric
Von-Mises Fisher kernel, defined as

vμ(ω) = cκ exp(κ|μTω|), where cκ =
κ

4π(exp(κ) − 1)
, (1)

where κ is the concentration parameter, and μ is the axis. This function has
already been used in the context of diffusion MRI modelling [7,15,32]. The FOD
in each voxel is obtained by summing the kernel aligned with μ for all fibre seg-
ments intersecting the voxel. Moreover, each kernel is weighted by the length of
the segment and by its cross-sectional area to account for various fiber volumes.
The diameter of the circumference defining the cross-sectional area is used to
compute the effective axon diameter distribution map per voxel. The number of
strands and bundles per voxel were also computed for three nominal resolutions
(25µm, 50µm and 100µm) using the weighted approach of the FOD explained
before being separated by strand or by ROI bundle.

2.3 Peaks Extraction

Peaks were extracted from the FODs for each voxel size (25µm, 50µm and
100µm) using Dipy [12]. Peaks were kept only if the FOD value in the
peak orientation was equal or more than 20% of the FOD maximum (rela-
tive peak threshold = 0.2). The minimum separation angle between peaks was
set to 25◦ (if multiple peaks are identify within a 25◦ angle, the peak with the
highest FOD value is kept).

2.4 Tensor-Based Metrics

The diffusion tensors [5] and the corresponding fractional anisotropy (FA) and
mean diffusivity (MD) maps were computed using the re-weighted least squares
method implemented in MRtrix3 [28]. They were estimated using the full noise-
less DW-MRI signal [20].

3 Results

3.1 Compartmental Volume Fraction

Figure 2 shows a cut section of the estimated ground-truth map of DiSCo1 for
the three resolutions. The extra-axonal space is shown in the first row, which also
contains the free water outside the main phantom corpus. The maps show the
close relationship between the intra-axonal and the myelin fraction (bottom row).
For the highest resolution, the combined volume fraction of these compartments
is about 52% in the highly dense areas near the main center area of the phantom.
Such value may result in a less hindered extra-axonal compartment compared
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Fig. 2. Ground truth volume fraction map of DiSCo1 of the extra-axonal compartment
(top), intra strand compartment (middle) and myelin layer compartment (bottom). The
voxel size of the image voxel size was set to 25µm (left), 50µm (center) and 100µm
(right) isotropic.

to that expected in real tissue. In the lower resolution, this value can be even
smaller since the partial volume is present in most of the voxels.

Figure 3 shows the histogram of the volume fractions on the three phantoms
and for the three resolutions. The effect of the partial volume in the compart-
ments’ volume fractions is noticeable especially starting from 50µm isotropic
resolution.

Fig. 3. Histograms of the fraction of inner strand fraction for the phantoms DiSCo1
(red), DiSCo2 (green) and DiSCo3 (blue). The voxel size of the image voxel size was
set to 25µm (left), 50µm (center) and 100µm (right) isotropic. (Color figure online)
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3.2 FODs and Number of Streamlines as a Function of Resolution

The top-row images of Fig. 5 show the voxel-wise count of the number of strands
for a section of the DiSCo1 phantom. As expected, the number of fibers is higher
as the resolution decreases. At the highest resolution the maximum number of
strands in a single voxel is 82 and the maximum number of bundles is 5. Con-
versely, at the lowest resolution the maximum number of strands in a single voxel
is 1136, and 18 is the maximum number of different bundles. At the highest res-
olution the voxel-wise mean diameter ranges from 1.3µm to 4.5µm, centered at
2.25µm, which is comparable to the range of values at the other two resolutions.

The ground truth orientations and number of peaks of a cross section of
DiSCo1 is shown in Fig. 4 for the various resolutions. Bundles close to the ROIs
are notably more homogeneous than those in crossing areas, which can also be
noted in the FA maps in Fig. 6. The number of peaks in a single voxel is shown
in the second row; notably, some highly dense voxels contained a total of 8 peaks
in the FOD beyond the set threshold (see Methods section).

Fig. 4. Ground truth fibre orientation distribution functions (top) and corresponding
peaks (bottom). The peaks are overlaid onto the peak count map. The voxel size of the
image voxel size was set to 25µm (left), 50µm (center) and 100µm (right) isotropic.

3.3 MD and FA Maps

The Diffusion Tensors (DT) derived maps are shown in Fig. 6. In the top row,
the resulting DT maps are shown. The effect of partial volume in the lowest
resolution is particularly evident in the DT maps, where single bundles near the
ROIs may look fully anisotropic and thus have higher FA (as shown in the second
row). The mean diffusivity is shown in the bottom row. From these maps, it is
possible to observe that in the correspondence of the crossing area, the mean
diffusivity is still remarkably low and homogeneous despite having a high extra-
axonal volume fractions and tortuous structure.
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Fig. 5. Ground truth strand count map (top), bundle count map (middle) and average
strand diameter map in µm (bottom). The voxel size of the image voxel size was set
to 25µm (left), 50µm (center) and 100µm (right) isotropic.

4 Discussion and Conclusion

We presented quantitative maps of the microstructural properties representative
of the DiSCo phantoms. These maps show the complexity achieved in the three
main computed resolutions and provide a novel and multiplex microstructural
environment for testing and validating connectomics and microstructural tech-
niques. For instance, besides the context of connectomics analysis, which was the
focus of the DiSCo 2021 Challenge, these phantoms can be used for validating
dispersion based techniques [32], multi-tensor approaches [23,25], axons diam-
eter mapping [2], acquisition strategies for tractography [24], and tractogram
filtering methods [10]. Secondly, these phantoms can be used as well to test or
train DWI-based super-resolution approaches [3] given the availability of the
three different resolutions presented here. However, from our experiments, we
noted that the fidelity to the microstructure at the lowest resolution might be
too poor and suffer from excessive partial volume effects. Another important
factor to consider is the availability of two additional phantoms which can be
used as test and validation datasets as classically needed for machine learn-
ing approaches. We verified in our experiments that the framework can create
distinct connectomes while preserving the microstructural coherence, like the
volume preservation, and achieving diffusion characteristics as those expected
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Fig. 6. Diffusion tensor estimated from the noiseless DW-MRI signal (top), fractional
anisotropy map (middle) and mean diffusivity map (bottom). The mean diffusivity
map is reported in mm2s−1unit. The voxel size of the image voxel size was set to
25µm (left), 50µm (center) and 100µm (right) isotropic.

in real tissue. The end-to-end construction and simulation of each phantom was
achievable in about one week, of which the substrate optimization procedure
took about 5 to 6 days to complete. Finally, given the mesh information and the
capability of handling the simulation independently for each of the three com-
partments, in the near future, we expect to be able to enhance the phantoms
realism by including the transverse relaxation effects for each compartment indi-
vidually. This will provide, for instance, an additional signal contrast to myelin
and can be helpful for validating the biophysical modeling of the microstructural,
including simulation-assisted machine learning approaches to it [22], and for the
validation of methods that jointly use diffusion and relaxation information to
detect and characterize pathology [11].

To summarize, we have shown an overview of the microstructural properties
of the DiSCo dataset that are part of the MICCAI 2021 DiSCo Challenge. All
of the computed maps, mesh information, and DWIs are to be made available
publicly after the challenge event. We believe that these maps will boost the val-
idation of connectomics and microstructure modeling. In addition, the phantoms
can be reused to simulate more advanced protocols and even add new sources of
contrast by tailoring the substrates and the biophysical properties to the specific
research needs.
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