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Performance Analysis of Reconstruction
Techniques for Frequency-Domain

Optical-Coherence Tomography
Chandra Sekhar Seelamantula∗ and Michael Unser

Abstract

We address the issue of noise robustness of reconstruction techniques for frequency-domain

optical-coherence tomography. We consider three reconstruction techniques: Fourier, iterative phase

recovery, and cepstral techniques. We characterize the reconstructions in terms of their statistical bias

and variance, and obtain approximate analytical expressions under the assumption of small noise. We

also perform Monte-Carlo analyses and show that the experimental results are in agreement with the

theoretical predictions. It turns out that the iterative and cepstral techniques yield reconstructions

with a smaller bias than the Fourier method. The three techniques, however, have identical variance

profiles, and their consistency increases linearly as a function of the signal-to-noise ratio.

Index Terms

frequency-domain optical-coherence tomography, cepstrum, bias, variance.

EDICS: BIO-SPMB, SSP-PERF

I. INTRODUCTION

FREQUENCY-DOMAIN optical-coherence tomography (FDOCT) [1] is a new imaging modal-

ity based on the principle of low-coherence interferometry [2–6]. It is contact-free, employs

a nonionizing radiation, has high sensitivity, and enables fast acquisition. These advantages have
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given rise to many applications, the most recent ones being in functional imaging [7–9].

In FDOCT, the measurements are spectral data, from which the spatial domain description of

the specimen must be computed. There are three state-of-the-art techniques for achieving this goal:

1) Fourier approach, 2) Iterative phase recovery method [10], and 3) Cepstral technique [11].

In practice, the measurements are affected by acquisition noise [15] that may affect the perfor-

mance of a reconstruction algorithm. The contribution of this paper is a statistical characterization

of the techniques mentioned above in the presence of noise in terms of the bias and variance of the

reconstruction. These parameters are important because the bias is directly related to the amount of

artifacts present in the FDOCT reconstruction, and the variance is a measure of the consistency of

a reconstruction technique in the presence of experimental noise. We show that the bias-variance

analysis is relatively easy for the Fourier approach. For the iterative and cepstral techniques, how-

ever, it is complicated because of the nonlinearities involved, and successive refinement of phase

in the former. However, by making a small-noise assumption together with reasonable approxima-

tions, closed-form expressions can be derived. By means of Monte-Carlo analyses, we show that

the simulation results are largely in agreement with the theoretical analysis.

II. SIGNAL ACQUISITION AND MODEL

The standard Michelson interferometric setup for FDOCT is shown in Fig. 1. The system

comprises two arms, one for the object and another for the reference. A broadband light source

(e.g. a super-luminescent diode) is employed for illumination as it yields high axial resolution.

A beam-splitter is employed to divide the source output between the two arms. A mirror in the

reference arm gives rise to the light that interferes with the light reflected from the object. The

coherent interference of the recombined signals is detected by a spectrometer, which records the

fringe intensity as a function of the wavelength λ. Equispaced samples on the wavenumber scale

k =
2π

λ
are then obtained by interpolation. In the standard Fourier notation, the measured signal
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is expressed as I(ω) = S(ω) |1 + A(ω)|2, where A(ω) is the Fourier transform of the backscat-

tering function a(z). We assume that a(z) is causal, which is indeed the case in many standard

configurations. The function S(ω) is the power spectrum of the source; ω =−2kn(z), where n(z)

is the refractive index of the specimen as a function of the axial variable z. S(ω) is measurable,

and hence known. The tomogram reconstruction problem is essentially the task of retrieving a(z)

given I(ω) and S(ω). An important point is that the light reflected from the object is much weaker

than that reflected from the mirror; i.e., |A(ω)| � 1. Since n(z) is usually not known a priori, a

standard simplification is obtained by replacing it with the average refractive index n̄ [12](Chapter

12). The tomograms would then be a function of the optical path length in the specimen. Such

tomograms are quite standard in OCT applications.

III. STATE-OF-THE-ART RECONSTRUCTION TECHNIQUES

A. Fourier Approach

In this approach, the tomogram is reconstructed as: F−1{I}(ω) = (rss∗a)(z)+(rss∗a)(−z)+

(rss ∗raa)(z), where rss(z) and raa(z) are the autocorrelations of the source and a(z), respectively;

F denotes the Fourier transform operator. For broadband illumination, it is reasonable to assume

that rss(z) is a Dirac impulse. If the zero-delay plane is outside the specimen, or, equivalently, if

a(z) is causal, then there is no overlap between (rss ∗ a)(z) and (rss ∗ a)(−z). The autocorrela-

tion raa(z), however, is symmetric about z = 0 and overlaps with (rss ∗ a)(z) and (rss ∗ a)(−z).

Therefore, the distortion is raa(z) and is additive.

B. Iterative Phase Recovery Method

This method is based on a Fienup technique for phase retrieval [14]. One starts with the

spectral measurements and alternates between the spatial and spectral domains via the Fourier

transform. At each iteration, two conditions are imposed: (i) causality in the spatial domain,
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and (ii) the condition that the magnitude spectrum of the estimated scattering function matches the

measurements. The procedure converges under some technical conditions [13]. After convergence,

a minimum-phase version of the scattering function is obtained. If the scattering function is indeed

minimum-phase, then, in principle, it can be recovered exactly [10, 13]. In [10], the authors also

propose an analytical counterpart of the technique, which can be used for initialization to improve

both accuracy and speed of convergence. A summary of the method is given below.

Initialization: i = 1; φ(1)(ω) as per [10].

1. H(i)(ω) =
√

I(ω)ejφ(i)(ω).

2. Inverse Fourier transform: h(i)(z) = F−1
{

H(i)
}

(z).

3. Causality constraint: a(i)(z) = h(i)(z)u(z), where u(z) is the unit step function.

4. Fourier transform: A(i)(ω) = F
{

a(i)
}

(ω); φ(i+1)(ω) = ∠A(i)(ω).

5. Spectrum constraint: H(i+1)(ω) =
√

I(ω)ejφ(i+1)(ω).

6. If a suitable criterion is met, a(i)(z) is the estimate of a(z); else i← i + 1, and go to step

(1). The stopping criterion can be either a bound on i or the relative difference between two

consecutive estimates of a(z).

C. Cepstral Technique

In this technique, the tomogram is reconstructed from the cepstrum instead of the spectrum.

The advantage is that the the autocorrelation can be suppressed under realistic conditions ( [11]

contains the proof). The steps in the technique are given below.

1. Cepstrum: c(z) = F−1 {log (I/S)}(z), where I(ω) and S(ω) are the measurements.

2. Causal cepstrum: c+(z) = c(z)u(z).

3. Fourier transformation: C+(ω) = F{c+}(ω).

4. Exponential mapping: A(ω) = exp
(
C+(ω)

)
− 1.

5. Inverse Fourier transformation: a(z) = F−1{A}(z).
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IV. BIAS AND VARIANCE CALCULATIONS

In order to formulate a realistic model for the noisy signal, we recall some results related to

scattering and experimental studies on the noise characteristics. The measured signal is essentially

due to scattering within the sample. Yaqoob et al. [16] have shown that optical scattering in static

specimens, which may appear as stochastic, is in fact deterministic. The stochastic component is

mainly due to the acquisition devices. Leitgeb et al. [15] have shown that the acquisition noise

is approximately white. Based on these results, we employ the model of a deterministic signal in

white noise. To conform to the practical scenario, we consider the samples of a(z),A(ω), S(ω),

and I(ω), denoted by ak, Ak, Sk, and Ik, respectively. The finite-length discrete version of the

measurements is therefore given as: Ik = Sk |1 + Ak|2 + Wk,0≤ k ≤N − 1, where |Ak| � 1. Wk

is the measurement noise and is assumed to be Gaussian distributed with zero mean and variance

σ2
w. The Gaussian assumption has been shown to be sufficiently accurate for most practical ap-

plications. Based on this assumption, Ralston et al. [17] showed successful de-noising results on

experimental data. Also, in practice, the noise floor is about 40 dB below the signal level (small-

noise regime) [15, 18, 19]; i.e., |Wk| � Sk|1 + Ak|2. We shall take advantage of this inequality in

the subsequent analysis to derive approximate second-order expressions.

A. Fourier Approach

In this approach, it is a standard practice to do reconstruction after subtracting the refer-

ence signal (commonly known as background subtraction), because it enhances the sample struc-

ture. The measurements after this operation are Qk = Sk |1 + Ak|2 + Wk−Sk = 2Sk Real{Ak}+

Sk|Ak|2 + Wk, 0 ≤ k ≤ N − 1. Taking the inverse discrete Fourier transform (IDFT) of the se-

quence1 {Qk}N−1
0 and retaining the first-half (the causal part), we get that âm = (rss ∗a)m +(rss ∗

raa)m + wm, where wm is the noise in the spatial domain. Therefore, we have that E {âm} =

1 The notation {Xk}N−1
0 for sequences is used to indicate that k takes values 0,1,2, ...,N − 1.
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(rss ∗ a)m + (rss ∗ raa)m, which indicates that âm is biased. The variance of âm is σ2ba =
σ2

w

N
.

B. Iterative Phase Recovery Method

The input to the algorithm is the sequence
{√

Ike
jbφ(i)

k

}N−1

0
, where φ̂

(i)
k is the phase estimate

at the kth DFT index after the ith iteration; φ̂
(1)
k is the initial phase. Under a low-noise condition,

we have the Taylor-series approximation:
√

Ik =
√

αk + Wk =
√

αk + Wk

2
√

αk
− W 2

k

8α
3/2
k

+O
(

W 3
k

α
5/2
k

)
,

where αk = Sk|1 + Ak|2 and O denotes the Landau symbol. The IDFT of
{√

Ike
jbφ(i)

k

}N−1

0
is

d̂(i)
m =

1

N

N−1∑
k=0

(
√

αk +
Wk

2
√

αk

− W 2
k

8α
3/2
k

)
ejbφ(i)

k ej 2π
N

k m + h.o.t., 0 ≤ m ≤ N − 1, (1)

where h.o.t. stands for higher-order terms. The sequence
{

d̂
(i)
m

}N−1

0
, with the second-half part

set to zero, yields
{

â
(i)
m

}N−1

0
. Let the DFT of

{
â

(i)
m

}N−1

0
be denoted by ĝ

(i)
k , the angle of which

is used as the phase of
√

Ik in the next iteration; i.e., φ̂
(i+1)
k = ∠ĝ

(i)
k . To proceed further with

the calculations, consider the term E
{

Wke
jφ̂

(i)
k

}
= ejφkE

{
Wke

j∆φ
(i)
k

}
, where ∆φ

(i)
k is the phase

error in the kth component at the ith iteration. For large enough i, it is reasonable to write

E
{

Wk ejφ̂
(i)
k

}
≈ ejφkE

{
Wk

(
1− j∆φ

(i)
k −

(∆φ
(i)
k )2

2

)}
in the small noise regime. This term is fur-

ther scaled down by the factor
1

2
√

αk

(cf. (1)). The magnitude of the product is proportional to

σ2
w

αk

, which is small compared to αk. Therefore, its contribution to the bias is negligible. Similarly,

the contribution of the term containing W 2
k is also negligible. Under these approximations, we

can write am−E
{

â
(i)
m

}
≈ 1

N

∑N−1
k=0

√
αke

j 2π
N

km
(
ejφk −E

{
ejbφ(i)

k

})
. The expectation on the r.h.s.

is rewritten as E
{

ejφ̂
(i)
k

}
= ejφkE

{
ej∆φ

(i)
k

}
≈ ejφk

{
1 + jE{∆φ

(i)
k }−

E
“

∆φ
(i)
k

”2
ff

2

}
. Based on ev-

idence from Monte-Carlo trials, we found that the phase error has a negligible mean value and

hence its contribution to the above expectation is not significant. Denote σ2

∆φ
(i)
k

= E
{(

∆φ
(i)
k

)2
}

,

which is the variance of the zero-mean phase error after the ith iteration. Therefore, we have that
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E
{

ejφ̂
(i)
k

}
= ejφk

{
1−

σ2

∆φ
(i)
k

2

}
. The bias can therefore be written as

∣∣am−E
{
â(i)

m

}∣∣ =
1

2N

∣∣∣∣∣
N−1∑
k=0

σ2

∆φ
(i)
k

√
αke

jφkej 2π
N

km

∣∣∣∣∣ . (2)

After convergence has been achieved, the above expression becomes independent of i. Therefore,

the superscript i can be dropped. We next compute an expression for the standard deviation. Recall

that {ĝk}N−1
0 is the DFT of the causal part of

{
d̂k

}N−1

0
:

ĝk =

N/2−1∑
m=0

d̂me−j 2π
N

km =
1

N

N−1∑
`=0

√
α` + W`e

jbφ`β`,k =
1

N

N−1∑
`=0

√
α`e

jbφ`β`,k +
1

N

N−1∑
`=0

W`

2
√

α`

ejbφ`β`,k.

We write ejbφ` = ejφ`{1 + j∆φ` −O(∆φ2
`)}, where φ̂` = φ` + ∆φ`. Similarly ĝk ≈ |gk|ejbφk ≈

gk{1+ j∆φk}. From these expressions, we have that ∆φk ≈ 1
2Ngk

∑N−1
`=0

W`√
α`

ejφ`β`,k, where β`,k =
N/2−1∑
m=0

ej 2π
N

(`−k)m is deterministic. The variance of ∆φk is given by σ2
∆φk

=
σ2

w

4N2|gk|2
N−1∑
`=0

|β`,k|2

α`

.

After convergence, in the noise-free case, we have |gk|2 = αk. Therefore, (2) simplifies to:

|am−E {âm}| =
σ2

w

8N3

∣∣∣∣∣
N−1∑
k=0

1
√

αk

N−1∑
`=0

|β`,k|2

α`

ejφkej 2π
N

km

∣∣∣∣∣ . (3)

Similarly, it can be shown that the variance is given by σ2bam
=

σ2
w

4N2

N−1∑
k=0

αk.

C. Cepstral Technique

The following analysis is in the same order as the operations described in Sec. III C. Rewriting

Ik = αk

(
1 + Wk

αk

)
, and taking its logarithm, we get that

log Ik = log Sk + log |1 + Ak|2 + log

(
1 +

Wk

αk

)
. (4)

Recalling the Taylor-series expansion: log(1 + x) = x− x2

2
+O (x3) for |x|< 1, we rewrite (4) as

log Ik − log Sk = log |1 + Ak|2 +
Wk

αk

− W 2
k

2α2
k︸ ︷︷ ︸

ηk

+O
(

W 3
k

α3
k

)
, (5)
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the IDFT of which gives the estimated cepstrum:

ĉm ≈
1

N

N−1∑
k=0

(
log |1 + Ak|2 + ηk

)
ej 2π

N
km = cm +

1

N

N∑
k=0

ηk ej 2π
N

km,0≤m≤N − 1, (6)

where {cm}N−1
0 is the cepstrum in the absence of noise. The DFT of the causal part of {ĉm}N−1

0 is

Ĉ+
k = C+

k +
1

N

N−1∑
`=0

η`

N/2−1∑
m=0

ej 2π
N

(`−k)m

︸ ︷︷ ︸
β`,k

+h.o.t. (7)

The step (4) of the technique (cf. Sec. III C) yields

Âk = exp
(
Ĉ+

k

)
− 1 = exp

(
C+

k

)(
1 +

1

N

N−1∑
`=0

β`,kη`

)
− 1 + h.o.t.,

= Ak + exp
(
C+

k

)( 1

N

N−1∑
`=0

β`,kη`

)
+ h.o.t. (8)

The IDFT of the sequence
{

Âk

}N−1

0
gives the scattering function:

âm = am +
1

N2

N−1∑
`=0

η`

N−1∑
k=0

exp
(
C+

k

)
β`,ke

j 2π
N

km

︸ ︷︷ ︸
γ`,m

+h.o.t., 0 ≤ m ≤ N

2
− 1. (9)

It follows from (9) that E{âm} ≈ am−
σ2

w

2N2

N−1∑
`=0

γ`,m

α2
`

. The variance of âm is given by

σ2bam
=

1

N4

N−1∑
`=0

|γ`,m|2
{
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w
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+
σ4

w

4 α4
`
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∣∣∣∣∣
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2

+ σ2
w Re

{(
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γ`,m

2 α2
`

)(
N−1∑
`=0

γ∗`,m
α2

`

)} .

(10)

V. MONTE-CARLO ANALYSES

Deconvolution of the source spectrum is implicit in the cepstral technique but this is not the

case with the Fourier and iterative methods. Therefore, in order to make a fair comparison, we

set the source spectrum to unity within the measurement bandwidth. We synthesize a scattering
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function (cf. Fig. 2), motivated by measurements on standard phantoms such as fiber optic cables

[19], microscope glass slides, multilayer silica-glass phantoms [15, 18], etc. We generate 500

realizations of pseudorandom white Gaussian noise and compute the scattering function estimates

by using the three techniques. For the iterative method, we employed the log-Hilbert-transform-

based initialization proposed in [10] to speed up convergence. Typically, the number of iterations

needed would be about 10 [10], but we iterate 100 times to make sure that the best results are

obtained. The experiment is repeated for different values of SNR; corresponding to each value, the

biases and variances are computed. The biases of the estimators corresponding to SNR=25 dB are

shown in Figures 3. The bias in the Fourier approach is the autocorrelation term. The result of the

simulation matches with the theoretical results for small lags and at the peaks. The bias at larger

lags and in the valleys is dominated by noise. The theoretical bias for the iterative method appears

to be reasonably accurate. Although the theoretical bias of the cepstral technique is small compared

to the Monte-Carlo value, in practice, the noise floor places a limit. The Monte-Carlo bias profiles

of the iterative and cepstral techniques are nearly identical. The variances of the estimates for

SNR=25 dB are shown in Figure 4. We see that the simulation results are in agreement with the

theoretical predictions for the Fourier and iterative techniques. For the cepstral technique, there is a

small discrepancy between the theoretical prediction and the experimental value. From these plots,

we infer that the calculations are fairly accurate. Also, note that the three techniques have nearly

identical Monte-Carlo variance profiles. Another important aspect is the SNR dependence of the

bias and variance. We show in Figures 5 and 6 the biases and variances of the estimators versus

the SNR, corresponding to a point at the peak of the first interface (index = 50) shown in Fig. 2.

The bias of the Fourier method saturates and matches with the theoretical prediction, whereas the

biases of the iterative and cepstral techniques decrease with increase in SNR. By comparing the

Monte-Carlo variances across techniques, we see that they are almost identical and that there is
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a good match between the theoretical and simulation results. The variances also have a linear

dependence on the SNR. In Figures 7 and 8, we show another set of results corresponding to the

valley between the first and second peaks in the scattering function (index = 80). The bias of the

Fourier approach saturates because the autocorrelation has a peak around this point and thus limits

the achievable accuracy. For the other two techniques, the bias shows a decreasing trend. At this

location, the theoretical predictions for the iterative and cepstral techniques are not expected to

match with the simulation results mainly because of the local absence of signal (i.e., no interface)

and therefore, the assumption of high SNR, under which the expressions are derived, does not

hold. There is some discrepancy between the theoretical and experimental biases for the iterative

and cepstral techniques suggesting that the truncated Taylor-series calculations may be suitable

for determining the variance, but not sufficiently accurate for determining the bias. The general

observation is that the three techniques have nearly identical variances but the iterative and cepstral

techniques give rise to lesser bias than the Fourier method. Such observations were also found to

hold for a different choice of the scattering function.

VI. CONCLUSIONS

We have compared the noise-sensitivities of three state-of-the-art reconstruction techniques

for FDOCT. We have shown that the Fourier method has a higher bias than the iterative and the

cepstral techniques. The experimental results are in agreement with the theoretical values except

for a small discrepancy in the bias for the iterative and cepstral techniques. The cepstral technique,

although nonlinear, yields estimators with a variance that equals that of the Fourier and iterative

methods. Therefore, in switching from the Fourier approach to the cepstral technique, statistical

efficiency is not lost; in fact, there is a gain in the reconstruction accuracy. The price paid for this

migration is only a small increase in algorithm complexity.
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Fig. 1. Schematic of the FDOCT setup.
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analysis (cf. Sec. V). A.U. stands for arbitrary units.

0 100 200!120

!100

!80

!60

!40

!20

DEPTH INDEX (A.U.)

BI
AS

 (d
B)

FOURIER TECHNIQUE

 

 

SNR = 25dB

EXPERIMENTAL
THEORETICAL

0 100 200!120

!100

!80

!60

!40

!20

DEPTH INDEX (A.U.)

BI
AS

 (d
B)

CEPSTRAL TECHNIQUE

 

 

SNR = 25dB

EXPERIMENTAL
THEORETICAL

0 100 200!120

!100

!80

!60

!40

!20

DEPTH INDEX (A.U.)

BI
AS

 (d
B)

ITERATIVE TECHNIQUE

 

 

SNR = 25dB

EXPERIMENTAL
THEORETICAL

Fig. 3. Biases (SNR=25 dB) vs. the axial depth index.
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Fig. 4. Variances (SNR=25 dB) vs. the axial depth index.
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Fig. 5. Biases at the first peak (index=50), vs. SNR.
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Fig. 6. Variances at the first peak (index=50), vs. SNR.
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Fig. 7. Biases vs. SNR at index=80.
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Fig. 8. Variances vs. SNR at index=80.
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