

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 20th Anniversary

Clinical neuroradiological exams using 7T Terra.X MRI

Emilie Sleight,^{1,2} Gian Franco Piredda,³ Antoine Klauser,³ Bénédicte Delattre,⁴ Daniele Botta,⁵ Lukas Sveikata,⁶ Ioana Hutuca,⁴ Tom Hilbert,^{3,7,8} Frédéric Grouiller,^{2,5} Karl-Olof Lövblad,^{5,9} Felix T. Kurz^{5,9}

¹EPFL, Lausanne; ²CIBM, Geneva; ³Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne; ⁴Division of Radiology, Geneva University Hospital; ⁵Department of radiology and Medical Informatics, Faculty of Medicine, University of Geneva; ⁶Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital; ⁷Department of Radiology, Lausanne University Hospital and University of Lausanne; ⁸LTS5, EPFL, Lausanne; ⁹Neuroradiology, Geneva University Hospital.

MS

Since a year ago, the Neuroradiology division of HUG has been using the **7T Terra.X MRI scanner** (Siemens Healthineers) with a 8Tx/32Rx head coil (Nova Medical) for clinical exams. Thanks to enhanced signal-to-noise ratio and spatial resolution, the ultra-high field scanner has proven to be a **valuable tool for the diagnosis of specific neurological disorders**, such as multiple sclerosis, cerebral amyloid angiopathy, epilepsy and aneurysm characterisation.

Sequence	TR (ms)	TE (ms)	In-plane resolution (mm ²)	Slice thickness (mm)	TA (min:s)	Acceleration
3D MP2RAGE	6000	3.08	0.6 x 0.6	0.66	7:34	CS 5
2D T2W TSE	8440	62	0.22 x 0.22	2.0	3:58	GRAPPA 4, DL recon
3D T2W FLAIR SPACE	8000	264	0.7 x 0.7	0.7	8:18	CAIPIRINHA 6
3D T1W SPACE	1010	13	0.6 x 0.6	0.6	8:17	CAIPIRINHA 6
2D SWI	25	7	0.15 x 0.15	1.6	6:34	GRAPPA 3
3D TOF	110	3.29	0.3 x 0.3	0.4	7:37	CS 7.2

RESULTS

Here, we present the sequences that we developed for clinical neuroradiological exams and illustrate the benefits of the 7T in a few clinical cases.

▲ **Table 1.** Sequences optimised for 7T clinical brain exams

DS

▲ Figure 1. Comparison of lesion detection between 3T and 7T using T2W FLAIR in a patient with multiple sclerosis.

▲ **Figure 2.** Detection of an aneurysm of the left posterior cerebellar inferior artery (white arrow) using (a) TOF image, (b) maximum-intensity projection and (c) 3D reconstruction.

▲ Figure 4. Encephalocele in temporal lobe on T2W TSE in patient with epilepsy. The encephalocele (white circle) was detected using (a) coronal and (b) transversal T2W TSE at 7T. (c) It was missed on preceding T2W TSE image at 3T (red circle).

▲ Figure 3. Lesions and venous abnormalities in patients with multiple sclerosis. (a-c) Lesion detection with T2W TSE image. (d-h) Lesion detection with MP2RAGE. (i-k) Venous abnormalities detection with SWI. Legend: cortico-juxtacortical (white arrow), subpial (dashed arrows) and irregularly shaped juxtacortical lesion (arrow head), venous abnormality (red circle).

7T offers high precision radiological imaging Advances in acceleration techniques and AI are expected to further enhance protocol efficiency and image quality

References: [1] Okada et al., 2022, Quant. Imaging Med. Surg.

Acknowlegments: We acknowledge the resource and expertise provided by the CIBM Center for Biomedical Imaging and the FCBG Human Neuroscience Platform MRI facility at the Campus Biotech Geneva.

