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Dose-dependent neuroprotective effects of Bovine Lactoferrin
following neonatal hypoxia-ischemia in the immature rat brain 

Injuries to the developing brain due to hypoxia–ischemia (HI) are common causes of neurological disabilities in preterm babies. HI, with oxygen deprivation to the brain or

reduced cerebral blood perfusion due to birth asphyxia, often leads to severe brain damage and sequelae. Injury mechanisms include glutamate excitotoxicity, oxidative stress,

blood brain barrier dysfunction and exacerbated inflammation. Nutritional intervention is emerging as a therapeutic alternative to prevent and rescue brain from HI injury.

Lactoferrin (Lf) is an iron-binding protein present in saliva, tears and breast milk which has been shown to have antioxidant, anti-inflammatory and anti-apoptotic properties

when administered to mothers as a dietary supplement during pregnancy and/or lactation in preclinical studies of developmental brain injuries. However, despite Lf’s promising

neuroprotective effects, there is no established dose [1].

The aim of this work was to test three different doses of dietary maternal Lf supplementation using the postnatal day 3 HI model and evaluated the acute neurochemical

damage profile using 1H Magnetic Resonance Spectroscopy (MRS) and long-term microstructure alterations using advanced diffusion imaging (DTI/NODDI) allied to protein

expression and histological analysis.

BACKGROUND

AIMS

Pregnant Wistar rats were fed either control diet or bovine Lf supplemented at 0.1, 1 or 10 g/kg/body weight

concentration from the last day of pregnancy (E21) to weaning.

P3: right carotid artery cauterization followed by 30 min at 6% O2.

MRS/MRI: actively-shielded 9.4T/31cm magnet (Varian/Magnex) equipped with 12-cm gradient coils

(400mT/m, 120µs)

MRS : quadrature transceive 20-mm surface coil. VOI of 1.5×1.5×2.5mm3 within the cortical lesion using an

ultra-short echo time (TE = 2.7 ms) SPECIAL [2]. Proton spectra analyze : LCModel [3].

P25: Ex-vivo diff MRI with a 2.5 mm Ø birdcage coil. Multi-b-value shell protocol, SE sequence : 96 DWI: 15

b0 and 81 in 3 shells (# of directions/b-value in s/mm2): 21/1750, 30/3400 and 30/5100.

Acquired data reconstructed with DTI-TK and fitted using the NODDI toolbox [4].

Three different brain regions identified: corpus callosum, cingulum and external capsule.

METHODS

RESULTS

In conclusion, Lf supplementation attenuates, in a dose-dependent manner, the acute and long-term cerebral injury caused by

HI. This study suggests that Lf reached its optimal effects with dose of 1g/kg whereas 10mg seems deleterious for some

aspects. Further investigations are in progress to better understand mechanisms of Lf.

CONCLUSION
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Figure 2: Typical cortical

spectrum obtained in the Sham

group at P4.

Figure 3: Neurochemical profiles presented as mean ± SEM. All concentrations are expressed in mM/g. Differences

between groups (Sham, HI, HILf0.1, HILf1 and HILf10) 24h post-HI (p<0.05, * HI vs. SH, $ difference between HILf

groups. a b c HILf 0.1, 1 or 10 vs HI respectively. Differences were determined by one-way ANOVA and considered

significant when p<0.05

Figure 4: Diffusivity (Axial, AD and Radial, RD), fractional anisotropy (FA) and direction encoded color (DEC)

maps, intra-neurite volume fraction (fin), cerebrospinal volume fraction (fiso), and orientation dispersion index

(ODI) maps. Maps correspond to the averaged maps over each group.

Figure 5: Histograms of the mean values of Diffusivity (Mean, MD; Axial, AD and Radial,

RD), fractional anisotropy (FA), intra-neurite volume fraction (fin), isotropic volume

fraction (fiso) and orientation dispersion index (ODI) for Sham, HI, HILf01, HILf1 and

HILf10 rats. *: P<0.05.
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Figure 1: Experimental timeline of the study. E: Embryonic day, HI: Hypoxia-Ischemia,

P: Postnatal Day, DTI : Diffusion Tensor Imaging, Lf: Lactoferrin, NODDI: Neurite

orientation dispersion and density imaging.
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